Mechanics of Cellular Bone Remodeling

Total Page:16

File Type:pdf, Size:1020Kb

Mechanics of Cellular Bone Remodeling Qin Biomedical Engineering Research on bone remodeling has resulted in much new information and has led to improvements in design and biomedical practices. Mechanics of Cellular Bone Remodeling: Coupled Thermal, Electrical, and Mechanical Field Remodeling Bone Cellular of Mechanics Mechanics of Cellular Effects presents a unified exploration of recent advances, giving readers a sound understanding of bone remodeling and its mathematical representation. Beginning with a description of the basic concept of bone remodeling from a Bone Remodeling mathematical point of view, the book details the development of each of the techniques and ideas. From there it progresses to the derivation and construction of multifield and cellular bone remodeling and shows how they arise naturally Coupled Thermal, Electrical, in response to external multifield loads. Topics include: and Mechanical Field Effects • Fundamental concepts and basic formulations for bone remodeling • Applications of formulations to multifield internal bone remodeling of inhomogeneous long cylindrical bone • Theory and solution of multifield surface bone remodeling • A hypothetical regulation mechanism on growth factors for bone modeling and remodeling under multifield loading • The RANK–RANKL–OPG pathway and formulation for analyzing the bone remodeling process • A model of bone cell population dynamics for cortical bone remodeling under mechanical and pulsed electromagnetic stimulus • Recent developments in experiments with bone materials Readers will benefit from the thorough coverage of general principles for each topic, followed by detailed mathematical derivations and worked examples, as well as tables and figures where appropriate. The book not only serves as a reliable reference but is also destined to attract interested readers and researchers to a field that offers fascinating and technologically important challenges. Qing-Hua Qin K16026 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4665-6416-9 711 Third Avenue New York, NY 10017 90000 an informa business 2 Park Square, Milton Park www.taylorandfrancisgroup.com Abingdon, Oxon OX14 4RN, UK 9 781466 564169 www.crcpress.com K16026 cvr mech.indd 1 11/8/12 8:27 AM Mechanics of Cellular Bone Remodeling Coupled Thermal, Electrical, and Mechanical Field Effects Mechanics of Cellular Bone Remodeling Coupled Thermal, Electrical, and Mechanical Field Effects Qing-Hua Qin CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120823 International Standard Book Number-13: 978-1-4665-6417-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my wife, Yi Xiao, and my daughter, Shirley Qin, for filling my life with love and joy. Contents Preface ......................................................................................................................xi The Author ........................................................................................................... xiii 1. Introduction to Bone Materials ...................................................................1 1.1 Introduction ...........................................................................................1 1.2 Types of Bones .......................................................................................1 1.2.1 Bone Types Based on the Macroscopic Approach ..............1 1.2.2 Bone Types Based on Microscopic Observation ..................3 1.2.3 Bone Types Based on Geometric Shape ................................3 1.3 Bone Functions ......................................................................................7 1.4 Bone Cells ...............................................................................................9 1.5 Osteoporosis ........................................................................................12 1.6 Bone Metabolism ................................................................................. 14 1.6.1 Parathyroid Hormone (PTH)................................................ 15 1.6.2 Vitamin D ................................................................................ 16 1.6.3 Calcitonin ................................................................................ 16 1.6.4 Insulin-Like Growth Factor .................................................. 17 1.6.5 Transforming Growth Factor ............................................... 17 1.6.6 Platelet-Derived Growth Factor ........................................... 18 1.6.7 Fibroblast Growth Factor ...................................................... 19 1.7 Introduction to Bone Remodeling .................................................... 19 References .......................................................................................................22 2. Basic Bone Remodeling Theory .................................................................25 2.1 Introduction .........................................................................................25 2.2 Adaptive Elastic Theory .....................................................................25 2.2.1 Two Kinds of Bone Remodeling ..........................................26 2.2.2 Surface Bone Remodeling .....................................................28 2.2.3 Internal Bone Remodeling ....................................................29 2.3 A Simple Theory of Surface Bone Remodeling .............................. 31 2.3.1 Basic Equations of the Theory .............................................. 