<<

Meteoritics&PlanetaryScience39,Nr1,97–116(2004) Abstractavailableonlineathttp://meteoritics.org

EmpiricalandtheoreticalcomparisonsoftheChicxulub andSudburyimpactstructures

KevinO.POPE,1*SusanW.KIEFFER,2andDoreenE.AMES3

1GeoEcoArcResearch,16305St.MarysChurchRoad,Aquasco,Maryland20608,USA 2Departmentof,UniversityofIllinois,245NaturalHistoryBuilding,Urbana,Illinois61801,USA 3GeologicalSurveyof,601BoothStreet,Ottawa,K1A0E8,Canada *Correspondingauthor.E-mail:[email protected]

(Received2August2002;revisionaccepted24October2003)

Abstract–ChicxulubandSudburyare2ofthelargestimpactstructureson.Research atthe buriedbutwell-preservedChicxulubcraterinhasidentified6concentricstructuralrings.In ananalysisofthepreservedstructuralelementsintheerodedandtectonicallydeformedSudbury structureinCanada,weidentifiedring-likestructurescorrespondinginbothradiusandto5out ofthe6ringsatChicxulub.AtSudbury,theinnertopographicpeakringismissing,whichifitexisted, hasbeeneroded.Reconstructionsofthetransientcavitiesforeachcraterproducethesamerangeof possiblediameters:80–110km.TheclosecorrespondenceofstructuralelementsbetweenChicxulub andSudburysuggeststhatthese2impactstructuresareapproximatelythesamesize,bothhavinga mainstructuralbasindiameterof~150kmandouterringdiametersof~200kmand~260km.This similarityinsizeandstructureallowsustocombineinformationfromthe2structurestoassessthe productionofshockmelt(meltproduceddirectlyupondecompressionfromhighpressureimpact) andimpactmelt(shockmeltandmeltderivedfromthedigestionofentrainedclastsanderosionofthe craterwall)inlargeimpacts.OurempiricalcomparisonssuggestthatSudburyhas~70%moreimpact meltthandoesChicxulub (~31,000versus~18,000km3)and85%moreshockmelt(27,000km3 versus14,500km3).Toexaminepossiblecausesforthisdifference,wedevelopanempiricalmethod forestimatingtheamountofshockmeltateachcraterandthenmodeltheformationofshockmeltin bothcometandimpacts.Weuseananalyticalmodelthatgivesenergyscalingofshockmelt production in close agreement withmorecomputationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroidimpactandSudburywasacometimpact.Theestimated70%differenceinmeltvolumescan beexplainedbycratersizedifferencesonlyiftheextremesinthepossiblerangeofmeltvolumesand cratersizesareinvoked.PreheatingofthetargetrocksatSudburybythePenokeanOrogenycannot explaintheexcessmeltatSudbury,themajorityofwhichresidesinthe.Thegreateramount ofsueviteatSudburycomparedtoChicxulubmaybeduetothedispersalofshockmeltbycometary volatilesatSudbury.

INTRODUCTION and onlytheouteredge ofits ejecta blanket is exposed. In contrast,Sudburyiserodedandtectonicallydeformedbuthas The2largest,best-preservedimpactstructuresonEarth a well-exposed section of the crater fill, melt sheet, and areChicxulub in Mexico and SudburyinCanada; the only footwall structures. Surface exposures are discontinuous at otherknownimpactstructureofcomparablesizeisthedeeply Sudbury,butnumerousdrillcoresandabundantgeophysical eroded(andpossiblylarger)craterinSouthAfrica dataareavailable.Despitethesedifferences,recentresearch (e.g., Grieve and Therriault 2000). While Chicxulub and nowprovides sufficientdata fromeachstructuretosupport Sudburyarebothlargestructureswithstructuralfeatures200 theirdetailedcomparisonpresentedinthispaper.Theunique kmormoreindiameter,theydiffermarkedlyintheirdegree value tothis comparison is that structural geophysical data of preservation and surface exposure. Chicxulub is nearly from the well-preserved Chicxulub crater can be used as a perfectlypreservedbutdeeplyburied(~1kminthecenter), guide in interpreting the relatively deformed and eroded

97 ©MeteoriticalSociety,2004.PrintedinUSA. 98 K.O.Popeetal.

Sudbury structure, and lithological data from the well- Syndicate (BIRPS) and associated programs produced a exposed Sudbury structure can be used as a guide in wealthofinformationonthesizeandstructuralelementsof interpreting geophysical data from the poorly exposed Chicxulub(e.g.,Morganetal.1997,2002;Hildebrandetal. Chicxulubcrater. 1998; Brittan et al. 1999; Christeson et al. 1999, 2001; Thefocusofthispaperisonthevolumesofmeltrockand Morgan and Warner 1999a, b; Snyder and Hobbs 1999). melt-rich(suevite)derivedfromfieldandtheoretical Theserecentgeophysicalstudieshavebeencomplimentedby studies. Theoretical studies have shown that the volumeof scientificdrillingneartherim(e.g.,Urrutia-Fucugauchietal. meltproduced upon impact shock compression and release 1996; Sharpton et al. 1999) and inside the crater (e.g., (shock melt) is approximately proportional to the kinetic Dressler et al. 2003). The latter drilling inside the crater energy of the impact (e.g., Ahrens and OKeefe 1987; (-1core)wasfinishedafterouranalysiswaslargely Bjorkmanand Holsapple 1987; OKeefe and Ahrens 1994; complete.ThepreliminarydatafromtheYaxcopoil-1coreare Pierazzoetal.1997),whilethesizeofimpactcratersisonly consistentwithourinterpretation;however,these data have partlydependentonkineticenergy(e.g.,Melosh1989,p.121; notbeenincludedinouranalysis. OKeefeandAhrens1994).Thissuper-heatedshockmeltcan The dimensions of the main structural elements of the digestentrainedclasts,andthus,thetotalimpactmeltvolume Chicxulub crater are summarized in Table 1 and shown in cangreatlyexceedtheshockmeltvolume(e.g.,Simondsand Figs. 1 and 2. Much of the past debate about the size of Kieffer 1993, p. 14,323).Therefore, no simple relationship Chicxulub derives from the fact that different names have exists between crater size and impact melt volume, and been given to the same concentric structural element by cratersofsimilarsizecanhavesignificantlydifferentamounts differentauthors.Despitethedifferencesinnomenclature,the ofmelt.Thisdifferencecanbeacutewhenasteroidimpacts datasummarizedinTable1demonstratethatthereisageneral arecomparedtocometimpacts,sincecometstypicallyhave consensusonthediametersofthemajorstructuralelements. higher impact velocities (vi) and energy (and shock melt Toavoid addingfurtherconfusion tothenomenclature, we 2 volume)scaleswithvi . have numbered the concentric structural elements (rings), In this paper, we first use field data to estimate the beginningwiththepeak ring, as ring1through ring6and amountofimpactmeltlithologiesatbothstructuresandthen refertothesestructuresbytheirnumberedrings. applyamodelofshockmeltproductioninasteroidandcomet Ring1(almostuniversallyreferredtoasthepeakring)is impactstoacomparisonofmeltvolumesfromthe2impact abroad(~12kmwide),irregular,concentricridgeaveraging structures. Our comparison of Chicxulub and Sudbury ~80 km in diameter and extending several hundred meters benefits from the good preservation of ejecta at Chicxulub abovetheburiedcraterfloor.Ring2correspondswiththewall andtheextensiveexposuresofacompletebasinfillsequence atSudbury.Wecombinedatafromthe2structurestoproduce anestimateofmeltproductioninlargeimpactcratersthatis morecompletethanpreviouslypossible. Wealertthereaderthatwhilewemaintainahighdegree ofprecisioninthepresentationofourvolumecalculationsin the tables presented, this is done solely to facilitate reproducibilityofthecalculations. Thehighprecision does notimplythatthesequantitiescanbeestimatedwithahigh degree of accuracy, and we use rounded numbers when assessingtheimplicationsofourestimates.

CRATERSIZEANDSTRUCTURE

ChicxulubStructure

Although Chicxulub is buried (~200 m at the rim and 1000 m in the floor) and has only subtle surface features (Popeetal.1993,1996),itswell-preservedfeatureswerefirst revealed by geophysical studies (gravity, magnetic, and Fig.1.StructuralringsoftheChicxulubcrater.Theoffshorerings seismic)coupledwithdatafromafewexploratoryoilwells (solidlines)arebasedonseismicprofilesandaretakenfromMorgan (e.g., Sharpton et al. 1993, 1996; Pilkington et al. 1994; and Warner (1999a). The onshore rings (solid lines) are based on topographyandkarstfeaturesandaretakenfromPopeetal.(1996). CamargoandSuarez1994;Espindolaetal.1995;Hildebrand The dotted lines give inferred extensions of the rings. The ring etal.1995;Wardetal.1995).Morerecently,amajoroffshore characteristicsdescribedinTable1.Theapproximatelocationsofthe seismicstudybytheBritishInstitutionsReflectionProfiling drillcoresmentionedinthetext(S1,C1,Y6,etc.)areshown. ComparisonsofChicxulubandSudbury 99

Fig.2.Schematicprofile(righthalfonly)ofthestructureoftheChicxulubcrater.The6structuralringsdescribedinTable1andshownin Fig. 1areshown.ThegeometriesofthecraterfillandejectaunitsaredescribedinTable2.Thelocationsofthedrillcoresmentionedinthe text(S1,C1,Y6,etc.)aremarkedwithdiamonds.Notethatunitthicknessesarenotshowntoscale.Recentdrillingneartheouteredgeofthe annulartroughindicatesthatthesueviteandmeltbrecciasequenceatYAX1ismuchthinner(~100m)thanthatfoundatY6(~500m).Bunte brecciaisimpactbrecciafreeofmeltfragments,asintheBuntebrecciaoftheRiescraterinGermany.Basedontheproposedclosesimilarities betweentheChicxulubandSudburystructures,theapproximatetraceofthecurrenterosionlevelinthenorthernpartoftheSudburystructure isshown. ofthecollapsedtransientcavityrepresentedbytheboundary thenusedtheZmodel(z=2.7)forcraterformation(Maxwell betweenthecraterfillandinsitutargetrock.Ring2appears 1977) to extrapolate the 85 km diameter to the pre-impact to lie beneath the peak ring. Ring 3 is a major concentric surface,arrivingatatransientcavitydiameterof90–105km. normalfaultwithintheterracezoneofthecollapsedtransient Thiserrormarginreflectsa rangeofassumptions aboutthe cavity rim and is associated with down-dropped blocks of shape of the parabolic transient cavity. The 90–105 km Mesozoic.Ring4isalsoamajorconcentricnormal diameterassumes a collapsedtransient cavitywallangleof faultthatdemarcatestheouteredgeofthemainbasinformed 30°to45°(fromthehorizontal).Moreextremeanglesof60° by the collapse of the transient cavity rim. Ring 5 is a and<30°havebeenproposed,whichgiveapossiblerangeof concentricfaultthathasrelativelyminoroffsetintheupper 80 kmto 110 km, respectively,for theChicxulub transient sediments (400–500m)butextendsthroughthe cavity (Hildebrand et al. 1998; Morgan et al. 2002). Most entiretotheMoho.Ring6isaconcentricblindthrust models of transient cavity formation produce rather steep fault that produced subtle dome-like folds in the upper crater walls (e.g., OKeefe and Ahrens 1999; Ivanov and Cretaceoussediments.Therootofthisthrustfaultmergeswith Artemieva2001).Therefore,theshallowerangle(£30°)and thedeepcrustalfaultofring5.Thereisagrowingconsensus the larger cavity diameter (110 km) are probably not thatring5(~200kmdiameter)should be used as thefinal appropriate for estimating transient cavity diameters, diameterofChicxulub(e.g.,SnyderandHobbs1999;Morgan especiallyforenergyscaling,butareincludedinouranalysis etal.2000),althoughinthe past, rings4(~150km)and 6 for completeness. The best estimate for the Chicxulub (~250km)havebeenreferredtoasthe“rim”byMorganand transient cavity diameter is probably the 90–105 km range Warner(1999a,b)andPopeetal.(1996),respectively. proposedbyMorganetal.(1997).

ChicxulubTransientCavity SudburyStructure

Based on the structural information from the BIRPS Sudbury is one of the most studied terrestrial impact studies, Morgan et al. (1997) used marker beds in the craters(e.g.,Grieveetal.1991;Golightly1994;Stöffleretal. sedimentarystrataofthetargetrockstoreconstructadiameter 1994; Deutsch et al. 1995; Dressler and Sharpton 1999; of85kmforthetransientcavityatadepthof3.5km.They Naldrett 1999; Grieve and Therriault 2000). Nevertheless, 100 K.O.Popeetal.

