A Bioinformatics Approach for Identifying Transgene Insertion Sites

Total Page:16

File Type:pdf, Size:1020Kb

A Bioinformatics Approach for Identifying Transgene Insertion Sites Park et al. BMC Biotechnology (2017) 17:67 DOI 10.1186/s12896-017-0386-x METHODOLOGY ARTICLE Open Access A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data Doori Park1,3, Su-Hyun Park2,6, Yong Wook Ban1,4, Youn Shic Kim2, Kyoung-Cheul Park1,5, Nam-Soo Kim3, Ju-Kon Kim2* and Ik-Young Choi1,5* Abstract Background: Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. Methods: To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Results: Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9–5, SNU-Bt9–30, and SNU-Bt9–109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. Conclusion: NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants. Keywords: Genetically modified organism (GMO), GM rice, Next-generation sequencing (NGS), Molecular characterization, GM safety, Bioinformatics Background domesticated animals [2]. One such method of creating Domesticated plants and animals have been modified genetically modified (GM) crops involves introducing (using artificial selection and crossbreeding) to meet random insertions of recombinant DNA into genomes human needs for at least 10,000 years. However, these of crops or animals through transformation techniques, domestication processes have resulted in severe genetic such as Agrobacterium-mediated transformation and erosion in modern crops and animals, which has left particle bombardment [3, 4]. However, several issues re- them vulnerable to biotic and abiotic stresses [1]. In lated to the production of genetically modified (GM) response, many genetic modification techniques have crops are still under debate. These issues include poten- been invented to improve modern crop cultivars and tial ecological impacts, concerns for food safety, and the genetic stability of crops [5, 6]. * Correspondence: [email protected]; [email protected] Before releasing new GM crop varieties into the 2Graduate School of International Agricultural Technology and Crop Biotech marketplace, molecular characterization of the modified Institute/GreenBio Science and Technology, Seoul National University, 1447, plants is a critical step for assessing their safety and Pyeongchang, Gangwon 25354, Republic of Korea 1Department of Agriculture and Life Industry, Kangwon National University, 1 obtaining regulatory approvals [7]. Weber et al. [8] dis- Kangwondaehak-gil, Chuncheon, Gangwon 24341, Republic of Korea cussed the potential risks of genomic instability on the Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Park et al. BMC Biotechnology (2017) 17:67 Page 2 of 8 genomic plasticity of GM plants and its effects on the Methods safety of food and animal feed [8]. They concluded that Rice transformation and DNA extraction there is no evidence that GM plants are less stable than The conventional rice variety (Oryza sativa japonica cv. non-GM plants and that the risks of introducing new Illmi) was used as the background cultivar to generate food hazards into the food supply are no different than transgenic rice lines. T-DNA was composed of the rice introducing food derived from conventional breeding ribulose-1,5-bisphosphate carboxylase/oxygenase small process. Even so, practical concerns remain regarding subunit 3 (RbcS3) promoter linked to transit peptide the genomic locations of transgenic integrations [9, 10]. (TP3), insect-resistance gene Cry1Ac (Bt9), terminator If the transgene integrates into a heterochromatin re- PinII and herbicide resistant gene expression cassette gion, then it will not be expressed as desired; alterna- (35S::bar::3’nos), which was used as a selection marker tively, if the transgene is inserted by using a strong (Additional file 1: FigureS1). Transgenic rice lines were promoter, then its expression will be suppressed by host obtained by Agrobacterium-mediated co-cultivation gene silencing mechanisms. (detailed information available in [21]). Three T3 homo- Molecular characterization is necessary for the zygous transgenic rice plants, SNU-Bt9–5, SNU-Bt9–30, commercialization of transgenic crops. Using a and SNU-Bt9–109, were used as plant materials, and sequence-specific probe that is homologous to the trans- Illmi rice was used as a control. Genomic DNA from gene, Southern blot (SB) analysis has been widely used 0.5 g of leaf tissue was isolated from each of the four in molecular characterization of transgenic events to de- plants using a modified DNAzol®ES method (Molecular termine the presence, and copy numbers of, transgenes Research Center, Cincinnati, OH, USA). [11, 12]. Transgenes can also be detected through poly- merase chain reaction (PCR) and Sanger sequencing [13, Sequencing library preparation and whole genome 14] or using microarray