Continuous Debugging of Microservices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Devops and Testers White Paper
White Paper DevOps and Testers DevOps is part of an overall approach that organizations use to deliver software frequently and with high quality. The most obvious outcome of successful DevOps implementations is the reduction in the time it takes for software changes to transition from an idea to production. What Does DevOps Mean If you are an experienced DevOps Automated tools and processes practitioner, we hope that you are used in system configuration, for Testers might still find the article useful. If the build process, testing, the Background you are not a tester, we hope that deployment to test, staging and The DevOps movement (for want you will at least see the tester’s production environments, post- of a better label) is progressing perspective. deployment monitoring, evaluation, rapidly. Like many other and operations. movements in the industry, the What Is DevOps? speed of adoption accelerates Is DevOps Just About faster than the definition of the Simplistically, DevOps is a label movement itself. DevOps is still to describe an ecosystem in Tools? not well defined and the nuances which development teams and At one level, the goal of DevOps of culture, the emergent capability systems operations teams work is to eliminate bottlenecks in of new technologies, and range of more closely together. In the the delivery pipeline through (mostly successful) case studies so-called delivery pipeline, from automation. But the automation means that the issues at hand are committing source code to putting of staged processes still still widely debated.1 code into production, developers requires governance. Most accommodate and automate some automated processes are not Depending on who you talk to, of operations activities. -
IBM Developer for Z/OS Enterprise Edition
Solution Brief IBM Developer for z/OS Enterprise Edition A comprehensive, robust toolset for developing z/OS applications using DevOps software delivery practices Companies must be agile to respond to market demands. The digital transformation is a continuous process, embracing hybrid cloud and the Application Program Interface (API) economy. To capitalize on opportunities, businesses must modernize existing applications and build new cloud native applications without disrupting services. This transformation is led by software delivery teams employing DevOps practices that include continuous integration and continuous delivery to a shared pipeline. For z/OS Developers, this transformation starts with modern tools that empower them to deliver more, faster, with better quality and agility. IBM Developer for z/OS Enterprise Edition is a modern, robust solution that offers the program analysis, edit, user build, debug, and test capabilities z/OS developers need, plus easy integration with the shared pipeline. The challenge IBM z/OS application development and software delivery teams have unique challenges with applications, tools, and skills. Adoption of agile practices Application modernization “DevOps and agile • Mainframe applications • Applications require development on the platform require frequent updates access to digital services have jumped from the early adopter stage in 2016 to • Development teams must with controlled APIs becoming common among adopt DevOps practices to • The journey to cloud mainframe businesses”1 improve their -
E2 Studio Integrated Development Environment User's Manual: Getting
User’s Manual e2 studio Integrated Development Environment User’s Manual: Getting Started Guide Target Device RX, RL78, RH850 and RZ Family Rev.4.00 May 2016 www.renesas.com Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. -
SAS® Debugging 101 Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California
PharmaSUG 2017 - Paper TT03 SAS® Debugging 101 Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California Abstract SAS® users are almost always surprised to discover their programs contain bugs. In fact, when asked users will emphatically stand by their programs and logic by saying they are bug free. But, the vast number of experiences along with the realities of writing code says otherwise. Bugs in software can appear anywhere; whether accidentally built into the software by developers, or introduced by programmers when writing code. No matter where the origins of bugs occur, the one thing that all SAS users know is that debugging SAS program errors and warnings can be a daunting, and humbling, task. This presentation explores the world of SAS bugs, providing essential information about the types of bugs, how bugs are created, the symptoms of bugs, and how to locate bugs. Attendees learn how to apply effective techniques to better understand, identify, and repair bugs and enable program code to work as intended. Introduction From the very beginning of computing history, program code, or the instructions used to tell a computer how and when to do something, has been plagued with errors, or bugs. Even if your own program code is determined to be error-free, there is a high probability that the operating system and/or software being used, such as the SAS software, have embedded program errors in them. As a result, program code should be written to assume the unexpected and, as much as possible, be able to handle unforeseen events using acceptable strategies and programming methodologies. -
Agile Playbook V2.1—What’S New?