31 2.3.2 Bone Remodeling of Diaphysial Surfaces ..........................33 2.3.3 Extension to Poroelastic Bone with Fluid ...........................36 2.4 A Simple Theory of Internal Bone Remodeling .............................40 2.4.1 Internal Remodeling Induced by Casting a Broken Femur ......................................................................40 2.4.2 Extension to Poroelastic Bone with Fluid ...........................42 References .......................................................................................................49 vii viii Contents 3. Multifield Internal Bone Remodeling ......................................................53 3.1 Introduction .........................................................................................53 3.2 Linear Theory of Thermoelectroelastic Bone..................................54 3.3 Analytical Solution of a Homogeneous Hollow Circular Cylindrical Bone ..................................................................................55 3.4 Semianalytical Solution for Inhomogeneous Cylindrical Bone Layers ..........................................................................................60 3.5 Internal Surface Pressure Induced by a Medullar Pin ..................64 3.6 Numerical Examples ..........................................................................66 3.6.1 A Hollow, Homogeneous Circular Cylindrical Bone Subjected to Various External Loads ........................ 67 3.6.2 A Hollow, Inhomogeneous Circular Cylindrical Bone Subjected to External Loads .......................................72 3.7 Extension to Thermomagnetoelectroelastic Solid ..........................72 References .......................................................................................................79 4. Multifield Surface Bone Remodeling .......................................................83 4.1 Introduction .........................................................................................83 4.2 Solution of Surface Modeling for a Homogeneous Hollow Circular Cylindrical Bone ..................................................................83 4.2.1 Rate Equation
Recommended publications
  • Regenerative Medicine for the Reconstruction of Hard Tissue Defects in Oral and Maxillofacial Surgery
    http://dx.doi.org/10.5125/jkaoms.2012.38.2.69 EDITORIAL pISSN 2234-7550·eISSN 2234-5930 Regenerative medicine for the reconstruction of hard tissue defects in oral and maxillofacial surgery Young-Kyun Kim, D.D.S., PhD., Editor-in-Chief of JKAOMS Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea As the most ideal bone graft material to reconstruct hard been published since long ago. tissue with defects, autogenous bone provides excellent bone Since 1965 when Urist3 suggested the concept of osteoin- healing capacity in terms of osteogenesis, osteoinduction, and du ction by bone morphogenic protein (BMP) in cortical osteoconduction. Note, however, that patients and clinicians bone, many researchers have attempted to extract BMP tend to avoid using it due to problems including limited from teeth or osseous tissue for application in clinical amount and donor site complications. As a result, allograft, situations. Note, however, that the extraction of a sufficient xenograft, and alloplastic material (synthetic bones) were amount and application in clinical situations were very developed and applied in clinical surgeries for a long time, difficult4-6. Nonetheless, various BMPs (recombinant human yet they do not have the same bone healing capacity as that BMP, rhBMP) have been recently manufactured by gene of autogenous bone1. recombination based on the cell of mammals or colon In the early stage, hydroxyapatite-type synthetic bone bacillus7-9. was used frequently for ridge augmentation to maintain full Growth factor is very important in bony remodeling and denture and for the reconstruction of tissue with defects healing because it significantly influences the activity of after cyst enucleation.
    [Show full text]
  • Craniomaxillofacial Bone Tissue Engineering – a Translational Approach
    Craniomaxillofacial Bone Tissue Engineering – A Translational Approach by Ahmed Abushahba Clinicum, Faculty of Medicine, University of Helsinki, Finland Doctoral Programme in Oral Sciences (FINDOS) Doctoral School in Health Sciences University of Helsinki ACADEMIC DISSERTATION Doctoral thesis, to be presented, with the permission of the Faculty of Medicine of the University of Helsinki, for public examination in Lecture Hall 2, Biomedicum Helsinki 1, Haartmaninkatu 8, Helsinki, on July 23rd 2021, at 12:00 pm The research was conducted at The Department of Oral and Maxillofacial Diseases Clinicum, Faculty of Medicine University of Helsinki, Finland Doctoral Programme in Oral Sciences (FINDOS), Helsinki SUPERVISORS Professor Riitta Seppänen-Kaijansinkko Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital Helsinki, Finland Docent Bettina Mannerström Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital Helsinki, Finland REVIEWERS Professor Sean Peter Edwards Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry Michigan, USA Adjunct Professor Niko Moritz Department of Clinical Medicine, Institute of Dentistry, University of Turku Turku, Finland OPPONENT Professor Dr. Dr. Henning Schliephake Department of Oral and Maxillofacial Surgery, the Georg August University of Göttingen Göttingen, Germany The Faculty of Medicine uses the Urkund system (plagiarism recognition) to examine all doctoral dissertations. Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis, series No. 40/2021 ISBN 978-951-51-7406-2 (paperback) ISBN 978-951-51-7407-9 (PDF) ISSN 2342-3161 (print) ISSN 2342-317X (online) http://ethesis.helsinki.fi Unigrafia Helsinki 2021 In memory of my beloved Father, to Gamal Taha Abushahba, I dedicate this work, ABSTRACT Bone tissue engineering (BTE) has shown a great promise in providing the next generation medical bioimplants for treating bone defects.