methods [15]. Although SB and sequencing other methods are typically carried out for the selection Genomic DNA quality was evaluated by 0.5% agarose of GM events, these methods are laborious and time gel electrophoresis. Following a quality check, genomic consuming and suffer from limitations such as detection DNA for shotgun sequencing was sheared to a 500 bp of single base substitutions or small insertions/deletions, average fragment size (Covaris, Woburn, MA, USA). A which can occur within the transfer DNA (T-DNA) and Truseq DNA PCR-free Library Preparation Kit (Illumina its insertion site [16]. Recently, several publications Inc. San Diego, CA, USA) was used to construct DNA showed sufficient evidence that next generation se- libraries following the manufacturer’s protocol. The quencing (NGS) could be used to replace or comple- quality of constructed DNA libraries was confirmed by ment traditional methods [17–20]. NGS technologies using the LabChip GX system (PerkinElmer, Waltham, will likely offer rapid and cost-effective protocols for de- MA, USA). DNA libraries were sequenced with 150-bp tecting the exact copy numbers and genomic locations of paired-end sequencing on an Illumina Hiseq 2500. All transgenes, the presence of vector backbones, and the sta- reads are available in the NCBI Sequence Read Archive bility of T-DNA across generations. NGS is also sensitive repository [SRX2762614, SRX2762615, SRX2762616, enough to identify nucleotide substitutions other than SRX2762617, SRX2762618, and SRX2762619]. SNPs, including small insertions and deletions, which en- able comparative studies across events and reference ge- T-DNA insert site analysis nomes [16]. Initially, Illumina paired-end sequencing reads with In this paper, three T3 GM rice plants, (Oryza sativa average Phred scores ≥20 were retained, and duplicate japonica cv. Illmi) SNU-Bt9–5, SNU-Bt9–30, and SNU- sequences were removed using FastQC. These qualified Bt9–109, were characterized by NGS technique before reads were classified into three groups: 1) reads derived commercialization. Transfer DNA carried an insect- from rice endogenous genomic regions; 2) reads derived resistance gene, Cry1Ac, and plants were transformed from a plasmid sequence containing transfer DNA; and using Agrobacterium-mediated transformation. From high 3) reads derived from the location of transgene integra- throughput re-sequencing and bioinformatics analysis, we tion sites that spanned the junction between plant and identified the precise genomic locations of the transgene transgene sequences. To obtain the third group of reads, insertions and determined the presence or absence of reads were first mapped back to transformation plasmid plasmid backbone sequences in GM plants. We intended vector sequences (pPZP200 including T-DNA) using the to provide insights into the distinct advantages of applying Burrows-Wheeler Aligner with maximum exact matches various bioinformatics approaches, particularly regarding (BWA-MEM) with a minimum seed length
Recommended publications
  • Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
    Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011).
    [Show full text]
  • Evaluating Potential Plant Hormone Cross Talk Between Auxin and Ethylene in Arabidopsis Mia Lynne Brown [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2015 Evaluating Potential Plant Hormone Cross Talk between Auxin and Ethylene in Arabidopsis Mia Lynne Brown [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Botany Commons, and the Plant Biology Commons Recommended Citation Brown, Mia Lynne, "Evaluating Potential Plant Hormone Cross Talk between Auxin and Ethylene in Arabidopsis" (2015). Theses, Dissertations and Capstones. Paper 920. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. EVALUATING POTENTIAL PLANT HORMONE CROSS TALK BETWEEN AUXIN AND ETHYLENE IN ARABIDOPSIS A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Science by Mia Lynne Brown Approved by Dr. Marcia Harrison-Pitaniello, Committee Chairperson Dr. Wendy Trzyna, Committee Member Dr. Jagan Valluri, Committee Member Marshall University May 2015 DEDICATION I dedicate my thesis work to my family and friends. A special feeling of gratitude to my loving parents, Marcel and Elizabeth Brown, whose words of encouragement and fervent prayers pushed me to complete the work started within me. To my sister Hope, who has never left my side and is very special and dear to my heart. I also dedicate this thesis to my many friends who have supported me throughout the process. I will always appreciate all they have done, especially Janae Fields for constantly reminding me of the greater call on my life, Tiffany Rhodes for helping me stay upbeat when times got tough, and Eugene Lacey for being a great supporter in our college and post-graduate science careers.