AGILE P L AY B O OK TABLE OF CONTENTS INTRODUCTION ..........................................................................................................4 Who should use this playbook? ................................................................................6 How should you use this playbook? .........................................................................6 Agile Playbook v2.1—What’s new? ...........................................................................6 How and where can you contribute to this playbook?.............................................7 MEET YOUR GUIDES ...................................................................................................8 AN AGILE DELIVERY MODEL ....................................................................................10 GETTING STARTED.....................................................................................................12 THE PLAYS ...................................................................................................................14 Delivery ......................................................................................................................15 Play: Start with Scrum ...........................................................................................15 Play: Seeing success but need more fexibility? Move on to Scrumban ............17 Play: If you are ready to kick of the training wheels, try Kanban .......................18 Value ......................................................................................................................19 -
Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK
1 From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK Abstract—This paper1 describes some of the challenges and research questions that target the most productive intersection opportunities when deploying static and dynamic analysis at we have yet witnessed: that between exciting, intellectually scale, drawing on the authors’ experience with the Infer and challenging science, and real-world deployment impact. Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, Many industrialists have perhaps tended to regard it unlikely impacting billions of people worldwide. that much academic work will prove relevant to their most The paper identifies open problems that have yet to receive pressing industrial concerns. On the other hand, it is not significant attention from the scientific community, yet which uncommon for academic and scientific researchers to believe have potential for profound real world impact, formulating these that most of the problems faced by industrialists are either as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects. boring, tedious or scientifically uninteresting. This sociological phenomenon has led to a great deal of miscommunication between the academic and industrial sectors. I. INTRODUCTION We hope that we can make a small contribution by focusing on the intersection of challenging and interesting scientific How do we transition research on static and dynamic problems with pressing industrial deployment needs. Our aim analysis techniques from the testing and verification research is to move the debate beyond relatively unhelpful observations communities to industrial practice? Many have asked this we have typically encountered in, for example, conference question, and others related to it. -
Designing Software Architecture to Support Continuous Delivery and Devops: a Systematic Literature Review
Designing Software Architecture to Support Continuous Delivery and DevOps: A Systematic Literature Review Robin Bolscher and Maya Daneva University of Twente, Drienerlolaan 5, Enschede, The Netherlands [email protected], [email protected] Keywords: Software Architecture, Continuous Delivery, Continuous Integration, DevOps, Deployability, Systematic Literature Review, Micro-services. Abstract: This paper presents a systematic literature review of software architecture approaches that support the implementation of Continuous Delivery (CD) and DevOps. Its goal is to provide an understanding of the state- of-the-art on the topic, which is informative for both researchers and practitioners. We found 17 characteristics of a software architecture that are beneficial for CD and DevOps adoption and identified ten potential software architecture obstacles in adopting CD and DevOps in the case of an existing software system. Moreover, our review indicated that micro-services are a dominant architectural style in this context. Our literature review has some implications: for researchers, it provides a map of the recent research efforts on software architecture in the CD and DevOps domain. For practitioners, it describes a set of software architecture principles that possibly can guide the process of creating or adapting software systems to fit in the CD and DevOps context. 1 INTRODUCTION designing new software architectures tailored for CD and DevOps practices. The practice of releasing software early and often has For clarity, before elaborating on the subject of been increasingly more adopted by software this SLR, we present the definitions of the concepts organizations (Fox et al., 2014) in order to stay that we will address: Software architecture of a competitive in the software market. -
Devops Point of View an Enterprise Architecture Perspective
DevOps Point of View An Enterprise Architecture perspective Amsterdam, 2020 Management summary “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.”1 Setting the scene Goal of this Point of View In the current world of IT and the development of This point of view aims to create awareness around the IT-related products or services, companies from transformation towards the DevOps way of working, to enterprise level to smaller sizes are starting to help gain understanding what DevOps is, why you need it use the DevOps processes and methods as a part and what is needed to implement DevOps. of their day-to-day organization process. The goal is to reduce the time involved in all the An Enterprise Architecture perspective software development phases, to achieve greater Even though it is DevOps from an Enterprise Architecture application stability and faster development service line perspective, this material has been gathered cycles. from our experiences with customers, combined with However not only on the technical side of the knowledge from subject matter experts and theory from organization is DevOps changing the playing within and outside Deloitte. field, also an organizational change that involves merging development and operations teams is Targeted audience required with an hint of cultural changes. And last but not least the skillset of all people It is specifically for the people within Deloitte that want to involved is changing. use this as an accelerator for conversations and proposals & to get in contact with the people who have performed these type of projects. -
Continuous Testing for Devops Evolving Beyond Simple Automation
Technical Whitepaper 1 Continuous Testing for DevOps Evolving Beyond Simple Automation INTRODUCTION DevOps represents a cultural shift that stresses collaboration be- on acceleration. Moreover, adopting a bona fide Continuous Testing tween the business, developers, and IT professionals. Software test process (more than just automated tests running regularly) helps automation can enhance these connections and help organizations promote all of the core pillars of DevOps: Culture, Automation, Lean, achieve desired SDLC acceleration, but it’s important to recognize Metrics, and Sharing. that automation is just one piece of the DevOps puzzle. In this paper, we’ll explore why and how Continuous Testing’s real- Since testing is often one of the greatest constraints in the SDLC, time objective assessment of an application’s business risks is a optimizing quality processes to allow testing to begin earlier, as well critical component of DevOps. as shrink the amount of testing required, can have a marked impact DEVOPS PRINCIPLES There are several key pieces to understanding DevOps revolutions and they are often brought about by a compelling event at an organization, such as a shift to agile. As organizations start to move into an agile development methodology, they start to uncover other processes that can be accelerated, such as delivery by DevOps and testing by Continuous Testing. The acceleration that is set in motion via agile makes it necessary to accelerate the release schedule. In order to ensure a successful release, an organization must adopt continuous testing to make sure the conveyer belt does not break down. The modernization maturity model has these three distinct phases: AGILE Agile software development is a different way of thinking about approaching the challenge of development time. -
Software Engineering Using Devops - a Silver Bullet?