    [Show full text]
  • The Unknown Process Osseointegration
    biology Editorial The Unknown Process Osseointegration Nansi López-Valverde , Javier Flores-Fraile and Antonio López-Valverde * Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; [email protected] (N.L.-V.); j.fl[email protected] (J.F.-F.) * Correspondence: [email protected] Received: 3 July 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Although it was already described more than fifty years ago, there is yet no in-depth knowledge regarding the process of osseointegration as far as its mechanism of action is concerned. It could be one of the body’s ways of reacting to a foreign body, where the individual’s immune response capacity is involved. It is known that the nervous system has an impact on bone health and that the role of the autonomic nervous system in bone remodeling is an attractive field for current research. In the future, immuno/neuromodulatory techniques will open new and exciting lines of research. Keywords: osseointegration; foreign-body reaction; bone remodeling; immuno/neuromodulatory techniques Although the process of osseointegration was first described by Brånemark and colleagues [1], 50 years later, the real mechanism of this process, remains unknown and has not been studied in depth. The model proposed by Koka and Zarb marked genetics as one of the patient’s inherent variables, necessary, to achieve “sufficient” and lasting results [2]. Among the proposed theories, two have acquired particular interest: “foreign-body reaction”, which interprets osseointegration from the point of view of adverse immune processes [3]; and the so-called by certain authors “brain-bone axis” theory [4].
    [Show full text]
  • Bone Graft Substitutes for the Promotion of Spinal Arthrodesis
    Neurosurg Focus 10 (4):Article 4, 2001, Click here to return to Table of Contents Bone graft substitutes for the promotion of spinal arthrodesis GREGORY A. HELM, M.D., PH.D., HAYAN DAYOUB, M.D., AND JOHN A. JANE, JR., M.D. Departments of Neurosurgery and Biomedical Engineering, University of Virginia, Charlottesville, Virginia In the prototypical method for inducing spinal fusion, autologous bone graft is harvested from the iliac crest or local bone removed during the spinal decompression. Although autologous bone remains the “gold standard” for stimulat- ing bone repair and regeneration, modern molecular biology and bioengineering techniques have produced unique materials that have potent osteogenic activities. Recombinant human osteogenic growth factors, such as bone mor- phogenetic proteins, transforming growth factor–␤, and platelet-derived growth factor are now produced in highly con- centrated and pure forms and have been shown to be extremely potent bone-inducing agents when delivered in vivo in rats, dogs, primates, and humans. The delivery of pluripotent mesenchymal stem cells (MSCs) to regions requiring bone formation is also compelling, and it has been shown to be successful in inducing osteogenesis in numerous pre- clinical studies in rats and dogs. Finally, the identification of biological and nonbiological scaffolding materials is a crucial component of future bone graft substitutes, not only as a delivery vehicle for bone growth factors and MSCs but also as an osteoconductive matrix to stimulate bone deposition directly. In this paper, the currently available bone graft substitutes will be reviewed and the authors will discuss the novel therapeutic approaches that are currently being developed for use in the clinical setting.