    [Show full text]
  • Gene Transfer Technique
    Nature and Science, 3(1), 2005, Ma and Chen, Gene Transfer Technique Gene Transfer Technique Hongbao Ma, Guozhong Chen Michigan State University, East Lansing, MI 48823, USA, [email protected] Abstract: This article is describing the nine principle techniques for the gene transfection, which are: (1) lipid-mediated method; (2) calcium-phosphate mediated; (3) DEAE-dextran-mediated; (4) electroporation; (5) biolistics (gene gun); (6) viral vectors; (7) polybrene; (8) laser transfection; (9) gene transfection enhanced by elevated temperature, as the references for the researchers who are interested in this field. [Nature and Science. 2005;3(1):25-31]. Key words: DNA; gene; technique; transfer agricultural potential and medical importance 1 Introduction (Campbell, 1999; Uzogara, 2000; Lorence, 2004). The gene transfer methods normally include three categories: 1. transfection by biochemical methods; 2. Gene transfer is to transfer a gene from one DNA transfection by physical methods; 3. virus-mediately molecule to another DNA molecule. Gene transfer transduction. The gene transfer results can be transient represents a relatively new possibility for the treatment and stable transfection. of rare genetic disorders and common multifactorial Gene therapy can be defined as the deliberate diseases by changing the expression of a person's genes transfer of DNA for therapeutic purposes. Many (Arat, 2001). In 1928, Griffith reported that a serious diseases such as the tragic mental and physical nonpathogenic pneumoccocus strain could become handicaps caused by some genetic metabolic disorders pathogenic when it was mixed with cells of heat-killed may be healed by gene transfer protocol. Gene transfer pathogenic pneumoccocus, which hinted that the is one of the key factors in gene therapy (Matsui, pathogenic genetic material could be transformed from 2003), and it is one of the key purposes of the clone the heat-killed pathogenic pneumoccocus to the (Ma, 2004).
    [Show full text]
  • Bt Corn Produc
    STATE OF MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY BOARD OF PESTICIDES CONTROL 28 STATE HOUSE STATION UGUSTA AINE PAUL R. LEPAGE A , M 04333 WALTER E. WHITCOMB GOVERNOR COMMISSIONER To: Board of Pesticides Control Members From: Mary Tomlinson, Pesticides Registrar/Water Quality Specialist RE: Bt Corn Products with Pending Maine Registration Status Date: July 19, 2017 ****************************************************************************** Monsanto Company and Dow AgroSciences LLC have requested registration of several new Bt corn products. The new active ingredient (unique identifier 87411-9) is a dsRNA transcript comprising a DvSnf7 inverted repeat sequence which matches that from the Western corn rootworm. dsRNA transcript comprising a DvSnf7 inverted repeat sequence derived from Diabrotica virgifera virgifera, and the genetic material necessary for its production (vector PV-ZMIR10871) in MON 87411 corn (OECD Unique Identifier MON-87411-9)………………………..≤ 0.00000044%* MON 87411 also contains CP4 EPSPS protein (5-enolpyruvylshikimate-3-phosphate synthase) and the genetic material (vector PV-ZMIR10871) necessary for its production in corn event MON 87411…...≤ 0.036%*. The EPSPS protein confers tolerance to glyphosate. Products designed for the propagation of commercial seed have no spatial refuge which is typical of these types of products. SmartStax PRO Enlist requires a 5% non-Bt corn refuge, unless used for seed propagation, and SmartStax PRO Enlist Refuge Advanced contains a 5% interspersed refuge. The 2015 EPA Registration Decision (RED) and USDA Draft Environmental Assessment for Mon 87411 are attached for your review. The question posed to the Board is, are these products substantially different from currently registered Bt corn products? If so, what further review is recommended? The labels for the products under consideration are attached for your review.
