Collision-Based Computing Springer-Verlag London Ltd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elementary Gates for Quantum Computation
Elementary gates for quantum computation Adriano Barenco Charles H. Bennett Richard Cleve y z Oxford University IBM Research University of Calgary David P. DiVincenzo Norman Margolus Peter Shor x { y IBM Research MIT AT&T Bell Labs Tycho Sleator John Smolin Harald Weinfurter yy k UCLA Univ. of Innsbruck New York Univ. submitted to Physical Review A, March 22, 1995 (AC5710) Abstract We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Bo olean values (x; y )to(x; x y )) is universal in the sense that all unitary op erations on arbitrarily many bits n n (U(2 )) can b e expressed as comp ositions of these gates. Weinvestigate the numb er of the ab ove gates required to implement other gates, such as gener- alized Deutsch-To oli gates, that apply a sp eci c U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satis ed. These gates play a central role in many prop osed constructions of quantum com- putational networks. We derive upp er and lower b ounds on the exact number Clarendon Lab oratory, Oxford OX1 3PU, UK; [email protected]. y Yorktown Heights, New York, NY 10598, USA; b ennetc/[email protected]. z Department of Computer Science, Calgary, Alb erta, Canada T2N 1N4; [email protected]. x Lab oratory for Computer Science, Cambridge MA 02139 USA; [email protected]. -
HUI What Is a Digital Object Metaphilosophy.Pdf
bs_bs_banner © 2012 The Author Metaphilosophy © 2012 Metaphilosophy LLC and Blackwell Publishing Ltd Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK, and 350 Main Street, Malden, MA 02148, USA METAPHILOSOPHY Vol. 43, No. 4, July 2012 0026-1068 WHAT IS A DIGITAL OBJECT? YUK HUI Abstract: We find ourselves in a media-intensive milieu comprising networks, images, sounds, and text, which we generalize as data and metadata. How can we understand this digital milieu and make sense of these data, not only focusing on their functionalities but also reflecting on our everyday life and existence? How do these material constructions demand a new philosophical understand- ing? Instead of following the reductionist approaches, which understand the digital milieu as abstract entities such as information and data, this article pro- poses to approach it from an embodied perspective: objects. The article contrasts digital objects with natural objects (e.g., apples on the table) and technical objects (e.g., hammers) in phenomenological investigations, and proposes to approach digital objects from the concept of “relations,” on the one hand the material relations that are concretized in the development of mark-up languages, such as SGML, HTML, and XML, and on the other hand, Web ontologies, the temporal relations that are produced and conditioned by the artificial memories of data. Keywords: digital objects, phenomenology, metadata, Stiegler, Simondon. In this article I attempt to outline what I call digital objects, showing that a philosophical investigation is necessary by revisiting the history of philosophy and proposing that it is possible to develop a philosophy of digital objects. -
Quantum Mechanics Digital Physics
Quantum Mechanics_digital physics In physics and cosmology, digital physics is a collection of theoretical perspectives based on the premise that the universe is, at heart, describable byinformation, and is therefore computable. Therefore, according to this theory, the universe can be conceived of as either the output of a deterministic or probabilistic computer program, a vast, digital computation device, or mathematically isomorphic to such a device. Digital physics is grounded in one or more of the following hypotheses; listed in order of decreasing strength. The universe, or reality: is essentially informational (although not every informational ontology needs to be digital) is essentially computable (the pancomputationalist position) can be described digitally is in essence digital is itself a computer (pancomputationalism) is the output of a simulated reality exercise History Every computer must be compatible with the principles of information theory,statistical thermodynamics, and quantum mechanics. A fundamental link among these fields was proposed by Edwin Jaynes in two seminal 1957 papers.[1]Moreover, Jaynes elaborated an interpretation of probability theory as generalized Aristotelian logic, a view very convenient for linking fundamental physics withdigital computers, because these are designed to implement the operations ofclassical logic and, equivalently, of Boolean algebra.[2] The hypothesis that the universe is a digital computer was pioneered by Konrad Zuse in his book Rechnender Raum (translated into English as Calculating Space). The term digital physics was first employed by Edward Fredkin, who later came to prefer the term digital philosophy.[3] Others who have modeled the universe as a giant computer include Stephen Wolfram,[4] Juergen Schmidhuber,[5] and Nobel laureate Gerard 't Hooft.[6] These authors hold that the apparentlyprobabilistic nature of quantum physics is not necessarily incompatible with the notion of computability. -