    [Show full text]
  • View Printable PDF Document
    Dietary Supplement Use in the Elderly January 14-15, 2003 Overview Natcher Auditorium Natcher Conference Center, Building 45 Bethesda, MD 20892 Dietary supplements, as sold in the United States, encompass a wide range of products, which include vitamins, minerals, amino acids, herbs, botanicals, and other substances. The frequency of use of dietary supplements among the elderly is high compared with the general population. According to results from the Third National Health and Nutrition Examination Survey conducted between 1988 and 1994, 56% of middle age and older adults consumed at least one supplement on a daily basis as compared with 40% in the general population. In 2001, the Nutrition Business Journal estimated the total sales of dietary supplements at $17.8 billion dollars. The amount of scientific evidence supporting the safety and benefits of dietary supplements among the elderly varies according to the nature and form of the supplement. For certain supplements, e.g., vitamins and minerals, recommended levels of use in the elderly have been established by the Institute of Medicine. All supplements are not safe, and the inappropriate use of some supplements can result in adverse health consequences. Inconsistencies arise as a result of a lack of product standards and the level of scientific evidence required to demonstrate safety and benefits of dietary supplements. Concerns exist regarding supplement use in the elderly population. One concern, relates to the use of prescription drugs and their interactions with dietary supplements. Additional concerns are the potential adverse effects due to perisurgical complications, interactions with over-the-counter medications, contamination of preparations, and mislabeling.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Insulin-Like Growth Factor-Binding Protein-5 Inhibits Growth and Induces Differentiation of Mouse Osteosarcoma Cells
    Biochemical and Biophysical Research Communications 288, 435–442 (2001) doi:10.1006/bbrc.2001.5785, available online at http://www.idealibrary.com on Insulin-like Growth Factor-Binding Protein-5 Inhibits Growth and Induces Differentiation of Mouse Osteosarcoma Cells Marlon R. Schneider,*,1 Rui Zhou,* Andreas Hoeflich,* Ottheinz Krebs,* Jo¨rg Schmidt,† Subburaman Mohan,‡ Eckhard Wolf,* and Harald Lahm* *Institute of Molecular Animal Breeding, Gene Center of the Ludwig-Maximilian University, Munich, Germany; †Department of Comparative Medicine, National Research Center for Environment and Health, Neuherberg, Germany; and ‡Musculoskeletal Disease Center, Jerry L. Pettis Veterans Administration, Loma Linda, California 92357 Received September 11, 2001 The insulin-like growth factors (IGF-I and IGF-II) The precise role of insulin-like growth factor-binding are recognized stimulators of cellular growth and dif- protein-5 (IGFBP-5) in regulating the growth of tumor ferentiation in several tissues (1). These effects are cells, especially of bone-derived malignant cells, is not regulated systemically and locally by a group of six well understood. We have investigated the biological ac- structurally related proteins designated IGF-binding tivity of IGFBP-5 by transfecting OS/50-K8 mouse osteo- proteins (IGFBP-1 to -6) which have affinities for IGFs sarcoma cells with an expression vector containing the comparable to that of the type I IGF receptor. Although osteocalcin promoter and the complete mouse IGFBP-5 structurally related, each IGFBP has an individual cDNA (OC-IGFBP-5). Overexpression of IGFBP-5 mRNA expression pattern and exerts different functions in- and secretion of increased amounts of bioactive protein cluding stimulation or inhibition of IGF-bioactivity as in conditioned media were demonstrated in different well as IGF-independent actions (2, 3).
    [Show full text]
  • Ep 0496813 B1
    Europaisches Patentamt European Patent Office © Publication number: 0 496 81 3 B1 Office europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 14.12.94 © Int. CI.5: A61 K 9/127, C07F 9/1 0, C08G 63/68 © Application number: 90916409.7 @ Date of filing: 19.10.90 © International application number: PCT/US90/06034 © International publication number: WO 91/05545 (02.05.91 91/10) The file contains technical information submitted after the application was filed and not included in this specification (54) LIPOSOME MICRORESERVOIR COMPOSITION AND METHOD. ® Priority: 20.10.89 US 425224 © Proprietor: LIPOSOME TECHNOLOGY, INC. 1050 Hamilton Court @ Date of publication of application: Menlo Park, CA 94025 (US) 05.08.92 Bulletin 92/32 @ Inventor: MARTIN, Frank, J. © Publication of the grant of the patent: 415 West Portal Avenue 14.12.94 Bulletin 94/50 San Francisco, CA 94127 (US) Inventor: WOODLE, Martin, C. © Designated Contracting States: 445 Oak Grove 3 AT BE CH DE DK FR GB IT LI LU NL SE Menlo Park, CA 94025 (US) Inventor: REDEMANN, Carl References cited: 3144 Ebano Drive EP-A- 0 072 111 EP-A- 0 118 316 Walnut Creek, CA 94598 (US) EP-A- 0 354 855 WO-A-88/04924 Inventor: RADHAKRISHNAN, Ramachandran WO-A-90/04384 GB-A- 2 185 397 4335 Cambria Street Fremont, CA 94538 (US) Patent Abstracts of Japan, vol. 13, no. 592 Inventor: YAU-YOUNG, Annie 00 (C-671)(3940), 26 December 1989, & JP-A- 4162 Crosby Place 1249717 (Fuji Photo Film Co., Ltd.) 5 October Palo Alto, CA 94306 (US) CO 1989 00 CO Oi Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,383,114 B2 Sloey Et Al