Table1.ComparisonofChicxulubandSudburystructuralfeatures. Chicxulubfeature Chicxulubdiameter(km)a Sudburydiameter(km)b Sudburyfeature Ring1 Peakringc 66–94(80) – Erodedaway Peakringd 72–94(80) Ring2 Collapsedtransientcavityc 85 65–85 Pseudotachylitezone(large)e Collapsedtransientcavityf 80 85 InnermostHuronianblockg Firstinnertroughh 78–86(82) 81–85 Maximumdistanceshockedquartzi Ring3 Innerringc 110 105–115 AbundantHuronianblocksi Secondinnertroughh 114–134(124) 115–125 Pseudotachylitezone(large)e Ring4 Craterrimc 136–164(145) 130–140 Landsatlineament(strong)j Edgeofcollapsedterracesf 130 141–149 Pseudotachylitezone(large)e Edgeofbasinh 160–172(166) Edgeofdeepbasind 130–164 Ring5 Outerringc 195–200 190 Landsatlineament(weak)k Restoredrimf 195 225–229 OuterPseudotachylitezone(small)e Normalfaultf 194–220 Outertroughh 194–218(206) Ring6 Exteriorringc 250 270 MaximumextentLandsatlineamentsk Ringfracturef 240–300(250) Craterrimh 248–268(258) aMeandiametersareshowninparentheseswhereprovidedinthereferencenoted. bSudburydiametersbasedonadiameterof65kmfortheundeformedouteredgeofthemeltsheet(DeutschandGrieve1994). cMorganandWarner1999a,b. dBrittanetal.1999. eThompsonandSpray1994. fSnyderandHobbs1999. gOntarioGeologicalSurvey1984. hPopeetal.1996. iGrieveetal.1991. jDressler1984. kButler1994. some debate remains over its size, largely because post- suggeststhattheirdistributionisnothighlysensitivetocrater impact erosion and tectonic deformationhave obscured the size(TurtleandPierazzo1998). originalshapeoftheimpactstructurebutalsobecause,asat Post-impact deformation and erosion of the Sudbury Chicxulub, there are several roughly concentric structural impactstructurehasresultedintheformationofanelliptical elements,andnomenclaturefortheseelementshasnotbeen basinthesurfaceexpressionofwhichincludesanellipticalring standardized.Thedimensionsofthemainstructuralelements ofimpactmeltrocks60kmby30kminsize(Fig.3)calledthe of the Sudbury structure are summarized in Table 1 and Sudbury igneous complex (SIC). From structural analyses, showninFig.3.Structuralelementsaredefinedfollowingthe includingattemptstoreconstructtheimpactstructuresoriginal approach of Grieve et al. (1991) and correspond to the form,ithasbeenconcludedthatthereisconsiderablesoutheast- distributionofpre-impactHuroniansedimentsandvolcanics, northwest compression but that the southwest-northeast shocked quartz,and pseudotachylite zones ( with a dimensionoftheoriginalstructureisstilllargelypreserved devitrifiedglassymatrix)foundalongshearzonesandfaults (e.g., Shanks and Schwerdtner 1991; Milkereit et al. 1992; (e.g., Thompson and Spray 1994). The distribution of Roest and Pilkington 1994). Thus, the southwest-northeast Huronian sediments is key because these sediments would dimensionoftheellipticalSICexposureisclosetotheoriginal have been largely removed within the transient cavity (see diameterofthemeltsheetatitscurrenterosiondepth(Grieve discussion below). We also include the information from etal.1991).GeobarometrystudiesoftheSICfootwallcontact analyses of Landsat satellite images (Dressler 1984;Butler constrainthiserosiondepthto4.2–5.8km(Molnàretal.2001). 1994). We do not use shatter cones, since recent work ThebestestimateoftheoriginaldiameteroftheSICatadepth ComparisonsofChicxulubandSudbury 101

Fig.3.StructuralringsoftheSudburycrater.Ring1(thepeakring),ifitexisted,hasbeenerodedaway.Thelocationsofrings2–5arebased onthedistributionoffrictionmelt(pseudotachylite,blackrectangles)givenbyThompsonandSpray(1994).Theoutcrops(diamonds)of friction melt (Sudbury breccia) given by Butler (1994) are alsoshown.The location of ring6 is based on theouter limitofconcentric lineamentsgivenbyButler(1994).TheringcharacteristicsaregiveninTable1.Thelightlyshadedoutcropsofrockbetween rings2and4,adjacenttoandnorthofErmatinger,aretheHuronianblocksdiscussedinthetext. of4.2–5.8kmis65km(GrieveandDeutsch1994).Giventhis AcomparisonofthestructuralelementsoftheChicxulub SIC diameter, and following the approach of Grieve et al. andSudburycraterspresentedinFigs.1and3andTable1 (1991),thediametersoftheotherstructuralfeatures canbe suggests that there is a striking similarity between the 2 calculatedbasedontheirdistancefromtheSIC(Table1).Itis craters.Chicxulubring1,thepeakring,waspredominantlya importanttokeepinmindthatthesediametersalsoreflectthe surface topographic feature (relief a few hundred meters; diameteratdepthand,thus,areforthemostpartslightlyless Morganetal.1997)and,therefore,ifitdidexistatSudbury, thanthesurfacediameteroftheoriginalfeature. andwepresumeitdid,ithaslongsincebeenerodedawayby 102 K.O.Popeetal. the4.2–5.8kmoferosion.Evidenceforthenow-erodedpeak WecanestimatethemaximumdiameteroftheSudbury ringatSudburymayexistinthecrater-fillsequence,wherea transientcavitybydeterminingtheminimumdistancefrom megabrecciaunitinthebasalGarsonmemberoftheOnaping theSICtointactblocksofHuroniansediments.Thisapproach Formationisinterpretedtorepresentthecollapsededgeofthe isbasedontheviewthattheHuronianwouldbecompletely peakring(Ames1999;Amesetal.2002).Ifthisinterpretation removed within the transient cavity, at least within the iscorrect,theburied(1.4km)inneredgeoftheSudburypeak excavation zone estimated by theZmodel.Theexcavation ringresidesatadiameterof~60km(theouterdiameterofthe depthobtainedfromtheapplicationoftheZmodelisabout preserved Onaping formation), which compares favorably 12kmforatransientcavitydiameterof100km(Morganetal. withthe66–72kmdiameteroftheinneredge(atthesurface) 1997).Thus,nearthecenterofthetransientcavity,mostifnot of the Chicxulub peak ring (Table 1). The other structural alloftheHuroniansediments(themaximumthicknesses of features at Chicxulub are deep seated, and thus, if similar whichwereabout12km,seebelow)wouldbeejectedifthe structuresarepresentatSudbury,theyshould bedetectable transient cavity diameter was ~100 km. Nearer to the rim, despite the erosion. The 65 km diameter of the Sudbury however,completeremovalofthesedimentswoulddepend Igneous Complex (SIC) represents the minimum possible onthethicknessandtheangleofthecavitywall. diameterofthecollapsedtransientcavity(ring2)atadepthof TheHuroniansedimentsintheSudburyareaincreasein about 4.2–5.8 km, as all target rocks have been ejected or thicknessfromnorthtosouthandfromwesttoeast(Cardet melted inside this diameter. Projecting the walls of the al.1984).AttheeastendoftheSudburyimpactstructure,in collapsed Chicxulubtransientcavityimaged bytheseismic the Parkin township near Wanapitei Lake, the thickness is data(Christesonetal.2001)toadepthof6kmproducesa estimated to be ~8 km (Dressler 1982). Southwest of the similar diameter of ~70 km. Similarly, the diameter of the structure, in the Falconbridge township, the Huronian is innermost zone of pseudotachylite at Sudbury (65–85 km) >10.7kmthickandperhapsasmuchas12kmthick(Cardet correlates wellwiththeproposed collapsed transient cavity al. 1977). Huronian sedimentary blocks in the Ermatinger wallatChicxulubatadepthof3.5km(Table1). township (and extending 50 km to the northwest) in the TheothermajorstructuralfeaturesatSudburyalsohave northern part of the Sudbury structure are thinner. These counterparts at Chicxulub. A large pseudotachylite zone, blocksmostlylackthebasalformationsoftheHoughLake lineaments visible on Landsat images, and abundant andElliotLakegroupsandhavelocallytruncatedformations Huronian blocks at Sudbury correspond in distance and (OntarioGeologicalSurvey1984;RousellandLong1998), structuretoChicxulubring3anditsassociateddown-dropped andtherefore,theHuronianinthisareawasonlyabout5–6 blocks of Cretaceous sediments. The outermost large kmthick(Golightly1994;Cowenetal.1999). pseudotachylite zone with a prominent set of concentric In Table 2 the distances from the SIC to the closest lineamentsatSudburycorrespondswithChicxulubring4,the preserved Huronian block are given for the Ermatinger, edgeofthemainimpactbasin.Aminorpseudotachylitezone Parkin,andFalconbridgetownships(Fig.3)togetherwiththe andarelativelyweakzoneoflineamentsatSudburycorrelate estimatedHuronianthickness.Calculationsarethengivenfor withring5atChicxulub,whichisadeepfaultbutonewith the maximum possible transient cavity diameter, assuming minor offset. Finally, the outer boundary of impact-related theangleofthecollapsedtransientcavitywallis30°,45°,or features(lineaments)identifiedbyButler(1994)atSudbury 60°fromthehorizontal.Thesearemaximumvaluesbecause, correlates with Chicxulub ring 6, the outermost structural inthenorth,erosion mayhavestrippedaway closerblocks feature. To help clarify the comparison of the 2 impact andbecause,inthesouth,theHuronianabutstheSIC,which structures, the approximate trace of the Sudbury erosion wouldallowforanycavitysmallerthanthatinTable2.The levelsisplottedontheChicxulubschematicprofileinFig.2. minimumpossibletransientcavitydiameterderivedfromthe 65kmdiameteroftheSIC,itsestimateddepthof4.2–5.8km, SudburyTransientCavity andthesamerangeofwallanglesarealsogiveninTable2. Theseminimumdiametersarealmostcertainlysignificantly We can place constraints on the size of the transient smaller thantheactual transientcavity,as Chicxulubcrater cavity at Sudbury using the same technique applied by reconstructions indicate that themelt sheet lies wellwithin Morganetal.(1997)forChicxulub.TheSudburyimpactsite, thetransientcavitywallatdepth(Christesonetal.2001).The liketheoneatChicxulub,wascomposedofsedimentary(and resultsofthemaximumdiametercalculationsaresimilarfor volcanic) rocks, the Huronian Supergroup, overlying the3areasandshowaconsistentpatternofshorterdistances crystalline basement. Nevertheless, the Sudbury geology is between theSICandHuronianwithgreaterthickness.This more complex than that of Chicxulub, as the Huronian consistency supports the view that, while tectonic thicknesses were highly variable, and the sediments were deformation is significant in the region, it has not greatly metamorphosed and tectonically deformed before impact. distorted the geometry for these calculations. Given the TheSudburyfieldanalysisisrenderedlessdefinitivebythese calculationsinTable2,theconstraintsonthetransientcavity factors,butitstillprovidesusefulconstraints. diameterofSudburyare70–92kmfora60°wallangle,73– ComparisonsofChicxulubandSudbury 103

Table2.EstimatesofthemaximumandminimumSudburytransientcraterdiameter.Maximumdiameterestimatesare basedontheestimatedpre-erosionthicknessofHuroniandeposits,theproximityofpreservedblockstotheSIC,andwall angle.MinimumdiameterestimatesarebasedonSICandwallanglealone.TheoriginaldiameteroftheSICatthepresent erosiondepthisassumedtobe65km. Huronianthickness Huroniandistance orSICdepth(km) fromSIC(km) Angleoftransientcavitywall Transientcavitydiameter(km) Ermatingertownship(thickness5–6km)a 5 10 60 91 5 10 45 95 5 10 30 102 6 10 60 92 6 10 45 97 6 10 30 106 Parkintownship(thickness8km)b 8 5 60 84 8 5 45 91 8 5 30 103 Falconbridgetownship(thickness11–12km)c 11 0 60 78 11 0 45 87 11 0 30 103 12 0 60 79 12 0 45 89 12 0 30 107 SIC(atadepthof4.2–5.8km)d 4.2 – 60 70 4.2 – 45 73 4.2 – 30 80 5.8 – 60 72 5.8 – 45 77 5.8 – 30 85 aGolightly(1994);Cowenetal.(1999). bDressler(1982). cCardetal.(1977). dMolnàretal.(2001).