There's Plenty of Boole at the Bottom: a Reversible CA Against
Minds & Machines DOI 10.1007/s11023-016-9401-6 There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy 1 2 Francesco Berto • Jacopo Tagliabue • Gabriele Rossi3 Received: 11 May 2016 / Accepted: 19 September 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract ‘‘There’s Plenty of Room at the Bottom’’, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final states. On the other hand, as von Neumann already conjectured, irreversible information processing is expensive: to erase a single bit of information costs *3 9 10-21 joules at room temperature. Information entropy is a thermodynamic cost, to be paid in non-computational energy dissipation. This paper addresses the problem drawing on Edward Fredkin’s Finite Nature hypothesis: the ultimate nature of the universe is discrete and finite, satisfying the axioms of classical, atomistic mereology. The chosen model is a cellular automaton (CA) with reversible dynamics, capable of retaining memory of the information present at the beginning of the universe. Such a CA can implement the Boolean logical operations and the other building bricks of computation: it can develop and host all-purpose computers. -
Tommaso TOFFOLI [email protected] Research Affiliate Work: (617) 353-9846 Boston University Home: (617) 410-7138 Electrical and Computer Engineering
Tommaso TOFFOLI [email protected] Research Affiliate work: (617) 353-9846 Boston University home: (617) 410-7138 Electrical and Computer Engineering Curriculum Vitae Affiliate Member 15 Oct 2020 formerly Principal Research Scientist (1977–1995) Massachusetts Institute of Technology Laboratory for Computer Science (now csail) IEEE Fellow, Oct 2012 PhD in Computer and Communication Sciences The University of Michigan, Oct 1977 Doctor of Physics University of Rome, Italy, Feb 1967 INTERESTS AND EXPERTISE. ACHIEVEMENTS Information Mechanics. Foundations and physical aspects of computing. Theory of cellular automata. Interconnection complexity, synchronization. Formal models of computation consistent with microscopical physics (uniformity, locality, reversibility, inertia and other conservation principles, variational, relativistic, and quantum aspects of computation). Proved the computation-universality of invertible cellular automata (1977); formulated the conjecture (later proved by Kari) that all invertible cellular automata are structurally invertible (1990). Introduced the “Toffoli gate” (1981), which was later adopted by Feynman and others as a fundamental logic primitive for quantum computation. Proposed, with Fredkin, the first concrete charge- conserving scheme for computation (1980)—an idea that has been taken up by the low-power industry in recent years. Proved that dissipative cellular automata algorithms can be replaced by nondissipative lattice- gas algorithms (2006–2009). Advances in quantum information theory and thermodynamics (2006–2010). Fungibility of bulk computation; connections between lagrangian action and computation capacity (1998–). Fine-grained architectures for massively parallel computation. Pioneering work on cellular au- tomata machines: design, realization, support, and applications (1982). Development and realization (with Norman Margolus) of cam8, a fine-grained, indefinitely scalable multiprocessor architecture which embodies the concept of programmable matter (1987–1993). -
There's Plenty of Boole at the Bottom: a Reversible CA Against Information Entropy
UvA-DARE (Digital Academic Repository) There's Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy Berto, F.; Tagliabue, J.; Rossi, G. DOI 10.1007/s11023-016-9401-6 Publication date 2016 Document Version Final published version Published in Minds and Machines License CC BY Link to publication Citation for published version (APA): Berto, F., Tagliabue, J., & Rossi, G. (2016). There's Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy. Minds and Machines, 26(4), 341-357. https://doi.org/10.1007/s11023-016-9401-6 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Minds & Machines (2016) 26:341–357 DOI 10.1007/s11023-016-9401-6 There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy 1 2 Francesco Berto • Jacopo Tagliabue • Gabriele Rossi3 Received: 11 May 2016 / Accepted: 19 September 2016 / Published online: 6 October 2016 Ó The Author(s) 2016. -