    USOO8383114B2 (12) United States Patent (10) Patent No.: US 8,383,114 B2 Sloey et al. (45) Date of Patent: Feb. 26, 2013 (54) PHARMACEUTICAL FORMULATIONS 6,919,426 B2 7/2005 Boone et al. 7,030,226 B2 4/2006 Sun et al. (75) Inventors: Christopher J. Sloey, Newbury Park, 7,084.2457,037.498 B2 8/20065, 2006 CohenHolmes et et al. al. CA (US); Camille Vergara, Calabasas, 7,153,507 B2 12/2006 van de Winkel et al. CA (US); Jason Ko. Thousand Oaks, CA 7,217,689 B1 5/2007 Elliott et al. (US); Tiansheng Li, Newbury Park, CA 7,220,410 B2 5/2007 Kim et al. (US) 2002/0155998 A1 10/2002 Young et al. 2002/01992 13 A1 12/2002 Tomizuka et al. 2003/0023586 A1 1/2003 Knorr (73) Assignee: Amgen Inc., Thousand Oaks, CA (US) 2003, OO31667 A1 2/2003 Deo et al. - 2003, OO77753 A1 4, 2003 Tischer (*) Notice: Subject to any disclaimer, the term of this 2003/0082749 A1 5/2003 Sun et al. patent is extended or adjusted under 35 2003/01 18592 A1 6/2003 Ledbetter et al. U.S.C. 154(b) by 0 days. 2003/0.133939 A1 7/2003 Ledbetter et al. 2003. O138421 A1 7/2003 van de Winkel et al. 2003.0143202 A1 7/2003 Binley et al. (21) Appl. No.: 12/680,128 2003/0194404 A1 10, 2003 Greenfeder et al. 2003. O19515.6 A1 10, 2003 Minet al. (22) PCT Filed: Sep. 29, 2008 2003/0215444 A1 11/2003 Elliott 2003,0229023 A1 12/2003 Oliner et al.
    [Show full text]
  • Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-Derived Osteoblasts
    This is a repository copy of Comparison of the anabolic effects of reported osteogenic compounds on human mesenchymal progenitor-derived osteoblasts. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/156356/ Version: Published Version Article: Owen, R., Bahmaee, H., Claeyssens, F. orcid.org/0000-0002-1030-939X et al. (1 more author) (2020) Comparison of the anabolic effects of reported osteogenic compounds on human mesenchymal progenitor-derived osteoblasts. Bioengineering, 7 (1). 12. https://doi.org/10.3390/bioengineering7010012 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Article Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts Robert Owen 1,2,3,*,†, Hossein Bahmaee 1,2,†, Frederik Claeyssens 1,2 and Gwendolen C. Reilly 1 1 Department of Materials Science and Engineering, INSIGNEO Institute for in silico medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; [email protected] (H.B); [email protected] (F.C.); [email protected] (G.C.R.) 2 Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK 3 Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK * Correspondence: [email protected] † Co-first authors.
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Estrogen Receptor-Α in Osteocytes Is Important for Trabecular Bone Formation in Male Mice
    Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice Sara H. Windahla, Anna E. Börjessona, Helen H. Farmana, Cecilia Engdahla,Sofia Movérare-Skrtica, Klara Sjögrena, Marie K. Lagerquista, Jenny M. Kindbloma, Antti Koskelab, Juha Tuukkanenb, Paola Divieti Pajevicc, Jian Q. Fengd, Karin Dahlman-Wrighte, Per Antonsone, Jan-Åke Gustafssone,f,1,2, and Claes Ohlssona,1,2 aDepartment of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; bDepartment of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu 90014, Finland; cDepartment of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114; dDepartment of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246; eDepartment of Biosciences and Nutrition and Center for Biosciences at Novum, Karolinska Institutet, 141 83 Huddinge, Sweden; and fCenter for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Houston, TX 77204 Contributed by Jan-Åke Gustafsson, December 4, 2012 (sent for review October 25, 2012) The bone-sparing effect of estrogen in both males and females is in osteoclasts is crucial for trabecular bone in females, but it is primarily mediated via estrogen receptor-α (ERα), encoded by the dispensable for trabecular bone in male mice and for cortical Esr1 gene. ERα in osteoclasts is crucial for the trabecular bone- bone in both males and females. However, not only osteoclasts sparing effect of estrogen in females, but it is dispensable for but also osteoblasts/osteocytes express ERs (15–17).
    [Show full text]