    [Show full text]
  • Transgenic Animals
    IQP-43-DSA-4208 IQP-43-DSA-6270 TRANSGENIC ANIMALS An Interactive Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: _________________________ _________________________ William Caproni Erik Dahlinghaus August 24, 2012 APPROVED: _________________________ Prof. David S. Adams, PhD WPI Project Advisor ABSTRACT A transgenic animal contains genes not native to its species. The use of these animals in research and medicine has dramatically increased our understanding of genetics and disease modeling. This IQP aims to provide an overview of the technical development and applications of transgenic animals, as well as the ethical, legal, and societal ramifications of creating these animals. Finally, this IQP will draw conclusions from the research performed and the information gathered. 2 TABLE OF CONTENTS Signature Page …………………………………………..…………………………….. 1 Abstract …………………………………………………..……………………………. 2 Table of Contents ………………………………………..…………………………….. 3 Project Objective ……………………………………….....…………………………… 4 Chapter-1: Transgenic Animal Technology …….……….…………………………… 5 Chapter-2: Applications of Transgenics in Animals …………..…………………….. 19 Chapter-3: Transgenic Ethics ………………………………………………………... 32 Chapter-4: Transgenic Legalities ……………………..………………………………. 43 Project Conclusions...…………………………………..….…………………………… 53 3 PROJECT OBJECTIVES The objective of this project was to research and present a multifaceted view of transgenics, including the technology itself and its effects on mankind. Chapter one offers an overview of the different methods for creating and testing transgenic animals. Chapter two provides information on how the different types of transgenic animals are used, and how they affect our daily lives. Chapter three presents the many ethical issues surrounding this controversial technology, and its impact on society. Chapter four describes the legal issues regarding this emerging technology and the patenting of life.
    [Show full text]
  • Genetic Engineering (3500 Words)
    Genetic Engineering (3500 words) Biology Also known as: biotechnology, gene splicing, recombinant DNA technology Anatomy or system affected: All Specialties and related fields: Alternative medicine, biochemistry, biotechnology, dermatology, embryology, ethics, forensic medicine, genetics, pharmacology, preventive medicine Definition: Genetic engineering, recombinant DNA technology and biotechnology – the buzz words you may have heard often on radio or TV, or read about in featured articles in newspapers or popular magazines. It is a set of techniques that are used to achieve one or more of three goals: to reveal the complex processes of how genes are inherited and expressed, to provide better understanding and effective treatment for various diseases, (particularly genetic disorders) and to generate economic benefits which include improved plants and animals for agriculture, and efficient production of valuable biopharmaceuticals. The characteristics of genetic engineering possess both vast promise and potential threat to human kind. It is an understatement to say that genetic engineering will revolutionize the medicine and agriculture in the 21st future. As this technology unleashes its power to impact our daily life, it will also bring challenges to our ethical system and religious beliefs. Key terms: GENETIC ENGINEERING: the collection of a wide array of techniques that alter the genetic constitution of cells or individuals by selective removal, insertion, or modification of individual genes or gene sets GENE CLONING: the development
    [Show full text]
  • Genetically Engineered Animals and Public Health
    GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH Compelling Benefits for Health Care, Nutrition, the Environment, and Animal Welfare Revised Edition: June 2011 GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH: Compelling Benefits for Health Care, Nutrition, the Environment, and Animal Welfare By Scott Gottlieb, MD and Matthew B. Wheeler, PhD American Enterprise Institute Institute for Genomic Biology, University of Illinois at Urbana-Champaign TABLE OF CONTENTS Abstract . 3 Executive Summary . 3 Introduction . 5 How the Science Enables Solutions . 6 Genetically Engineered Animals and the Improved Production of Existing Human Proteins, Drugs, Vaccines, and Tissues . 8 Blood Products . 10 Protein-Based Drugs . 12 Vaccine Components . 14 Replacement Tissues . 15 Genetic Engineering Applied to the Improved Production of Animals for Agriculture: Food, Environment and Animal Welfare . 19 Enhanced Nutrition and Public Health . 19 Reduced Environmental Impact. 21 Improved Animal Welfare . 21 Enhancing Milk . 22 Enhancing Growth Rates and Carcass Composition . 24 Enhanced Animal Welfare through Improved Disease Resistance . 26 Improving Reproductive Performance and Fecundity . 28 Improving Hair and Fiber . .30 Science-Based Regulation of Genetically Engineered Animals . 31 International Progress on Regulatory Guidance . 31 U. S. Progress on Regulatory Guidance . 31 Industry Stewardship Guidance on Genetically Engineered Animals . 32 Enabling Both Agricultural and Biomedical Applications of Genetic Engineering . 33 Future Challenges and Conclusion . 34 { GENETICALLY ENGINEERED ANIMALS AND PUBLIC HEALTH } Abstract Genetically engineered animals embody an innovative technology that is transforming public health through biomedical, environmental and food applications. They are inte- gral to the development of new diagnostic techniques and drugs for human disease while delivering clinical and economic benefits that cannot be achieved with any other approach.