95kmfora45°wallangle,80–107kmfora30°wallangle, thetransientcavitywall(TurtleandPierazzo1998).Wecan andanoverallrangeof70–107km. use this shocked quartz-based estimate to provide a more Another technique to estimate the size of the transient reasonableminimumdiameterforSudbury,givingaprobable cavity is proposed by Turtle and Pierazzo (1998), who range(roundedtothenearest10km)of80–110kmforthe combined data on the radial extent of shocked quartz with Sudbury transient cavity. Given that we favor the steeper computerimpactmodelstoestimatethesizeoftheVredefort cavity wall angles (45° to 60°), and that the most reliable impact structure in South Africa. Their model calculations stratigraphic data come from the Ermatingertownship, the suggestthat,foratransientcavity80–100kmindiameter,the bestestimateoftheSudburytransientcavitydiameteris91– 5GPaisobaratadepthof4–6kmliesataradialdistanceof 97km. 39–53 km (corresponding diameters of 78–106 km). They The conclusion to be drawn from this analysis is that propose that the 5 GPa isobar represents the minimum Sudbury and Chicxulub are very similar impact structures. pressureatwhichplanardeformationfeaturesforminquartz Theybothhaveamainbasinof~130–170kmindiameterand (e.g.,Grieveetal.1996).Shockedquartzinthefootwallof outerstructuralringsat~190–230andat~250–270km.This Sudburyextends8–10kmfromtheSIC(Grieveetal.1991), interpretation of the final crater structure at Sudbury and whichcorrespondstoadiameterof81–85km.Interpolating Chicxulubisconsistentwiththereconstructionsoftransient betweenthese2modelcalculationsgivesaSudburytransient cavitydiameters,whichcoverthesizerangeof80–110kmfor cavitydiameterof81–84km,whichfallswithintheestimates both craters. The scaling relationships proposed by Croft notedabove. Thisis consistent with the conclusion that,at (1985)giveafinalcraterdiameterof~136–198forthisrange shallow depths, the5GPaisobar roughlycorresponds with of transient cavity diameters, which encompasses the 104 K.O.Popeetal. diametersofrings4and 5inTable1.As notedpreviously, Chicxulub is approximately 18,000 km3 (Table 3), which bothring4(MorganandWarner1999a,b)andring5(Snyder matcheswellwithrecent3-Dgravitymodelingofthecrater andHobbs1999;Morganetal.2000)havebeeninterpretedas (Ebbing et al. 2001). Estimates of the volume and melt the rim at Chicxulub. Which of these structural features contentofoutsidethecrater(Table3)arebasedon shouldbecalledtherimcanbedebated,butsuchadebatehas threeUniversidadNacionalAutonomadeMexico(UNAM) no bearing on our conclusion that the 2 craters are very cores (U5, U6, and U7; Figs. 1 and 2), ejecta blanket similarinsizeandstructure.Forthispaperthisconclusionis outcrops,andpublisheddatafromdistalejecta.Heretoo,our importantin2majorrespects:1)wecancombinedatafrom volumeestimatesarebasedonsimplecirculargeometriesfor the2craterstoconstructamorecompletepictureofalarge theejectabodiesmultipliedbyanaveragethickness.Given impact crater thanhas been possible from studies ofeither the relatively small amount of melt in the distal ejecta, crateralone;and2)wecanmodelthe2cratersashavingthe inaccuracies introduced by the use of these simplified samerangeoftransientcavitydiameters. geometriesareminor. PEMEXwellsChicxulub1(C1)andSacapuc1(S1)are VolumeofMeltatChicxulub nearthecenterofthecrater,andYucatan6(Y6)isataradius ofabout60km(Fig.2).WellsC1andS1sampled200–300m Estimates of the volume of impactites and their melt ofsueviteoverlyingimpactmelt(Wardetal.1995;Sharpton contentforChicxulubarepresentedinTable3.Forinsidethe etal.1996).ImpactmeltsamplesfromC1contain5%orless crater, these estimates are based on a simplified crater unmeltedclasts(Schuraytzetal.1994;Claeys etal.1998). geometry based on the data in Table 1 and on lithological Well Y6 sampled about 200 m of suevite overlying about datafrom3PetroleosdeMexico(PEMEX)exploratorywells 300 m of melt-rich breccia containingabout 65% melt and (C1,S1, and Y6;Figs.1and 2).Ourreconstructionofthe 35% unmelted clasts of target rock (Schuraytz et al. 1994; total volume of the central basin and annular trough at Claeysetal.1998).WellY6bottomedin~8mofanhydrite,

Table3.GeometryandmeltcontentofChicxulubimpactrocks. Location Radialdistances(km) Thickness(km) Volume(km3) %melt Meltvolume(km3) Insidecraterrim Centralbasin Suevite 0–35 0.2 769 50 385 Meltrock 0–35 1.0 3,848 97 3,733 Meltbreccia 0–35 2.5 9,621 65 6,254 Subtotal 10,372 Annulartrough Suevite 50–75 0.2 1,963 50 982 Meltbreccia 50–75 0.2 1,963 65 1,277 Subtotal 2,259 Totalinside 12,631 Outsidecraterrim Buntebrecciaa 75–200b 0.2 21,598 0 0 Suevitenearrim 75–140 0.15 6,586 40 2,634 Albionfm.diamictitebed 200–370b 0.015 4,566 10 456 Albionfm.spheroidbed 200–500b 0.002 1,319 20 264 Proximalmicrotektitesc 500–1000 0.0001 236 100 236 Distalmicrotektitesc 1000–4000 0.00001 471 100 471 KTfireballd,e Global 0.000003 1,520 100 1,520 Totaloutsided 5,581 Totalimpactmeltd 18,212 Totalshockmeltd,f 14,456 aBuntebrecciaisanimpactbrecciafreeofmeltfragments,typelocalityistheRiescraterinGermany. b The200kmradiusboundaryassumedhereispoorlyconstrained;observationslimitittobetween140–340km. cEstimatesbasedondatainSmit(1999). d Includesvapor. eEstimatesfromPope(2002).Allotherestimatesbasedondiscussionsinthetext. fSeetextforcalculationofshockmelt. ComparisonsofChicxulubandSudbury 105 butwhethertheanhydriteisalargeclastinathickermeltand 60%silicatematerialataradiusof115km(U5)and~130m brecciasequenceorifitrepresentsthebaseofthemeltsheet of suevite with 20–40% silicate material at a radius of atthislocationisnotclear.Probably,thelatteriscorrect,as 130 km (core U7) (Sharpton et al. 1999). Detailed thebaseofY6liesclosetothetopofCretaceousslumpblocks petrographic analyses have not been published for these identifiedintheseismicdata(Morganetal.2000).Themelt cores,butpreliminaryobservationsindicatethatmostofthe content of the inside the crater has not been silicate material is altered , with a minor portion of published,butweassumeitis10%higherthanthe40%melt unmelted basement (Corrigan 1998). Our own brief weestimateforthesuevitescoredneartherimofthecrater macroscopic examination of the cores in February 2003 (seediscussionbelow).Wenotethattheseinterpretationsof (Pope, unpublished data)noted thatthe suevites in U5 and the Y6 well are consistent with the drilling at Yaxcopoil-1 U7 contain ~30% altered glass lapilli and bombs and an (YAX1;Figs.1and2),whichislocatednearertotheouter unestimatedamountoffineashinthematrix(matrixis60– edge oftheannulartroughand intersected only ~100 mof 70%). Given the XRF data and our own observations, we suevite and melt-richbreccia (Dressler etal.2003).Recent estimate the average melt content of the suevites in the workbyAmesetal.(Forthcoming)indicatesthattheYAX1 UNAM cores to be 40%. Coarse ejecta with little to no suevites and breccias contain 60–95%alteredblockyglass. alteredglassarefoundbelow thesuevitesinU7andinthe Thisisslightlyhigherthanourestimate(50–65%;Table3), core U6 at a radius of 150 km (Urrutia-Fucugauchi et al. but this higher melt content is compensated in part by the 1996;Sharptonetal.1999).Fartherfromgroundzero(340– apparentthinningoftheimpactunitsintheoutertrough. 360 km from the crater center), in northern Belize and Inside the Chicxulub crater, geophysical data provide southern Quintana Roo, the 1–2 m of basal fine ejecta some insight into the character and distribution of melt at (Albionformationspheroidbed)contains~20%alteredglass, depth. Tomographic inversion of the seismic data, coupled andtheoverlying8–15mofcoarseejecta(Albionformation withthegravitydata,indicatesthepresenceofameltbody diamictitebed)contains ~10%alteredglass (Ocampoetal. about40–50kmindiameterand1.3kmthickinthecenterof 1996;Popeetal.1999).IncentralBelize,onlythebasalfine thecrater(Christesonetal.1999,2001).Thisispresumably ejecta unit contains significant altered glass (Pope et al. themeltsheetsampledinC1andS1,whichisabout97%melt 2000).Atgreaterdistances,impactmeltsintheformofcmto (Schuraytz et al. 1994). This same geophysical analysis mm layers of microtektites are distributed as far away as detected a smaller melt body (<1 km thick) near the outer 4000 km, and microkrystites (micro-spherules probably edgeofthecollapsedtransientcavity(ataboutadiameterof representing condensates from impact vapor) are found 90 km). These 2 proposed melt bodies match well with 2 globally(e.g.,Smit1999). concentriczonesofmagneticanomaliesinterpretedaszones The volume of impact melt (+ vapor) produced at ofhydrothermalalteration(PilkingtonandHildebrand2000), Chicxulub is estimated in Table 3, the total of which is presumablyfromfluidscirculatingneartheedgeofthemelts. ~18,000 km3. The geometries of the melt bodies are fairly Thesemeltbodies,whencombined,areroughlyequivalentto well constrained by the . Likewise, the melt a 1 km-thick melt sheet with a diameter of 70km (Fig. 2; content of the suevites is constrained by the core data and Table3).FurtheranalysesoftheseismicdatabyMorganetal. distalsurfaceexposures.FromthemeltvolumesinTable3, (2000)suggeststhattheremaybeamuchthickersequenceof weestimatethatabout30%ofthetotalmelt+vaporproduced meltsextendingmorethan2kmbelowthecentralmeltbody atChicxulubwasejected(24%ifyouexcludevapor),which notedabove(totalmeltthickness~3.5km).Nevertheless,the issimilartothatpredictedbytheoreticalcalculations(Kring seismic velocities inthese meltrocks are far less than that 1995;Warrenetal.1996). found in the SIC of Sudbury and are comparable to those Themostsignificantpotentialerrorinthemeltestimates measuredinthemelt-richbrecciascoredinY6(Morganetal. lies in the melt volume in the lower portion of the central 2000).Thus,thisthicksequenceofmeltsmaybeclast-rich, basinatChicxulub.Intheunlikelycasethatthiscentralmelt andweassume,asinthebrecciasinY6,thatitis65%melt. sheet was composed of 100% melt, about 18% would be Furthermore,thisthicksequenceofmeltbrecciascontainsno addedtothefinalmeltestimates(total~21,600km3).Inthe evidenceoflayering(Morganetal.2000)likethatfoundin morelikelycasethatthismeltsheetisentirelymeltbreccia the differentiated SIC at Sudbury (Milkereit et al. 1994), (e.g.,Morganetal.2000),thefinalestimateswouldbeabout whichhasadistinctseismicreflectorbetweenthebasalnorite 7%less(total~17,000km3).Theotherreasonablesourcesof andoverlyinggranophyre. error,suchasaslightlydifferentshapeofthecrater(e.g.,a Outside the Chicxulub crater, impact melts are a centralbasinof80kminsteadof70km)orslightlygreateror significantcomponentinsueviticejectathatextendfromthe lesser percentages of melt in the suevites (~30–60%), crater rim (Urrutia-Fucugauchi et al. 1996; Sharpton et al. producemeltvolumesthatmostlyvarylessthan10%.Since 1999)tocentralBelize,480kmsouth(Popeetal.2000).X- some of these errors could be cumulative, a conservative rayfluorescence(XRF)analysesoftheUNAMcoresnearthe range of melt volumes for Chicxulub is ±20% or about rim(Fig.2)indicatethatthereis~180mofsuevitewith50– 14,600–22,000km3. 106 K.O.Popeetal.

VolumeofMeltatSudbury comprisestheupper~1000mofthesueviteandcontains25– 40% alteredglass fragmentsand ~60%fine-grained matrix Several authors have estimated the volume of impact (Amesetal.1997,2002).Presumablysomeandperhapsmost meltatSudbury.Moststudiesfocusonthemainmeltmassof ofthematrixisalsomeltintheformoffineash.Onlythe theSIC,whichhasadiameterof~65kmandathicknessof upper 140–220 m of the Dowling member show evidence ~2.5 km at the current erosional depth (e.g., Grieve et al. (normalgradedbeds)ofreworking(Amesetal.2002).Thus, 1991).Thisestimatedthicknessisbasedonoutcropanddrill thebulkoftheOnapingisconsideredhereasprimaryimpact core. Geophysical data suggest there may be a slight deposit. Given these estimates of glass fragments and fine thickening(~3 km)ofthemeltsheettowardthecenter(e.g., ash, we conservatively estimate an average meltcontent of Wuetal.1995).Grieveetal.(1991)estimateanSICvolume 55%forthe~1400m-thickSudburysuevite. (includingtheBasalmemberoftheOnaping)of8,000–8,500 We present our estimate of the melt volume of the km3, while Wu et al. (1995) suggest a volume of 8,500– Sudbury crater in Table 4. This estimate is based on the 15,000 km3.Stöffleretal.(1994)consideredtheSIC,meltin conclusiondrawnabovethatChicxulubandSudburyhavea thesuevites(Onapingformation),andmeltinareconstructed similarbasicstructure(Table1).Inourmeltcalculations,we annularringtrough,fromwhichtheyestimatedthetotalmelt assumethatthegeometriesofthemeltbodiesatSudburyare at between 11,550–13,300 km3. This estimate greatly thesameasthoseinthebetter-preservedChicxulub(e.g.,the underestimated the amount of melt in the suevites, which same diameter and shape but different thickness). We use containabout~55%meltnotthe10%usedintheStöffleret actualdatafromSudburyonthethicknessandmeltcontentof al.(1994)calculations.Noneofthepreviousmeltestimates these bodies. For melt bodies that have been completely for Sudbury considered the melt once present outside the eroded away, we use scaling relationships fromChicxulub. crater in the form of suevites, microtektites, and MeltvolumesfortheSudburycentralbasinarederivedfrom microkrystites as we have for Chicxulub (Table 3). The comprehensive data on the thickness and melt content estimateofmeltfromthesueviteoncepresentinsideSudbury coupledwiththegeometryextrapolatedfromChicxulub.We comesfromrecentstudiesoftheOnapingformation,whichis assumethatthesuevitewasthesamethicknessintheSudbury comprisedofabasalGarsonmemberoflimiteddistribution annulartroughasitisinthecentralbasinbecausethisismost overlainbythebasin-wideSandcherryandDowlingmembers probably the case at Chicxulub. The melt thickness (e.g., Ames et al. 1997, 2002; Ames 1999). This member underlyingthesueviteintheannulartroughisassumedtobe terminology for the Onaping replaces the previous one of thesameinbothcratersbutwithahighermeltcontent(100%) Basal, Gray, Green, and Black members (e.g., Muir and atSudbury.Thisassumptionisbasedonthemassiveamount Peredery1984;Brockmeyer1990).Inthispaper,wereferto ofpuremeltintheadjacentcentralbasin(SIC)andthefact the Sandcherry and Dowling members of the Onaping thatmeltintheannulartroughstartsoutaspartofthemain formationassuevite.TheSandcherrymemberis300–500m meltsheetandisonlyseparatedfromthemainmasslatein thickand contains >60%alteredglass fragmentsandabout the cratering process after the uplift of the peak ring. The 25–30% fine-grained matrix, while the Dowling member amountofmeltoutsidethecraterisderivedfromscalingof