Quantum Cellular Automata
Quantum Cellular Automata by Bassam Aoun & Mohamad Tarifi ABSTRACT We provide an introduction to Quantum Cellular Automata. 2 ACKNOWLEDGEMENTS We acknowledge our friend Carlos for extremely useful conversations and his good sense of humor! We acknowledge Prof. Michel Mosca for his excellent course that introduced and hooked us to Quantum Information Processing. We also acknowledge University of Waterloo for being a good host. 3 CO NTENTS Abstract .......................................................................................................................... 2 Acknowledgements....................................................................................................... 3 Contents ......................................................................................................................... 4 1. Introduction............................................................................................................... 5 2. Brief Overview of Quantum Mechanics............................................................... 6 2.1 The beam splitter experiment ........................................................................... 6 2.2 Quantum Mechanics Postulates ....................................................................... 8 2.3 Quantum Bits .................................................................................................... 10 2.4 Quantum Computing ....................................................................................... 14 2.5 Qunautm Algorithm........................................................................................ -
Digital Mechanics
Working Draft Do not Circulate Working Draft Digital Mechanics Edward Fredkin Carnegie Mellon University Digital Mechanics DM-Book5c.doc 1 © December, 2000 Ed Fredkin Moskito Island, BVI Working Draft Do not Circulate Working Draft Preface The Amazing Glorious Gift Somehow, when I was still a child, I was given a wondrous gift. I don’t know how or why; I didn’t even understand or appreciate it for decades. Neither did I realize that, apparently, this gift was given only to me. As the vast implications began to filter into my consciousness, my first reaction was to try to share my gift; but it was not to be. The pieces first started to fall into place some 20 years later, about 1960. Since then I have been able to glimpse and learn more and more about something unknown to others. Over many years this vision slowly transitioned from totally murky to almost clear in certain directions. Puzzling aspects have loomed like great glaciers, which only revealed their secrets as they quietly melted away. But still, even stranger than the Gift itself, is the fact that it has remained mine alone for all these years. I never ever thought to keep it a secret. In fact I sort ran to the rooftops and shouted to all who might listen "…maybe this is it, this could be how things work…" but no one has ever understood what I was trying to say. My reaction was always strange. I knew how beautiful it was yet I never had any concern for all those who couldn’t understand. -
Master Thesis
MASTER THESIS The Demon and the Abacus An analysis, critique, and reappreciation of digital physics Supervisors: Author: Dr. Ir. F.A. Bakker P.M.N. Sonnemans Prof. N.P. Landsman 4738799 June 11, 2020 Scriptie ter verkrijging van de graad “Master of arts” in de filosofie Radboud Universiteit Nijmegen ii Hierbij verklaar en verzeker ik, P.M.N. Sonnemans, dat deze scriptie zelfstandig door mij is opgesteld, dat geen andere bronnen en hulpmiddelen zijn gebruikt dan die door mij zijn vermeld en dat de passages in het werk waarvan de woordelijke inhoud of betekenis uit andere werken – ook elektronische media – is genomen door bronvermelding als ontlening kenbaar gemaakt worden. Plaats: datum: Abstract Digital physics (also referred to as digital philosophy) has a broad spectrum of theories that involve information and computation related alternatives to regular physics. This thesis provides an overview of the main branches of thought and theories in this field. The main claims that computation is either the ontological foundation of the universe or a useful way of describing the universe are critiqued on a philosophical level. Yet an effort is made to reappreciate the ideas in digital philosophy, especially in the way this approach can lead to a better understanding of the limitations of physics as it is constrained by formalization, computability, and epistemology. ii iii Contents Introduction3 1 Digital Physics: An Overview5 1.1 Konrad Zuse: The principles of Digital Physics.................6 1.2 Jürgen Schmidhuber: Applying computer science................9 1.3 Edward Fredkin: Proving pancomputationalism................. 11 1.4 Max Tegmark: Everything is mathematical.................... 15 1.5 John Archibald Wheeler: Its and bits...................... -