    [Show full text]
  • Activity of the Agrobacterium T-DNA Transfer Machinery Is Affected by Virb Gene Products (Crown Ga/Q Pan/Conga Tasfr/Nr ) JOHN E
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9350-9354, October 1991 Biochemistry Activity of the Agrobacterium T-DNA transfer machinery is affected by virB gene products (crown ga/Q pan/conga tasfr/nr ) JOHN E. WARD, JR.*t, ELIZABETH M. DALE, AND ANDREW N. BINNS Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Communicated by Mary-Dell Chilton, July 12, 1991 (receivedfor review February 25, 1991) ABSTRACT The onr (origin of traer) seqe and T-DNA or its borders), the conjugal origin of transfer se- mob (mobilization) genes of pla d RSF1010 can unctnly quence (oriT and mobilization (mob) genes of the small replace transfer DNA (T-DNA) borders to generate an wide-host-range plasmid RSF1010 can functionally replace RSF1010 intermediate transferable to plants trgh activities T-DNA borders and generate an RSF1010 intermediate trans- of the tumor-inducing (Tiplid uence (vir) genes of ferable to plants by the vir gene transfer machinery. This Agrobaecteriwn umefaciena. Because the TI plasmid WiMl gene strongly supports a conjugal model of T-DNA transfer and products are hypothesized to form a mbrane-l further suggests that at least some of the Ti plasmid vir gene T-DNA transport arus, we investigated whether specific products are functionally equivalent to the transfer (tra) gene WirM genes were needed for RSF 010 transfer. Here we report products of conjugal plasmids. With the Escherichia coli that transormation of Nicotiw tabacum leaf explants by an conjugative F plasmid, at least 15 plasmid tra gene products RSF1010-derivative plamd (pJW323) requires the essential are involved in the assembly of a pilus structure used to virulence genes virB9, vir810, and vir811, conient with the initiate binding to the recipient cell and in the formation of a hypothesis that both the T-DNA and RSF1010 tner inter- proposed membrane-spanning ssDNA transfer channel at the mediates utilize the same transport machinery.
    [Show full text]
  • Agrobacterium-Mediated Transformation and Assessment of Factors Influencing Transgene Expression in Loblolly Pine (Pinus Taeda L.)
    Cell Research (2001); 11(3):237-243 http://www.cell-research.com Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.) TANG WEI* North Carolina State University, 2900 Ligon St., Raleigh, NC 27607, USA ABSTRACT This investigation reports a protocol for transfer and expression of foreign chimeric genes in loblolly pine (Pinus taeda L.). Transformation was achieved by co-cultivation of mature zygotic embryos with Agrobacterium tumefaciens strain LBA4404 which harbored a binary vector (pBI121) including genes for b-glucuronidase (GUS) and neomycin phosphotransferase (NPTII). Factors influencing transgene expres- sion including seed sources of loblolly pine, concentration of bacteria, and the wounding procedures of target explants were investigated. The expression of foreign gene was confirmed by the ability of mature zygotic embryos to produce calli in the presence of kanamycin, by histochemical assays of GUS activity, by PCR analysis, and by Southern blot. The successful expression of the GUS gene in different families of loblolly pine suggests that this transformation system is probably useful for the production of the genetically modified conifers. Key words: Pinus taeda L., Agrobacterium tumefaciens, gene transfer, gene expression. INTRODUCTION Agrobacterium-mediated transformation has Recombinant DNA technology is a powerful tool been the favored method for introduction of foreign for the introduction of foreign genes into long-lived genes into plants. Compared to the particle bom- perennials and for fundamental studies of gene bardment protocol, Agrobacterium is a much more expression. Using such techniques, we can overcome efficient transformation tool in compatible plant the difficulties associated with the breeding of a long- species.