Table4.GeometryandmeltcontentofSudburyimpactrocks. Location Radialdistances(km) Thickness(km) Volume(km3) %melt Meltvolume(km3) Insidecraterrim Centralbasina Suevite(Onapingfm.) 0–35 1.4 5,387 55 2,963 Meltrock(SIC) 0–35 2.5 9,621 100 9,621 Subtotal 12,584 Annulartrougha Suevite 50–75 1.4 11,436 55 6,290 Meltrock 50–75 0.3 2,945 100 2,945 Subtotal 9,235 Totalinside 21,819 Outsidecraterrimb 9,620 Totalimpactmeltc 31,439 Totalshockmeltc,d 27,250 aAssumedtohaveanidenticalsizeasestimatedforChicxulub,basedoncomparisonsinTable1. bAssumes30.6%ofthetotalmelt+vaporisejectedbasedondatafromChicxulubinTable3. cIncludesvapor. dSeetextforcalculationofshockmelt. ComparisonsofChicxulubandSudbury 107 melt inside and outside of Chicxulub. Our impact melt products butdefinetheconceptintermsofprimarymixing estimatesforSudbury,aswellasChicxulub,donotinclude (referring to the mixing of melts produced by the initial themeltmatrixofbrecciadikesandpseudotachylitezonesin shock)andsecondarymixing(referringtotheinteractionof thecraterbasement,whichareconsideredvolumetricallyto solid clasts with hot melts). Shock melt is melt that is beanonlyminorcomponent. produced directly upon decompression from high pressure WeestimatethatSudburyproducedabout31,000km3of andis generallysuperheated. “Highpressure”isdefinedby impactmelt(+vapor),whichissignificantlymorethanthe theparticularHugoniotandreleaseadiabatsfortheminerals, ~18,000km3weestimateforChicxulub.Givenourmethods rocks, and volatilecomponents involved.Shockmeltis the ofscalingtoachieve thisvolume,thereis nodirectway to melt produced near the under appropriate estimatetheerrormarginforSudbury.Ifweadoptthe±20% conditionsofhighpressureandtemperature;itisthequantity appliedtoChicxulub,therangefortheSudburymeltvolume calculatedinimpactmodelsatpresent.Impactmeltincludes wouldbe 25,000–38,000km3.Note, however, thatitis not notonlyshockmeltformedinthehigh-pressureregionnear appropriatetocomparethelowerendoftheSudburyrange themeteoritetrajectorybutalsomaterialentrainedbyerosion (25,000km3)withtheupperendoftherangeforChicxulub as the evolving melt sheet flows along the transient cavity (22,000km3)sincemanyofthefactorsthatwouldincrease wallsandbytheentrainmentofothershockeddebristhatwas themeltvolumeinonecraterwouldalsoincreasetheestimate launchedintotheairbutfellbackintotheevolvingmeltsheet. intheothergiventhescalingmethodsweused. The superheated shock melt can readily melt much of this Onesourceofthedifferenceinestimatedmeltvolumes entrained material. Shock melt is thus “bulked up” by between the 2 craters is that Sudbury has a much thicker digestion of strongly, moderately, and weakly shocked blanket of suevite inside its central basin, resulting in materialtobecomeimpactmelt. ~2500 km3 more melt. This difference in suevite thickness We can estimate therelativeproportionsofshockmelt (1.4kmatSudburyand0.2kmatChicxulub)betweenthe2 andimpactmeltatChicxulubandSudburybyexaminingthe cratersiswell-constrainedbycoreandgeophysicaldatafrom distribution of melt in each crater and bymaking a simple ChicxulubandoutcropandcoredatafromSudbury.Despite assumption that the melt that remains inside the cratercan the presence of a much thicker melt sheet at Sudbury digest 50% of its volume in shocked but unmelted lithic comparedtoChicxulub,ourestimatesforthetotalmeltplus clasts.ThisassumptioncomesfromtheworkofSimondsand meltbreccia(excludingthesuevite)inthecentralbasinofthe Kieffer(1993),whoestimatedthattheimpactmeltsheetat 2cratersissimilar(~10,000km3).Thelargestdiscrepancies the Manicouagan impact structure (100 km diameter) had inmeltvolumesbetweenthe2cratersareforsuevitesinside digested about 50% of its volume in target rock. This theannulartroughandforthemeltoutsidethecrater,which estimateisbasedonthemassofresidualunmeltedquartzin by our estimates contain ~5300 km3 and ~4000 km3 more theimpactmeltandtheassumptionthatallothercomponents melt,respectively,atSudbury.SincetheSudburyestimatesof fromtheentrainedclasts(suchasfeldspars,amphiboles,and meltoutsidethecentralbasinarebasedonourreconstructions biotite) were melted. These Manicouagan data are not observations, the large difference in melt volumes compatiblewithrecentstudiesoftheimpactmeltsinsidethe between the 2 craters must be viewed with some caution. Popigaicrater(100kmdiameter)inSiberia(Whiteheadetal. Nevertheless, the major difference in suevites inside the 2002; Kettrrup et al. 2003). Geochemical models cannot centralbasin is wellconstrained, and since thesuevites are reproducetheobservedvolumetricproportionsoftheSICby dominatedbydebrisinitiallyejectedfromthecraterthatfell differentiation from a single homogeneous melt body, but backin,itisreasonabletoassumethat,atSudbury,thesuevite these proportions can be explained if there was significant thickness wouldbe similarinthecentralbasin and annular digestionatthetopandbaseoftheSIC(e.g.,Ariskinetal. troughasitisatChicxulub.WeconcludethateitherSudbury 1999; Naldrett 1999). Geochemical studies of the Onaping hasabout70%moremeltthanChicxulub,orthetwocraters formation, SIC, and offset dikes in the craterfootwall also had a drastically differentdistributionofsuevite inside and showthatthatbulkingupoftheshockmeltbyassimilationof outsidethecentralbasin. footwallrockscanexplainthedifferentchemistriesofthese3 units(Amesetal.2002). ImpactMeltandShockMeltVolumes Theshockmeltavailabletoentrainanddigestclastsof targetrockdoesnotincludethemeltejectedoutofthecrater, Beforewecancomparethemeltvolumeestimateswith orthesuevitemeltinthecrater,whichwasinitiallyejected the model results inthenext section, a distinction must be andfellorflowedbackin(KiefferandSimonds1980).The madebetweentheimpactmeltobservedinthefieldandthe non-suevitemeltinsideSudburytotals12,566km3(meltfrom shockmeltcalculatedbytheory(SimondsandKieffer1993, thecentralbasin and theassumed annulartrough,Table 4), p. 14,323). The importance of this distinction and the which, given our 50% bulking assumption, represents problemsthatariseintryingtoquantifyitarealsodiscussed 8,377 km3ofshockmeltand4,189km3ofdigestedclasts(we inSeeetal.(1998),whoimplythesamedistinctioninmelt havekeptextrasignificantfiguresheresothatthereadercan 108 K.O.Popeetal. reproducetheresults,butwedroptheminoursummaryof 1982b)presentedcomputationsthatcanbesummarizedina thissection).Subtractingthisdigestedclastmeltvolumefrom relativelysimpleequationinwhichtheshockmeltvolumeis thetotalmelt+vapor(31,439km3)givesatotalshockmelt+ proportionaltotheimpactenergy: vapor volume of 27,250 km3, which indicates that bulking M /M =0.14v 2/e increasestheshockmelt+vaporvolumebyabout15%.For M P i m Chicxulub, the non-suevite melt inside the crater totals where MM is the mass of shock melt produced, MP is the 3 11,265 km , which, given our 50% bulking assumption, mass of the impacting projectile, vi is the impact velocity, 3 3 represents7,509km ofshockmeltand3,756km ofdigested and em is the internal energy for melting. This equation is clasts. Subtractingthisdigestedclast meltvolumefromthe based on impacts of iron, gabbro, anorthosite, and ice totalmelt+ vapor(18,212km3)gives a totalshock melt+ projectiles on gabbro, as well as anorthosite targets. A vapor volume of 14,456 km3. Thus, it is estimated that similar equation holds for the relative mass of vapor bulking increases the shock melt + vapor at Chicxulub by producedwiththecoefficient 0.14replaced by0.4 and the about26%.Insummary,ourestimatesofthevolumeofshock internal energy for melting replaced by the internal energy meltproducedatthe2craters,assuminganerrormarginof for vaporization. The melting equation is valid for impact ±20%,are~12,000–17,000km3forChicxuluband~22,000– velocities above 12 km/s; the vapor equation is valid for 33,000km3forSudbury.Takingmeanvaluesof14,500km3 velocities above 35km/s.Melosh(1989,p.64–66,p.122– forChicxuluband27,000km3forSudbury,85%moreshock 123)discussessomeofthephysicaldifferencesbetweenthe melt was produced at Sudbury compared to Chicxulub meltingandvaporizationmodels. (compared to 70% more impact melt). This greater GrieveandCintala(1992,theirFig.2)usedamodified percentage of shock meltcompared toimpact meltderives version of the Gault-Heitowitz formulation and obtained fromthegreateramountofsueviteatSudbury,whichcontains melt volumes that scaled with energy in agreement with primarilyshockmelt(e.g.,Amesetal.2002). OKeefe and Ahrens (1977). Similar results for more generalizedcalculationswerereportedinCintalaandGrieve ANALYTICALESTIMATESOFMELTPRODUCTION (1998, their Fig. 6). Bjorkman and Holsapple (1987) proposeda scalinglaw,applicableonlywhentheprojectile CalculationofVolumesofShockMelt and target are composed of the same material and are not porous,oftheform: Shockmeltvolumeshavebeencalculatedbyanumber V /V µ(E /v 2)-3m/2 ofmethods,includinglaboratorymethodsthatarelimitedto M pr M i velocities significantly lower than those expected for whereVMisthevolumeofshockmelt,Vpristhevolumeofthe planetary collisions and theoretical models that can projectile,EMistheinternalenergyofmelting,viistheimpact extrapolate to higher impact velocities. Theoretical velocity,andmisascalingconstant.Ifm=1/3,thescalingis approaches have been both analytical and numerical, bymomentum;ifm=2/3,thescalingisbyenergy.Bjorkman involving massive computations. These 2 approaches and Holsapples conclusion was that m = 0.55–0.6, representendmembersintheneedforsimplicityandeaseof intermediate between the 2 end members but closer to the calculation (the analytic models) and the need for accurate energyscalinglaw.Wereturntothisconclusionbecauseour representationofmanypartsoftheprocess—includingboth results for m are in the middle range of m as proposed by thermodynamic and fluid-dynamic—which the analytical BjorkmanandHolsapple. modelscannotprovide(themassivecomputermodels).“The Relativelyfewcomputersimulationshavebeendoneto idealcasewouldbeananalyticalmodelthatgivesresultsin addressthisproblem.Thesumofmelt(+vapor)producedin goodagreementwiththenumericalsimulation”(Pierazzoet computer simulations (Pierazzo et al. 1997) of a dunite al.1997,p.408).Inthispaper,wedevelopamodificationof projectileintoavarietyoftargets(excludingice-iceimpacts) anearlieranalyticalmethod(KiefferandSimonds1980)that gavealeastsquarefitformof: uses a hypothesis (outlined below) introduced by Melosh m=0.708±0.039 (1989, p. 60–66) and reproduces the detailed computationally calculated volumes of melt + vapor by Thisvalueofmwasinterpretedasbeingingoodagreement Pierazzo et al. (1997). The model revision and calibration withenergyscaling,althoughitisnominallyhigherthanthe against Pierazzo et al. (1997) is summarized in the value of 0.66 for energy scaling. The effect of calculating Appendix. We then apply this model to examine the (melt+vapor)insteadofmeltalonewasnotdiscussed,butat influence of different projectiles and velocities on the theshockpressuresgeneratedintheirsimulations,relatively amountofmeltproducedatChicxulubandSudbury. littlevaporisproducedinduniteimpactsand,therefore,this The basic controversy has been whether or not the effect should not be significant.We test our model against volume of impact melt scales with the momentum of the thesesimulationsintheAppendix. projectileorits energy.OKeefe and Ahrens (1977,1982a, Therevisionsintroducedherearebasedonapointnoted ComparisonsofChicxulubandSudbury 109 by Melosh (1989, p. 60–66) but thatwas notdeveloped in isobarfor(approximatemid-pointbetweenincipient detail at the time and on results in Pierazzo et al. (1997) [46 GPa] and complete [56 GPa] melting; Pierazzo et al. regarding depth of energy release, radius to peak pressure 1997,theirTableI).TheresultsaresummarizedinTable6. isobars, and shape of melt volumes. As discussed in the Appendix,themethodofKiefferandSimonds(1980)canthen EffectsofImpactAngle bereproducedwiththefinalresultthatthenon-dimensional pressuredecayversusnon-dimensionaldistanceis: TheresultsofourmodifiedKieffer-Simondsmodelare foravertical(90°)impact—statisticallynearlyanimpossible - -1/n - -1/n dX/dR={ 3X+3X(Xn+1) +4/n (4n)(Xn+1) event.Thus,weneedtoadjustourresultstoamoreprobable 1-1/n +2/[n(1-n)][-1+(Xn+1) ]}* rangeofimpactangles(45°isthemostprobable).Whilemelt {R[1-(nX+1)-1/n+X(nX+1)-1-(1/n)]}-1 productioninobliqueimpactsisnotfullyunderstood,recent work with 3-D numerical models provides some insights. where X = P/K0, R = r/R0, P is pressure, K0 is the bulk Studies by Pierrazo and Melosh (2000) and Ivanov and modulus, r is radial distance from the center of energy Artemieva (2001) suggest that, compared to a 90° impact depositionR0,andnisthebulkmodulusderivative.Theform (vertical),thereis~20%reductioninmeltfora45°impact of the analytic equations is the same as in Kieffer and and~50%reductionfora30°impact.ArtemievaandIvanov Simonds(1980)withchangesinthecoefficients. (2001, 2002) investigated changes in the volume of the AsshowninTableA1,theresultsareingoodagreement transientcavitywithdifferentimpactangles.Theyfoundthat, withtheresultsofPierazzoetal.(1997).Especiallygiventhe forimpactvelocitiesover20km/sandimpactanglesfrom90° differences in form of equation-of-state, computational to30°,therewaslittlechangeintransientcratervolumefor models,andcriteriaformelting,theagreementbetweenthe asteroid impacts. Data presented for comet impacts by values of melt + vapor for the 2 models is excellent. Artemieva and Ivanov (2002) suggest that there may be a Furthermore,theenergyscalingcoefficient,m,definedabove transient crater size dependence on impact angle along the fromtheBjorkmanandHolsapple(1987)equation,is0.59± lines indicated by experimentalwork (Gaultand Wedekind 0.03forourmodel,which is withinthevalues of0.55and 1978), which demonstrated a reduction in crater size as a 0.60 found by Bjorkman and Holsapple as being slightly functionofthesineoftheimpactangle.InTable7,wepresent undertheabsoluteenergyscalingvalueof0.66.ForPierazzo shockmeltvolumesforourvariousimpactscenariosadjusted etal.(1997),the value ofmaverages about0.708±0.039, forimpactangle,assuminglittletonocratersizedependence slightly higher than the value for energy scaling.1 Thus, withinthelimitsofcurrentcontroversyoverthevalueofthis Table5.Projectileradius(km)forgiventransientcavity parameter,weconcludethatoursimpleanalyticalmodeldoes diameter(Dtc)andasteroidorcometvelocity,basedonthe accomplish the goal stated by Pierazzo et al. (1997) of pi-scalinglaw(SchmidtandHousen1987)asspecifiedby presenting an “analytical model that gives results in good MeloshandBeyer(1998). agreementwiththenumericalsimulation.” Dtc 80km 90km 100km 110km Asteroidvelocity Projectileradius(km) ApplicationoftheModeltoChicxulubandSudbury 20km/s 5.4 6.3 7.2 8.1 25km/s 4.8 5.6 6.4 7.2 Usingthepi-scalinglaw(SchmidtandHousen1987)to 30km/s 4.3 5.0 5.7 6.5 definetransientcavitydiametersasspecifiedbyMeloshand Cometvelocity Projectileradius(km) Beyer (1998), we use the Kieffer-Simonds model to 40km/s 6.1 7.1 8.2 9.2 calculate shock melt production in comet and asteroid 50km/s 5.4 6.3 7.2 8.1 impacts.Wecalculate5exampleseachofimpactsthatwould produce80,90,100,and110kmdiametertransientcavities Table6.Kieffer-Simondsmodelcalculationsofshockmelt (Table 5). In all cases, the target density is assumed to be +vaporvolume(Vm+v)forvarioustransientcavity 3 3 2.65g/cm ,theasteroiddensityis3.0g/cm ,andthecomet diameters(Dtc)andasteroidandcometimpactvelocities 3 density is 0.9g/cm .Forequations ofstate, we use granite (verticalimpact). forthetarget,iceforthecomet,anddiabasefortheasteroid. Dtc 80km 90km 100km 110km Equation-of-state parameters are given in Table B1 of Asteroidvelocity V (km3) KiefferandSimonds(1980).Wetake50GPaasthemelting m+v 20km/s 7,721 11,548 17,251 24,564 25km/s 7,681 11,878 17,796 25,950 1ThissignificantdifferenceinmbetweenourvaluesandthoseofPierazzoet 30km/s 7,734 12,093 18,026 26,742 al. derivefrom therather smalldifferences inmeltvolumespresentedin 3 TableA1.At20km/s,ourvaluesaresystematicallyhigherthanPierazzoet Cometvelocity Vm+v(km ) al.,withexceptionsforthelargeprojectiles,andat40km/s,ourvaluesare 40km/s 20,289 33,048 48,415 69,657 systematicallylower. 50km/s 21,555 33,195 50,038 75,389 110 K.O.Popeetal.