UPTEC IT 19 002 Examensarbete 30 hp Januari 2019 Software Engineering using DevOps - a Silver Bullet? Mikaela Eriksson Institutionen för informationsteknologi Department of Information Technology Abstract Software Engineering using DevOps - a Silver Bullet? Mikaela Eriksson Teknisk- naturvetenskaplig fakultet UTH-enheten Today we have technology that help us scan millions of medical databases in a glimpse of an eye and self-driving cars that are outperforming humans at driving. Besöksadress: Technology is developing so fast that new updates in the technology world are Ångströmlaboratoriet Lägerhyddsvägen 1 commonplace to us and we are more often frustrated in case something is not up Hus 4, Plan 0 to speed. Technology is moving so quickly and in order for humans to keep up with the development needed in the tech business, different methodologies for how to Postadress: optimise the development process have been applied, some that work better than Box 536 751 21 Uppsala others. But just as fast as the technology changes, the methodologies used change with them. Recently a new term has entered the methodologies field. This Telefon: term is said to bring faster deployment, decreased failures and improved the 018 – 471 30 03 loyalties within the teams. The term in question, is called DevOps. Telefax: 018 – 471 30 00 This study is about uncovering the world of DevOps. This thesis is exploring the term in real teams in order to find out whether or not DevOps is the silver bullet it Hemsida: makes out to be. The study is based on ten interviews with people at different http://www.teknat.uu.se/student organisations, using DevOps, and will find out how these interviewees use and feel about DevOps. -
Software Development a Practical Approach!
Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway. -
5 Key Considerations Towards the Adoption of a Mainframe Inclusive Devops Strategy
5 Key Considerations Towards the Adoption of a Mainframe Inclusive DevOps Strategy Key considaetrations towards the adoption of a mainframe inclusive devops strategy PLANNING FOR DEVOPS IN MAINFRAME ENVIRONMENTS – KEY CONSIDERATIONS – A mountain of information is available around the implementation and practice of DevOps, collectively encompassing people, processes and technology. This ranges significantly from the implementation of tool chains to discussions around DevOps principles, devoid of technology. While technology itself does not guarantee a successful DevOps implementation, the right tools and solutions can help companies better enable a DevOps culture. Unfortunately, the majority of conversations regarding DevOps center around distributed environments, neglecting the platform that still runs more than 70% of the business and transaction systems in the world; the mainframe. It is estimated that 5 billion lines of new COBOL code are added to live systems every year. Furthermore, 55% of enterprise apps and an estimated 80% of mobile transactions touch the mainframe at some point. Like their distributed brethren, mainframe applications benefit from DevOps practices, boosting speed and lowering risk. Instead of continuing to silo mainframe and distributed development, it behooves practitioners to increase communication and coordination between these environments to help address the pressure of delivering release cycles at an accelerated pace, while improving product and service quality. And some vendors are doing just that. Today, vendors are increasing their focus as it relates to the modernization of the mainframe, to not only better navigate the unavoidable generation shift in mainframe staffing, but to also better bridge mainframe and distributed DevOps cultures. DevOps is a significant topic incorporating community and culture, application and infrastructure development, operations and orchestration, and many more supporting concepts.