    [Show full text]
  • How Genetic Engineering Differs from Conventional Breeding Hybridization
    GENETIC ENGINEERING IS NOT AN EXTENSION OF CONVENTIONAL PLANT BREEDING; How genetic engineering differs from conventional breeding, hybridization, wide crosses and horizontal gene transfer by Michael K. Hansen, Ph.D. Research Associate Consumer Policy Institute/Consumers Union January, 2000 Genetic engineering is not just an extension of conventional breeding. In fact, it differs profoundly. As a general rule, conventional breeding develops new plant varieties by the process of selection, and seeks to achieve expression of genetic material which is already present within a species. (There are exceptions, which include species hybridization, wide crosses and horizontal gene transfer, but they are limited, and do not change the overall conclusion, as discussed later.) Conventional breeding employs processes that occur in nature, such as sexual and asexual reproduction. The product of conventional breeding emphasizes certain characteristics. However these characteristics are not new for the species. The characteristics have been present for millenia within the genetic potential of the species. Genetic engineering works primarily through insertion of genetic material, although gene insertion must also be followed up by selection. This insertion process does not occur in nature. A gene “gun”, a bacterial “truck” or a chemical or electrical treatment inserts the genetic material into the host plant cell and then, with the help of genetic elements in the construct, this genetic material inserts itself into the chromosomes of the host plant. Engineers must also insert a “promoter” gene from a virus as part of the package, to make the inserted gene express itself. This process alone, involving a gene gun or a comparable technique, and a promoter, is profoundly different from conventional breeding, even if the primary goal is only to insert genetic material from the same species.
    [Show full text]
  • Transgene Integration Into the Same Chromosome Location Can Produce Alleles That Express at a Predictable Level, Or Alleles That Are Differentially Silenced
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced Christopher D. Day, Elsa Lee,1 Janell Kobayashi,2 Lynn D. Holappa,3 Henrik Albert,4 and David W. Ow5 Plant Gene Expression Center, U.S. Department of Agriculture–Agricultural Research Service, Albany, California 94710, USA In an effort to control the variability of transgene expression in plants, we used Cre-lox mediated recombination to insert a gus reporter gene precisely and reproducibly into different target loci. Each integrant line chosen for analysis harbors a single copy of the transgene at the designated target site. At any given target site, nearly half of the insertions give a full spatial pattern of transgene expression. The absolute level of expression, however, showed target site dependency that varied up to 10-fold. This substantiates the view that the chromosome position can affect the level of gene expression. An unexpected finding was that nearly half of the insertions at any given target site failed to give a full spatial pattern of transgene expression. These partial patterns of expression appear to be attributable to gene silencing, as low gus expression correlates with DNA methylation and low transcription. The methylation is specific for the newly integrated DNA. Methylation changes are not found outside of the newly inserted DNA. Both the full and the partial expression states are meiotically heritable. The silencing of the introduced transgenes may be a stochastic event that occurs during transformation.
    [Show full text]
  • Biological Confinement of Genetically Engineered Organisms
    Carlson, J. 2005. Biological dimensions of the GMO issue. In, proc. of conf. on restoration of American chestnut to forest lands, Steiner, K.C. and J.E. Carlson (eds.). BIOLOGICAL DIMENSIONS OF THE GMO ISSUE John Carlson School of Forest Resources, The Pennsylvania State University, University Park, PA 16802 USA ([email protected]) Abstract: Genetic engineering is opening new opportunities in tree improvement, including access to novel genes for disease resistance. American chestnut is one of the tree species for which genetic transformation has been reported. Thus restoration of American chestnut could benefit from the genetic engineering technology, should suitable genes for blight resistance be identified. However, questions regarding the efficacy and safety of genetic engineering with trees, and other perennial plant species, have been raised including the stability of integration and expression of foreign genes, long term effects on non-target species, transgene dispersal through seed and pollen, etc. Many of these concerns could be alleviated if reliable approaches were available for the confinement of transgenes. The National Research Council assembled a committee of twelve researchers from various disciplines to evaluate the measures for biological confinement of transgenes. This paper will summarize the committee’s findings regarding the unique concerns that arise in the application of GE to trees, and the potential that exists for applying bioconfinement methods with GE trees. Keywords: National Academies; genetic engineering; trees; biological confinement; transgenes INTRODUCTION The ability to apply GE to plant improvement extends beyond annual crops to woody perennial plants including forest trees (reviewed by Pena and Seguin 2001) and fruit and nut trees (reviewed by Trifonova and Atanassov 1996) such as American chestnut (Conners et al, 2002a,b).
    [Show full text]