TAble7.CorrectionstoKieffer-Simondsmodelcalculationsofshockmelt+vaporvolume(Vm+v)forimpactangle (roundedtothenearest1000km3). Dtc 80km 90km 100km 110km 45° 30° 45° 30° 45° 30° 45° 30° Impactangle 0.8Vm+v 0.5Vm+v 0.8Vm+v 0.5Vm+v 0.8Vm+v 0.5Vm+v 0.8Vm+v 0.5Vm+v Asteroidvelocity 20km/s 6,000 4,000 9,000 6,000 14,000 9,000 20,000 12,000 25km/s 6,000 4,000 10,000 6,000 14,000 9,000 21,000 13,000 30km/s 6,000 4,000 10,000 6,000 14,000 9,000 21,000 13,000 Cometvelocity 40km/s 18,000 11,000 26,000 17,000 39,000 24,000 56,000 35,000 50km/s 18,000 11,000 27,000 17,000 40,000 25,000 60,000 38,000 on impact angle (³30°). Given that there may be such largest possible transient crater diameter (110 km) and an dependence forcomets, theobliquecomet meltvolumes in impact angle >45°, then an asteroid impact can be Table7maybelowbyafactorof~2–3. accommodated. While our analysis of impact melts at Chicxulub and COMPARISONOFSUDBURYANDCHICXULUB Sudburyisnotdefinitivewithregardtoasteroidversuscomet impacts, the most parsimonious explanation for the large MeltVolumesandAsteroidVersusCometImpacts differenceinmeltvolumesisthatChicxulubwasanasteroid impact and Sudbury was a comet impact. This proposed Acomparison oftheimpactmodelshock meltvolume asteroid versus comet scenario fits well with our best calculationsinTable7withtheempiricalestimatesofshock estimatesoftheshockmeltvolumesandtransientcratersizes melt volumes from Chicxulub (~14,500 km3) suggests that for Chicxulub (14,500 km3 and ~90–105) and Sudbury Chicxulub is probably an asteroid impact. Nevertheless, if (27,000km3and~91–97km). oneacceptsthesmallertransientcavitydiameters(80–90km) andthefullrangeofpossibleshockmeltvolumes(12,000– EffectsoftheGeothermalGradient 17,000 km3), then an oblique comet impact can be accommodated.AnobliqueChicxulubcometimpactcannot While we favor the asteroid versus comet explanation beaccommodatedifoneassumesadependenceofcratersize for the apparent differences in melt volume between on impact angle as discussed above. Independent evidence Chicxulub and Sudbury, there are other possible factors. exists to support the hypothesis that Chicxulub was an Warren et al. (1996) suggest that the thicker melt sheet at asteroidimpact.First,themassoftheimpactorimpliedbythe Sudbury compared toChicxulub is due to“pre-heating” of largecontentofmeteoriticmaterialinthedistalejecta(e.g., the target rocks by the Penokean Orogeny, as Penokean the famous Ir anomaly at the Cretaceous-Tertiary [K-T] deformationsouth of SudburyintheGreatLakes regionis boundary)cannotbereconciledwiththesizeofthecraterif roughlycontemporaneouswiththe1.85GaSudburyimpact. the impact velocityexceed ~45 km/s (Vickery and Melosh The metamorphic facies of the Penokean deformation at 1990; Pope et al. 1997). Second, both the chemistry of a Sudbury are greenschist (Card et al. 1984; Riller and possiblefragmentoftheimpactorfoundinthePacific(Kyte Schwerdtner1997),whichsuggests thatatsomepointprior 1998)andtheCrisotopicsignatureofthemeteoriticdebrisin to impact, temperatures of the target rocks were ~400 °C. the K-T boundary (Shukolyukov and Lugmair 1998) are Thisis consistent withan elevated geothermalgradient.To consistent with a carbonaceous chondrite impactor. Third, explore furtherthe possible effects of “pre-heating” of the analysesofHedatafromtheK/Tboundaryshowno targetrockatSudbury,wedevelopedafirstordercalculation evidence of comet showers (Mukhopadhyay et al. 2001). of increased melting due to a relatively extreme elevated None of these pieces of evidence is conclusive, but taken geothermal gradient of 33.3 °C/km (Warren et al. [1996] together with our analysis of impact melt, they favor the proposed 30–40 K/km). Thus, at 15 km, the temperature Chicxulub asteroid impact hypothesis. If Chicxulub is an wouldbe 500°C, and at30km,thetemperature wouldbe asteroidimpact,thenthetransientcavitydiameterisunlikely 1000°C,nearourassumedmeltingtemperatureforthetarget tobemuchsmallerthan100kmgivenourestimatesofshock rocks of 1100–1200 °C (e.g., Wyllie 1977). Shock melt is meltvolume. formed when the release adiabat crosses the melting curve Acomparisonoftheshockmeltvolumecalculationsin upon decompression. At 15 km, a temperature increase of Table7withtheempiricalestimatesofshockmeltvolumes approximately 700 °C is requiredtomelt the rocks, and at fromSudbury(22,000–33,000km3)suggeststhatSudburyis greaterdepths,alesserincreaseisrequired.Thetemperature probably a comet impact. Nevertheless, if one accepts the increaseuponreleasefrom25GPais~500°C(McQueenet ComparisonsofChicxulubandSudbury 111 al.1967).Therefore,wemakeasimpleapproximationofthe EffectsofVolatiles excessmeltproducedinpre-heatedrockbyassumingthat,in addition to the melt + vapor formed above 50 GPa, all Most of the excess melt at Sudbury compared to materialbelow15kmthatisshockedto>25GPaalsomelts. Chicxulubresidesinthesuevitenotthemeltsheet.Therefore, Forthe3 impacts consideredinTable6,thetotal itislikelythatthedifferencesinmeltvolumesofthe2craters (melt + vapor) increases by 25–27%, far short of the 70% is in some way linked to suevite formation. Kieffer and increase needed to account for the excess Sudbury melt Simonds(1980) notedthat craters formedintargets with a volume. If this increase in melt volumes is applied to our significantamountofsedimentsproducedmuchmoresuevite modelshockmeltvolumes,Sudburymuststillhavea110km than craters with little or no sedimentary cover. They diametertransientcavitytoaccommodateanasteroidimpact. proposedthatthisdifferencewascausedbythedispersalof Theseresultsareforaverticalimpact,andsincethedepthof impact melt when the volatiles (e.g., CO2, SO2, H2O) that meltingislessinthemorelikelycaseofanobliqueimpact wereinitiallyincorporatedinthemelteffectivelyexploded, (Pierazzo and Melosh 2000), these percentages are best blowingthemeltintotheairwhereitmixedwithsolidejecta considered maximum values. Furthermore, the extreme andfellbackassuevite.Therefore,anotherfactortoconsider geothermalgradientused inthis calculation is also likelya whencomparingSudburyandChicxulubisthedifferencesin maximum, since several studies suggest that Penokean thevolatilecontentofthetargetrock.Bothlocalesprobably deformationwaswaningatthetimeofimpact(e.g.,Cardet hadashallowseaoverlyingtherocks(e.g.,Popeetal.[1997] al.1984;RillerandSchwerdtner1997;Cowanetal.1999). forChicxulub;PerederyandMorrison[1984]forSudbury), Therefore, we conclude that if Sudbury were an asteroid but we do not believe this was a major factor in melt impact, the excessive amount of impact melt cannot be production. Chicxulub had an upper layer of porous,water readily explained by the effect of preheating of the target saturated sedimentary rock, ~2.5–3 km thick, composed of rocksbythePenokeanOrogeny. about56%,30%,and14%water(Popeetal. Anotherfactorrelatedtothegeothermalgradientthathas 1997).Sudburyhadasmuchas~5–12kmofsedimentaryand been proposed toexplain melt rocks at Sudbury is impact- volcanicrocks(Cardetal.1977,1984;Dressler1984),which triggered pressure-release melting of deep crustal rock were partially metamorphosed (thus, probablynon-porous), beneath the transient cavity (Dressler and Sharpton 1999; and a thin veneer of carbonaceous argillites found as lithic Dressler and Reimold 2001).While thishypothesis has not fragments in the upper 1 km of suevite (Ames 1999). In been rigorously developed, recent impact simulations and general,theserocksprobablycontainedlittlewater,perhaps fieldstudiesdoshedlightontheimportanceofthemeltingin £1%.Bothimpactshadgraniticcrustbelowthesedimentary the central uplift. Ivanov and Deutsch (1999) modeled the cover.Thedepthofmeltingforourasteroidandcometimpact perturbationofthegeothermalgradientduetoshockheating scenarios was sufficiently shallow (~30 km) to incorporate andupliftofthedeepcrustalrockinaSudbury-sizeimpact. significant amounts of the sedimentary cover in the shock Their model predicts that a central core of rock 5 km in melt, although, clearly, most of the melt came from the diameter and 40 km deep can be heated to >1200 °C. crystallinebasementatbothcraters. Presumably,someormostofthisrockwouldmelt.Empirical Thesedimentary coveratSudburywas notas volatile- support for such melting is found at the Vredefort impact richastheoneatChicxulub,andthus,thedispersalofmelt structure in South Africa, which may be similar in size to maynothavebeenasgreat.Chicxulubsuevitewith10–30% Sudbury and Chicxulub or slightly larger (e.g., Grieve and melt(Albion formation)is foundhundreds of km fromthe Therriault 2000). Deep erosion of the central uplift at craterinBelize(Ocampoetal.1996;Popeetal.1999,2000), Vredefortexposes a 5km diameterplugof melt rockwith whichmayreflectthedispersalbyvolatilesinthetargetrock. quench textures indicative of rapid cooling (Gibson et al. PerhapsthelargeamountofsueviteinsideSudburyreflects 2002), which matches well with the Ivanov and Deutsch the factthattherewere insufficient volatiles to blow much (1999) calculations for a Sudbury-size impact. Both the melt out of the crater. If this were true, then we have impactsimulationand theVredefortfielddata indicate that overestimated the amount of melt at Sudbury since our themeltrockinthecentralupliftformedandcooledquickly ejectedmeltestimatesarebasedonscalingfromChicxulub. and, thus,probablydidnotmixappreciably withtheshock Such a scenario is unlikely to be a major factor, however, melt. Despite this apparent importance of melting in the because our estimates of the amount of melt ejected at central uplift (perhaps producing as much as 3000 km3 of Chicxulub and Sudbury (24.3%, excluding vapor) are not melt),neitherourempiricalestimatesofimpactmeltnorour excessive and are in line with most theoretical estimates. modelcalculationsofimpactmeltincludethisfactor,sothe Furthermore, we know of no impact simulations where a relativeamountsofmeltatSudburyand Chicxulub arenot significant amount of melt is not ejected. The greater affected. Thus, if pressure release melting occurred in the thicknessofsedimentsatSudburycannotreadilyexplainthe centralupliftofSudburyandChicxulub,itcannotexplainthe difference in suevite because these sediments were likely largediscrepancyinmeltvolumes. muchdrierthanatChicxulub. 112 K.O.Popeetal.

WeproposethatthelargeramountofsueviteatSudbury AmesD.E.,GolightlyJ.P.,LightfootP.C.,andGibsonH.L.2002. mayberelatedtothesamefactorweproposeisresponsible Vitric compositions in the Onaping formation and their forthelargeramountofmelt—acometimpact.Thecometary relationshiptotheSudburyigneouscomplex,Sudburystructure. 3 EconomicGeology97:1541–1562. water volume in ourimpact calculations (~700–1,000km , AmesD.E.,KjarsgaardI.M.,PopeK.O.,DresslerB.,PilkingtonM. assuming a comet volume of 50% ice)greatly exceeds the Forthcoming. Secondary alteration of the and volume of target water (~200 km3) vaporized in the mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulubimpact,andinfact,thecometwatermassequalsor Chicxulub impact crater, Mexico. Meteoritics & Planetary exceedsthetotalvolatilemass(CO ,SO ,H O)releasedbya Science. 2 2 2 AriskinA.A.,DeutschA.,andOstermannM.1999.Sudburyigneous Chicxulub asteroid impact (Pope et al. 1997; Pierazzo and complex:Simulatingphaseequilibriaandinsitudifferentiation Melosh1999).Thus,thelargeramountofsueviteatSudbury fortwoproposedparental.InLargemeteoriteimpacts is compatible with a massive dispersal of shock melt by andplanetaryevolutionII,editedbyDresslerB.O.andSharpton cometaryvolatiles. V.L.GSASpecialPaper 339. Boulder:GeologicalSocietyof America.pp.373–387. ArtemievaN.A.andIvanovB.A.2001.Numericalsimulationof CONCLUSIONS obliqueimpacts:Impactmeltandtransientcavitysize(abstract #1321). 32nd Lunar and Planetary Science Conference. CD- Analyses of geological and geophysical data from the ROM. Chicxulub and Sudburyimpactstructures indicatethatthey BjorkmanM.D.andHolsappleK.A.1987.Velocityscalingimpact hadsimilartransientcavitydiameters,andhaveasimilarfinal melt volume. International Journal of Impact Engineering 5: 155–163. craterstructure.Thesesimilaritiesinsizeandstructure,when BrittanJ.,MorganJ.,WarnerM.,andMarinL.1999.Nearsurface coupled with observations of impact melt at the 2 craters, seismic expression of the Chicxulub impact crater. In Large suggestthatSudburyhasabout70%moreimpactmeltthan meteoriteimpactsandplanetaryevolutionII,editedbyDressler Chicxulub,and85%moreshockmelt.Thisgreateramountof B. O. and Sharpton V. L. GSA Special Paper 339. Boulder: meltisreadily,butperhapsnotuniquely,explainedwithan GeologicalSocietyofAmerica.pp.269–279. Brockmeyer P. 1990. Petrographische und geochemische analyticalmodelwhereChicxulubwasformedbyanasteroid Untersuchungen an polymikten Breccien der Onaping- impact and Sudbury by a comet impact. The difference in Formation, Sudbury-Distrikt (Ontario, Kanada). Ph.D. thesis, meltvolumescanbeexplainedbydifferencesincratersize UniversitätMünster,Münster,Germany.228p. only if the extremes in the possible range of impact Butler H. R. 1994. Lineament analysis of the Sudbury multiring parametersareinvoked.MostoftheexcessmeltatSudbury impact structure. In Large meteorite impacts and planetary evolution,editedbyDresslerB.O.,GrieveR.A.F.,andSharpton residesinthesuevite, andthisgreateramountofsueviteat V.L.GSASpecialPaper 293. Boulder:GeologcialSocietyof SudburycomparedtoChicxulubmaybeduetothedispersal America.pp.319–339. ofshockmeltbycometaryvolatiles. Camargo Zanguera A. and Suarez Reynoso G. 1994. Evidencia sismica del crater de impacto de Chicxulub. Boletín de la Acknowledgments–ThisresearchwasfundedbytheNatural AsociaciónMexicanadeGeofisicosdeExploración34:1–28. Card K. D., Innes D. G., and Debicki R. L. 1977. Stratigraphy, HistoryMuseumofLosAngelesCountyandbytheNational sedimentology,andpetrologyoftheHuronianSupergroupinthe AeronauticsandSpaceAdministration,ExobiologyProgram Sudbury-Espanola area. In Ontario Geological Survey (GrantNAG5–10744).AdditionalsupportwasprovidedtoD. geosciencestudy16.Sudbury:OntarioGeologicalSurvey.99p. E.AmesbytheGeologicalSurveyofCanada.WethankN. CardK.D.,GuptaV.K.,McGrathP.H.,andGrantF.S.1984.The Artemieva, A. Therriault, and A. Deutsch for constructive Sudbury structure: Its regional geological and geophysical setting.InThegeologyanddepositsoftheSudburystructure, criticismsonanearlierdraftofthispaper. edited by Pye E. G., Naldrett A. J., and Giblin P. E. Ontario Geological Survey Special Volume 1. Sudbery: Ontario EditorialHandling—Dr.AlexanderDeutsch GeologicalSurvey.pp.57–82. ChristesonG.L.,BufflerR.T.,andNakamuraN.1999.Uppercrustal structureoftheChicxulubimpactcraterfromwide-angleocean REFERENCES bottom seismograph data. In Large meteorite impacts and planetaryevolutionII,editedbyDresslerB.O.andSharptonV. AhrensT.J.andOKeefeJ.D.1987.ImpactontheEarth,ocean,and L. GSA Special Paper 339. Boulder: Geological Society of atmosphere.InternationalJournalofImpactEngineering5:13– America.pp.291–298. 32. ChristesonG.L.,NakamuraY.,BufflerR.T.,MorganJ.,andWarner AmesD.E.1999.Geologyandregionalhydrothermalalterationof M.2001.DeepcrustalstructureoftheChicxulubimpactcrater. the crater-fill Onaping formation: Association with Zn-Pb-Cu JournalofGeophysicalResearch106:21751–21769. mineralization, Sudbury structure, Canada. Ph.D. thesis, CintalaM.J.andGrieveR.A.F.1998.Scalingimpactmeltingand CarletonUniversity,Ottawa,Ontario,Canada.460p. crater dimensions: Implications for the lunar cratering record. Ames D. E., Bleeker W., Heather K. B., and Wodicka N. 1997. Meteoritics&PlanetaryScience33:889–912. Timmins to Sudbury transect: New insights into the regional ClaeysP.,HeuschkelS.,RocchiaR.,RobinE.,andStöfflerD.1998. geologyand settingofmineraldeposits,Jointannualmeeting ThetwodifferentmeltrocksoftheChicxulubimpactcraterand field trip B6 guide book. Ottawa: Geological Association of where is the IR anomaly? (abstract #1361). 28th Lunar and CanadaandMineralogicalSocietyofCanada. PlanetaryScienceConference.CD-ROM. ComparisonsofChicxulubandSudbury 113

CorriganC.M.1998.Thecompositionofimpactbrecciasfromthe Chicxulub: Three of a kind? Annual Review of Earth and Chicxulubimpactcrater, YucatanPeninsula,Yucatan,Mexico. PlanetaryScience28:305–338. M.S.thesis,MichiganStateUniversity,EastLansing,Michigan, HildebrandA.R.,PilkingtonM.,ConnorsM.,Ortiz-AlemanC.,and USA.125p. ChavezR.E.1995.SizeandstructureoftheChicxulubcrater CowanE.J.,RillerU.,andSchwerdtnerW.M.1999.Emplacement revealedbyhorizontalgravitygradientsand.Nature376: geometry of the Sudbury igneous complex: Structural 415–417. examinationofaproposedimpactmelt-sheet.InLargemeteorite Hildebrand A. R., Pilkington M., Ortiz-Aleman C., Chavez R. E. impactsandplanetaryevolutionII,editedbyDresslerB.O.and Urrutia-FucugauchiJ.,ConnorsM.,Graniel-CastroE.,Camara- Sharpton V. L. GSA Special Paper 339. Boulder: Geological ZiA.,HalpennyJ.,andNiehausD.1998.MappingChicxulub SocietyofAmerica.pp.399–418. crater structure with gravity and seismic reflection data. In CroftS.K.1985.Thescalingofcomplexcraters.Proceedings,5th :Fluxwithtimeandimpacteffects,editedbyGrady Lunar and Planetary Science Conference. Journal of M. M., Hutchinson R., McCall G. J. H., and Rotherby D. A. GeophysicalResearch90:C828–C842. GeologiclaSocietySpecialPublication140.London:Geologcial Deutsch A. and Grieve R. A. F. 1994. The Sudbury structure: Society.pp.155–176. Constraintsonitsgenesisfromlithoproberesults.Geophysical IvanovB.A.andArtemievaN.A.2001.Transientcavityscalingfor ResearchLetters21:963–966. oblique impacts (abstract #1327). 32nd Lunar and Planetary DeutschA.,GrieveR.A.F.,AvermanM.,BischoffL.,Brockmeyer ScienceConference.CD-ROM. P., Buhl D., Lakomy R., Müller-Moor V., Ostermann M., and IvanovB.A.andArtemievaN.A.2002.Numericalmodelingofthe Stöffler D. 1995. TheSudbury structure (Ontario, Canada): A formation of large impact craters. In Catastrophic events and tectonically deformed multi-ring impact basin. Geologische massextinctions:Impactsandbeyond,editedbyKoeberlC.and Rundschau8:697–709. MacLeod K. G. GSA Special Paper 356. Boulder: Geological DresslerB.O.1984.GeneralgeologyoftheSudburyarea.InThe SocietyofAmerica.pp.619–630. geologyandoredepositsoftheSudburystructure,editedbyPye IvanovB.A.andDeutschA.1999.Sudburyimpactevent:Cratering E.G.,NaldrettA.J.,andGiblinP.E.OntarioGeologicalSurvey mechanicsandthermalhistory.InLargemeteoriteimpactsand SpecialVolume1.Sudbury:OntarioGeologicalSurvey.pp.57– planetaryevolutionII,editedbyDresslerB.O.andSharptonV. 82. L. GSA Special Paper 339. Boulder: Geological Society of DresslerB.O.andReimoldW.U.2001.Terrestrialimpactmeltrocks America.pp.389–397. and.Earth-ScienceReviews56:205–284. Kettrup B., Deutsch A., and Masaitis V. L. 2003. Homogeneous DresslerB.O.andSharptonV.L.1999.Sudburystructure1997:A impactmeltsproducedbyaheterogeneoustarget?Sr-Ndisotopic persistent enigma. In Large meteorite impacts and planetary evidence from the Popigai crater, Russia. Geochimica et evolutionII,editedbyDresslerB.O.andSharptonV.L.GSA CosmochimicaActa67:733–750. SpecialPaper339.Boulder:GeologicalSocietyofAmerica.pp. Kieffer S. W. and Simonds C. H. 1980. The role of volatiles and 299–304. lithologyintheimpactcrateringprocess.ReviewofGeophysics Dressler B. O., Sharpton V. L., and Marin L. E. 2003. Chicxulub andSpacePhysics18:143–181. YAX-1impactbreccias:Whencetheycome?(abstract#1259). KringD.A.1995.ThedimensionsoftheChicxulubimpactcraterand 34thLunarandPlanetaryScienceConference.CD-ROM. impactmeltsheet.JournalofGeophysicalResearch100:16979– EbbingJ.,JanleP.,KoulourisJ.,andMilkereitB.2001.3Dgravity 16986. modeling of the Chicxulub impact structure. Planetary and KyteF.T.1998.AmeteoritefromtheCretaceous/Tertiaryboundary. SpaceScience49:599–609. Nature396:237–239. EspindolaJ.M.,MenaM.,delaFuenteM.,andCampos-EnriquezJ. MaxwellD.E.1977.SimpleZmodelofcratering,ejection,andthe O.1995.Amodelofthe Chicxulubimpactstructure(Yucatan overturned flap. In Impact and explosion cratering, edited by Mexico)basedonitsgravityandmagneticsignatures.Physicsof RoddyD.J.,PepinR.O.,andMerrillR.B.NewYork:Pergamon EarthandPlanetInteriors92:271–278. Press.pp.1003–1008. GaultD.E.andHeitowitzE.D.1963.Thepartitionofenergyfor McQueenR.G.,MarshS.P.,andFritzJ.N.1967.Hugoniotequation hypervelocityimpactcratersformedinrock.Proceedingsofthe ofstateoftwelve rocks.JournalofGeophysicalResearch72: 6thHypervelocityImpactSymposium.Cleveland:FirestoneTire 4999–5036. andRubberCompany.pp.420–456. MeloshH.J.1989.Impactcratering:AGeologicprocess.NewYork: Gault D. E. and Wedekind J. A. 1978. Experimental studies of OxfordUniversityPress.245p. oblique impact. Proceedings of the 9th Lunar and Planetary MeloshH.J.andBeyerR.A.1998.Crater.Anonlineprogramfor ScienceConference.NewYork:PergamonPress.pp.3843–3875. calculating impact crater parameters. http:// GibsonR.L.,ReimoldW.U.,AshleyA.J.,andKoeberlC.2002. www.lpl.arizona.edu/tekton/crater.html. Metamorphism on the : A terrestrial analogue in the Milkereit B., Green A., Wu J., White D., and Adam E. 1994. Vredefortdome,SouthAfrica?Geology30:475–478. Integrated seismic and borehole geophysical study of the Golightly J. P. 1994. The Sudbury igneous complex as an impact Sudbury igneous complex. Geophysical Research Letters 21: melt:Evolutionandoregenesis.InProceedingsoftheSudbury- 931–934. NorilskSymposium,editedbyLightfootP.C.andNaldrettA.J. Molnàr F., Watkinson D. H., and Jones P. C. 2001. Multiple OntarioGeologicalSurveySpecialVolume5.Sudbury:Ontario hydrothermal processes in footwall units of the North Range, GeologicalSurvey.pp.105–117. Sudbury igneous complex, Canada and implications for the Grieve R. A. F., Stöffer D., and Deutsch A. 1991. The Sudbury genesis of vein-type Cu-Ni-PGE deposits. Economic Geology structure: Controversial or misunderstood? Journal of 96:1645–1670. GeophysicalResearch96:22753–22764. MorganJ.,WarnerM.,andChicxulubWorkingGroup1997.Sizeand GrieveR.A.F.andCintalaM.J.1992.Ananalysisofdifferential morphology of the Chicxulub impact crater. Nature 390:472– impact melt-crater scaling and implications for the terrestrial 476. impactrecord.Meteoritics27:526–538. Morgan J. and Warner M. 1999a. Morphology of the Chicxulub Grieve R. A. F. and Therriault A. 2000. Vredefort, Sudbury, impact:Peakringcraterormulti-ringbasin.InLargemeteorite 114 K.O.Popeetal.

impactsandplanetaryevolutionII,editedbyDresslerB.O.and PierazzoE.,VickeryA.M.,andMeloshH.J.1997.Areevaluation Sharpton V. L. GSA Special Paper 339. Boulder: Geological ofimpactmeltproduction.Icarus127:408–423. SocietyofAmerica.pp.281–290. Pierazzo E. and Melosh H. J. 1999. Hydrocode modeling of MorganJ.andWarnerM.1999b.Chicxulub:Thethirddimensionof Chicxulub as an oblique impact event. Earth and Planetary amulti-ringimpactbasin.Geology27:407–410. ScienceLetters165:163–176. Morgan J. V., Warner M. R., Collins G. S., Melosh H. J., and Pierazzo E. and Melosh H. J. 2000. Melt production in oblique Christeson G. L. 2000. Peak-ring formation in large impact impacts.Icarus145:252–261. craters: Geophysical constraints from Chicxulub. Earth and Pilkington M. and Hildebrand A. R. 2000. Three-dimensional PlanetaryScienceLetters183:347–354. magneticimagingoftheChicxulubcrater(abstract#1190).31st MorganJ.,WarnerM.,andGrieveR.2002.Geophysicalconstraints LunarandPlanetaryScienceConference.CD-ROM. on the size and structure of the Chicxulub impact crater. In PilkingtonM.,HildebrandA.R.,andOrtiz-AlemanC.1994.Gravity Catastrophiceventsandmassextinctions:Impactsandbeyond, and magnetic field modeling and structure of the Chicxulub editedbyKoeberlC.andMacLeodK.G.GSASpecialPaper356. crater, Mexico. Journal of Geophysical Research 99:13147– Boulder:GeologicalSocietyofAmerica.pp.39–46. 13162. MukhopadhyayS.,FarleyK.A.,andMontanariA.2001.A35Myr Pope K. O. 2002. Impact dust not the cause of the Cretaceous- recordofheliuminpelagicfromItaly:Implicationsfor Tertiarymassextinction.Geology30:99–102. interplanetarydustaccretionfromtheearlytothe PopeK.O.,OcampoA.C.,andDullerC.E.1993.Surficialgeology middleEocene.GeochimicaetCosmochimicaActa65:653–669. oftheChicxulubimpactcrater,Yucatan,Mexico.Earth,Moon, MuirT.L.andPerederyW.V.1984.TheOnapingformation.InThe andPlanets63:93–104. geologyandoredepositsoftheSudburystructure,editedbyPye Pope K. O., Ocampo A. C., Kinsland G. L., and Smith R. 1996. E.G.,NaldrettA.J.,andGiblinP.E.OntarioGeologicalSurvey Surface expression of the Chicxulub crater. Geology 24:527– Special Volume 1. Sudbury: Ontario Geological Society. pp. 530. 139–210. PopeK.O.,BainesK.H.,OcampoA.C.,andIvanovB.A.1997. NaldrettA. J.1999.Summary: DevelopmentofideasonSudbury Energy,volatileproduction,andclimateeffectsoftheChicxulub geology,1992-1998.InLargemeteoriteimpactsandplanetary Cretaceous/Tertiary impact. Journal of Geophysical Research evolutionII,editedbyDresslerB.O.andSharptonV.L.GSA 102:21645–21664. SpecialPaper339.Boulder:GeologicalSocietyofAmerica.pp. PopeK.O.,OcampoA.C.,FischerA.G.,AlvarezW.,FoukeB.W., 431–442. WebsterC.L.,Jr.,VegaF.J.,SmitJ.,FritscheA.E.,andClaeys OcampoA.C.,PopeK.O.,andFischerA.G.1996.Ejectablanket P. 1999. Chicxulub impact ejecta from Albion Island, Belize. depositsoftheChicxulubcraterfromAlbionIsland,Belize.In EarthandPlanetaryScienceLetters170:351–364. TheCretaceous-TertiaryeventandothercatastrophesinEarth Pope K. O., Ocampo A. C., Fischer A. G., Fouke B. W., and history,editedbyRyderG.,FastovskyD.,andGartnerS.GSA WachtmanR.J.2000.AnatomyoftheChicxulubejectablanket SpecialPaper307.Boulder:GeologicalSocietyofAmerica.pp. (abstract). Geological Society of America Program with 75–88. Abstracts32:163. OKeefe J. D. and Ahrens T. J. 1977. Impact-induced energy RillerU.andSchwerdtnerW.M.1997.Mid-crustaldeformationat partitioning, melting, and vaporization on terrestrial planets. thesouthernflankoftheSudburyBasin,centralOntario,Canada. Proceedings,8thLunarandPlanetaryScienceConference.pp. GeologicalSocietyofAmericaBulletin109:841–854. 3357–3374 Rousell D.H. and Long G. F. 1998. Are outliersofthe Huronian OKeefe J. D. and Ahrens T. J. 1982a. Cometary and meteorite Supergrouppreservedinstructuresassociatedwiththecollapse swarm impact on planetary surfaces. Journal of Geophysical oftheSudburyimpactcrater?JournalofGeology106:407–419. Research87:6668–6680. SchmidtR.M.andHousenK.R.1987.Somerecentadvancesinthe OKeefeJ.D.andAhrensT.J.1982b.InteractionoftheCretaceous/ scalingofimpactandexplosioncratering.InternationalJournal Tertiarywiththeatmosphere,ocean,andsolidEarth.In ofImpactEngineering5:543–560. Geologicalimplicationsofimpactsoflargeasteroidsandcomets SchuraytzB.C.,SharptonV.L.,andMarinL.E.1994.Petrologyof onEarth,editedbySilverL.T.andSchultzP.H.GSASpecial impact melt rocks at the Chicxulub multiring basin, Yucatan, Paper190.Boulder:Geological Society of America. pp. 103– Mexico.Geology22:868–872. 120. SeeT. H.,Wagstaff J.,Yang V.,HörzF.,andMcKay G.A.1998. OKeefe J. D. and Ahrens T. J. 1994. Impact-induced melting of Compositional variation and mixing of impact melts on planetary surfaces. In Large meteorite impacts and planetary microscopicscales.Meteoritics&PlanetaryScience33:937–948. evolution,editedbyDresslerB.O.,GrieveR.A.F.,andSharpton ShanksW.S.andSchwerdtnerF.1991.Crudequantitativeestimates V.L.GSASpecial Paper293. Boulder:GeologicalSocietyof of the of the original nortwest-southeast dimension of the America.pp.103–109. Sudbury Structure, Southern Province, Canadian Shield. OKeefeJ.D.andAhrensT.J.1999.Complexcraters:Relationship CanadianJournalofEarthScience28:1677–1686. of stratigraphy and rings to impact conditions. Journal of SharptonV.L.,BurkeK.,Camargo-ZanogueraA.,HallS.A.,LeeD. GeophysicalResearch104:27091–27104. C.,Marin L.E.,SuarezReynosoG.,Quezada-MunetonJ.M., OntarioGeologicalSurvey,Sudbury,Map2491.1984.Endpocket Spudis P. D., and Urrutia-Fucugauchi J. 1993. Chicxulub map.InThegeologyandoredepositsoftheSudburystructure, multiring impact basin: Size and other characteristics derived edited by Pye E. G., Naldrett A. J., and Giblin P. E. Ontario fromgravityanalysis.Science261:1564–1567. Geological Survey Special Volume 1. Sudbury: Ontario SharptonV.L.,MarinL.E.,CarneyJ.L.,LeeS.,RyderG.,Schuraytz GeologicalSurvey. B.C.,SikoraP.,andSpudisP.D.1996.AmodeloftheChicxulub PerederyW.V.andMorrisonG.G.1984.Discussionoftheoriginof impactbasinbasedonevaluationofgeophysicaldata,welllogs, the Sudbury structure. In Thegeologyandoredepositsof the anddrillcoresample.InTheCretaceous-Tertiaryeventandother Sudburystructure,editedbyPyeE.G.,NaldrettA.J.,andGiblin catastrophesinEarthhistory,editedbyRyderG.,FastovskyD., P. E. Ontario Geological Survey Special Volume 1. Sudbury: and Gartner S. GSA Special Paper 307. Boulder: Geological OntarioGeologicalSurvey.pp.491–511. SocietyofAmerica.pp.55–74. ComparisonsofChicxulubandSudbury 115

SharptonV.L.,CorriganC.M.,MarinL.E.,Urrutia-FucugauchiJ., Paper 293.Boulder:Geological Society of America.pp. 275– andVogelT.A.1999.Characterizationofimpactbrecciasfrom 287. the Chicxulub impact basin: Implications for excavation and Turtle E. P. and Pierazzo E. 1998. Constraints on the size of the ejectaemplacement(abstract#1515).30thLunarandPlanetary Vredefortimpactcraterfromnumericalmodeling.Meteoritics& ScienceConference.CD-ROM. PlanetaryScience33:483–490. ShukolyukovA.andLugmairG.W.1998.Isotopicevidenceforthe Urrutia-FucugauchiJ.,MarinL.,andTrejo-GarciaA.1996.UNAM Cretaceous-Tertiaryimpactoranditstype.Science282:927–929. scientific drilling program of Chicxulub impact structure— Simonds C. H. and KiefferS.W. 1993.Impactandvolcanism:A Evidence for a 300 kilometer crater diameter. Geophysical momentum scaling law for erosion. Journal of Geophysical ResearchLetters23:1565–1568. Research98:14321–14337. Vickery A. M. and Melosh H. J. 1990. Atmospheric erosion and SimondsC.H.,FloranR.J.,McGeeP.E.,PhinneyW.C.,andWarner impactor retention in large impacts, with application to mass J. L. 1978. Petrogenesis of melt rocks, Manicouagan impact extinction. In Global catastrophes in Earth history, edited by structure,Quebec. Journal of Geophysical Research 83:2773– SharptonV.L.andWardP.H.GSASpecialPaper247.Boulder: 2788. GeologicalSocietyofAmerica.pp.289–300. Smit J. 1999. The global stratigraphy of the Cretaceous-Tertiary WardW.C.,KellerG.,StinnesbeckW.,andAdatteT.1995.Yucatan boundaryimpactejecta.AnnualReviewsofEarthandPlanetary subsurface stratigraphy: Implication and constraints for the Science27:75–113. Chicxulubimpact.Geology23:873–876. SnyderD.B.andHobbsR.W.1999.Deepseismicreflectionprofiles WarrenP.H.,Claeys P.,andCedillo-PardoE.1996.Mega-impact across the Chicxulub crater. In Large meteorite impacts and meltpetrology(Chicxulub,Sudbury,andtheMoon):Effectsof planetaryevolutionII,editedbyDresslerB.O.andSharptonV. scaleandotherfactorsonpotentialforfractionalcrystallization L. GSA Special Paper 339. Boulder: Geological Society of anddevelopmentofcumulates.InTheCretaceous-Tertiaryevent America.pp.263–268. and other catastrophes in Earth history, edited by Ryder G., StöfflerD.,DeutschA.,AvermannM.,BischoffL.,BrockmeyerP., FastovskyD.,andGartnerS.GSASpecialPaper307.Boulder: BuhlD.,LakomyR.,andMüller-MohrV.1994.Theformationof GeologicalSocietyofAmerica.pp.105–123. theSudburystructure,Canada:Towardaunifiedimpactmodel. WhiteheadJ.,GrieveR.A.F.,andSprayJ.G.2002.Mineralogyand InLargemeteoriteimpactsandplanetaryevolution,editedby petrology of melt rocks from the Popigai impact structure, DresslerB.O.,GrieveR.A.F.,andSharptonV.L.GSASpecial Siberia.Meteoritics&PlanetaryScience37:623–648. Paper 293. Boulder:Geological Society of America.pp.303– WuJ.,MilkereitB.,andBoernerD.E.1995.Seismicimagingofthe 318. enigmaticSudburystructure.JournalofGeophysicalResearch Thompson L. M. and Spray J. G. 1994. Pseudotachylytic rock 100:4117–4130. distributionsandgenesiswithintheSudburyimpactstructure.In WyllieP.J.1977.Fromcruciblesthroughsubductiontobatholiths.In Large meteorite impacts and planetary evolution, edited by Energeticsofgeologicalprocesses,editedbySaxenaS.K.and DresslerB.O.,GrieveR.A.F.,andSharptonV.L.GSASpecial BhattacharjiS.NewYork:SpringerVerlag.pp.389–433.

APPENDIX:REVISIONOFTHEKIEFFERAND weassumethattheexpandingtotalenergyisreducedbythe SIMONDS(1980)EQUATIONFORCALCULATION wasteheatinanexpandingsphericalshell(thisformulationis OFMELTVOLUMES explainedingreaterdetailinKiefferandSimonds[1980]and isnotrepeatedhere.Inthisreformulation,thethicknessofthe Melosh (1989, p. 64–66) pointed out that the Gault- expandingshelloccursonbothsidesofanequationforenergy Heitowit(1963)modelembeddedintheKiefferandSimonds (Equations28and32inKiefferandSimonds[1980]),andso (1980)modelproducedanoverlyrapidpressureattenuation. thethicknessoftheshelldoesnotneedtobespecified.Pressure Heattributedtheproblemto2assumptions:1)thattheinitial decaywithradialdistancefromthecrateriscalculatedfrom energy was assumed to be deposited in an expanding Hugoniotandreleaseadiabatproperties,withtheassumption hemisphereatthesite ofenergydeposition; and 2)thatthe that,fornon-porousandnon-volatilerocks,theHugoniotisan waste heat is probably overestimated by the assumptions adequateapproximationtothereleaseadiabat.Volumesinside abouttheHugoniotandreleaseadiabat.KiefferandSimonds specifiedisobarsarecalculatedtoobtainvolumesofvapor+ (1980) used a sphere, instead of a hemisphere, for energy melt.Incases where thehemisphere definedbytheisobars deposition,butthisdoesnotsolvetheproblempointedoutby extendsabovetheoriginaltargetsurface,thesegmentabovethe Melosh. In either an expanding sphere or hemisphere, the targetsurfaceissubtractedfromthetotalvolume(following attenuation varies with r3, which gives the overly steep standardprocedure;e.g.,Pierazzoetal.1997). attenuationoftheearliermodels. All steps in Kieffer and Simonds (1980) can then be Melosh pointed out that computer simulations were reproduced with the final result that the non-dimensional showing—and still show—that the initial energy of the pressuredecayversusnon-dimensionaldistanceis: meteoriteisdepositedinanexpandingshelloffinitethickness -1/n -1/n ratherthanahemisphereorasphere.Theenergydecayratein dX/dR={-3X+3X(Xn+1) +4/n-(4n)(Xn+1) - anexpandingshelldependsonlyonr2insteadofr3,andthus, +2/[n(1-n)][-1+(Xn+1)1 1/n]}* theoverlysteepattenuationintheearliermodelsisavoided. {R[1-(nX+1)-1/n+X(nX+1)-1-(1/n)]}-1 Weincorporatethisrevisionofassumptionsbelow. ModifyingtheGaultandHeitowitz(1963)formulation, whereX=P/K0,R=r/R0,Pispressure,risradialdistance 116 K.O.Popeetal.

fromthecenterofenergydeposition,R0istheradiusofthe dependence should be included if more sophisticated initialvolumeofenergydeposition,K0isthebulkmodulus, analyticalmodelsalongthislinearedeveloped. andnis thebulkmodulus derivativeofthetargetmaterial. Totestthisrevisedmodel,wecompareimpactsofdunite The form of this equation is the same as in Kieffer and projectiles intodunitetargets withcomputersimulations of Simonds (1980, Equation 34) with changes only in the shockmeltvolumes(Pierazzoetal.1997,theirTableVI,p. coefficients. 420). To directly compare results of this revised Kieffer- Other parts of the Kieffer and Simonds (1980) model SimondsmodelwiththePierazzoetal.(1997)results,itisfirst wereeitherkeptidenticalasdescribedorslightlymodifiedas necessary to find comparable equation-of-state parameters. noted here. Peak pressures are calculated from one- Pierazzoetal.(1997)usedanANEOSequation-of-state,while dimensional calculations ofpeak shock pressures for given KiefferandSimonds(1980)usedaBirch-Murnaghanequation impact conditions, (confirmed as a valid approximation by ofstate(toallowtheanalyticalformulation).Pierazzo(2001, Melosh[1989,p.63]andPierazzoetal.[1997,p.415]). privatecommunication)providedtheequivalentparametersto A depth of penetration as calculated by Kieffer and compare the ANEOS equation-of-state to the Birch- Simonds(1980)istakenasthecenterofenergydeposition. Murnaghanequation-of-state.Theparametersr(density),c(a This represents an oversimplification of a complex, time- constant),s(theslopeoftheaveragedshock-velocityparticle- dependent process that this analytic model cannot resolve. velocitycurves),K0(theeffectivebulkmodulus),andn(the The detailed computer simulations show that the energy bulkmoduluspressurederivative)are: deposition starts with formation of an isobaric core, somewhatsimilartotheconceptofavolumeofinitialenergy r=3.32gcm-3 depositionusedbyGaultandHeitowit(1963)andKiefferand c=6.6×105cms-1 Simonds(1980).Thedepthtotheisobariccore,anditsradius, s=0.86 12 -2 are functions of velocity. The Kieffer and Simonds (1980) K0=1.479×10 (dyncm ) model results tend to give a penetration depth somewhat n=4s-1=2.44 greater than calculated depths to the isobaric core of the computer simulations. However, the computer simulations SpecificisobarsarechosenintheKieffer-Simondsmodelto showthat,astheenergyispropagatedoutinan expanding represent boundaries between conditions of melting or shell,theisobarsdonotremaincenteredontheisobariccore vaporization upon release from those isobars. For the when, for example, melting conditions are obtained (for calculationpresentedhere,the140GPaisobarwaschosenfor example,seePierazzoetal.[1997,Fig.7]).Thespheresare meltingofdunite(approximatemid-pointbetweenincipient centered at depths as great as several km deeper than the [135GPa]and complete[149GPa]melting;Pierazzo etal. isobariccore.ThedepthofpenetrationcalculatedbyKieffer 1997,theirTableI).Thezoneofpartialmeltingissmalland, and Simonds (1980) gives a reasonable center for the compared to the other uncertainties in comparing the 2 expandingisobars,andsotheoriginalapproximationiskept models, should not be a large effect. The volume inside a here. spheredefinedbythe140GPaisobarminusanycapthatis Theonlyotherparameterchangedinthisrevisionisthe abovegroundzeroisassumedtoconsistofmelt+vapor.This ratiooftheradiusofthesphereofenergydepositiontothe volume is compared with the melt + vapor calculations of radiusofthemeteorite.IntheoriginalKiefferandSimonds Pierazzoetal.(1997),andthegoodagreementbetweenthe (1980) work, this ratio varied from 1–1.2 for relatively resultsisshowninTableA1. similar projectile/target properties to 1.9 for very different materials(ironimpactingice,forexample;Tables2a,2b,and TableA1.RevisedKieffer-Simondsmodel(KSM)results 2cinKiefferandSimonds[1980]),andtheparameterdidnot comparedtoPierazzoetal.(1997)(PVM)resultsofmelt+ showavelocitydependence.Examinationofthecalculations vaporvolume(Vm+v)forimpactvelocitiesof20km/sand oftheratiooftheisobariccoretothemeteoriteradiusmay 40km/s. 3 3 varyfromlessthan1togreaterthan1foridenticalmaterials Vm+v(km )at20km/s Vm+v(km )at40km/s (Pierazzo et al. 1997, Fig. 8) but clusters around 1 for the Projectile velocityrangeofinterest. Noworkis available tosee how diameter(km) KSM PVM KSM PVM this ratio varies for impacts of non-identical projectile and 0.2 0.02 0.02 0.06 0.09 targetcompositions,butclearly,thereisalotofscatterinthe 0.5 0.32 0.26 1.09 1.31 valuesfromthecomputersimulations.Thus,tosimplifythe 1 2.6 2.5 8.8 10.7 model,we have set this value to1for allsimulations. The 2 20.9 19.2 71.5 83.3 absolutevolumesofmeltcanchangebyasmuchasafactor 3 71 67 242 291 of 2 if this ratio is increased to, for example, 1.2, but the 4 168 163 576 698 calibrationdiscussedbelowsuggeststhatthearbitraryvalue 6 567 583 1,947 2,451 of 1.0 gives excellent results. A parametric study of this 10 2,631 2,935 9,034 10,918