From Prespace Metaphysics to Discrete Quantum Mechanics
The Computable Universe: From Prespace Metaphysics to Discrete Quantum Mechanics Martin Leckey B.Sc. (Hons.), M.A. Submitted for the degree of Doctor of Philosophy Philosophy Department, Monash University October 1997 arXiv:1807.10826v1 [quant-ph] 30 Jun 2018 Contents Contents iii List of Figures vi Abstract vii Statement of Originality ix Acknowledgments xi 1 Introduction 1 2 Spaces, Causation, and Reality 7 2.1 Introduction . 7 2.2 Substantivalism, relationism, and the property view . 8 2.3 Spaces and perception . 8 2.4 Spaces and reality . 11 2.5 Spaces as property spaces . 12 2.6 Spaces and causation . 23 2.7 Space-time and causation . 26 2.8 Properties and laws . 26 2.9 Spaces and reduction . 28 2.10 Configuration space, phase space and logical space . 30 2.11 Quantum mechanics . 32 2.12 The wave function and reality . 36 2.13 Conclusion . 39 3 Prespace and Cellular Automata 43 3.1 Introduction . 43 3.2 Building the universe . 46 3.2.a UM1|Solipsistic dualism . 46 3.2.b UM2|Strong dualism . 47 iii Contents 3.2.c UM3|Materialism . 48 3.3 Cellular automata and discrete physics . 49 3.4 Functionalism . 52 3.5 Position and causation . 54 3.6 Mechanism . 56 3.7 Monism . 58 3.8 Spinoza . 58 3.9 Leibniz . 59 3.10 Kant . 60 3.11 Holism . 60 3.12 Relativity . 61 3.13 Computational heuristic principle . 62 3.14 Weak dualism . 64 3.15 Theism . 64 3.16 Conclusion . 67 4 Quantum Mechanics and Discrete Physics 69 4.1 Introduction . -
Programmingtheuniverse File:///C|/Lloyd-Programminguniverse/1
ProgrammingtheUniverse file:///C|/Lloyd-ProgrammingUniverse/1.htm10/07/2007 15:28:55 ProgrammingtheUniverse THIS IS A BORZOI BOOK PUBLISHED BY ALFRED A. KNOPF Copyright © 2006 by Seth Lloyd All rights reserved. Published in the United States by Alfred A. Knopf, a division of Random House, Inc., New York, and in Canada by Random House of Canada Limited, Toronto. www.aaknopf.com Knopf, Borzoi Books, and the colophon are registered trademarks of Random House, Inc. Library of Congress Cataloging-in-Publication Data Lloyd, Seth, [date] Programming the universe : a quantum computer scientist takes on the cosmos / by Seth Lloyd. p. cm. eISBN-13: 978-0-307-26471-8 eISBN-10: 0-307-26471-8 1. Quantum theory—Mathematical models. 2. Microcomputers—Programming. 3. Quantum computers. I. Title. QC174.12.L57 2006 530.12—dc22 2005050408 v1.0 file:///C|/Lloyd-ProgrammingUniverse/2.htm10/07/2007 15:28:56 ProgrammingtheUniverse To Eve file:///C|/Lloyd-ProgrammingUniverse/3.htm10/07/2007 15:28:56 ProgrammingtheUniverse Contents Title Page Dedication Prologue: The Apple and the Universe PART ONE: THE BIG PICTURE CHAPTER ONE: Introduction CHAPTER TWO: Computation CHAPTER THREE: The Computational Universe PART TWO: A CLOSER LOOK CHAPTER FOUR: Information and Physical Systems CHAPTER FIVE: Quantum Mechanics CHAPTER SIX: Atoms at Work CHAPTER SEVEN: The Universal Computer CHAPTER EIGHT: Complexity Simplified Personal Note: The Consolation of Information Acknowledgments Further Reading A Note About the Author Copyright file:///C|/Lloyd-ProgrammingUniverse/4.htm (1 of 2)10/07/2007 15:28:56 ProgrammingtheUniverse file:///C|/Lloyd-ProgrammingUniverse/4.htm (2 of 2)10/07/2007 15:28:56 ProgrammingtheUniverse PROLOGUE The Apple and the Universe “In the beginning was the bit,” I began. -
Arxiv:1905.07527V1 [Cs.GL] 18 May 2019
Brief Notes and History Computing in Mexico during 50 years∗ Genaro J. Mart´ınez1;2, Juan C. Seck-Tuoh-Mora3 Sergio V. Chapa-Vergara4, Christian Lemaitre 5 May 21, 2019 1 Escuela Superior de C´omputo,Instituto Polit´ecnicoNacional, M´exico. 2 Unconventional Computing Lab, University of the West of England, Bristol, United Kingdom. 3 Area´ Acad´emicade Ingenier´ıa,Universidad Aut´onomadel Estado de Hidalgo, Pachuca, M´exico. 4 Centro de Investigaciones y Estudios Avanzados del Instituto Poli´ecnico Nacional, M´exico,D.F. 5 Universidad Aut´onomaMetropolitona, Unidad Cuajimalpa, M´exico,D.F. arXiv:1905.07527v1 [cs.GL] 18 May 2019 Figure 1: McIntosh's computer museum, Puebla, Mexico. ∗Genaro J. Mart´ınez,Juan C. Seck-Tuoh-Mora, Sergio V. Chapa-Vergara and Christian Lemaitre (2019) Brief notes and history computing in Mexico during 50 years, International Journal of Parallel, Emergent and Distributed Systems. DOI https://doi.org/10.1080/ 17445760.2019.1608990 1 The history of computing in Mexico can not be thought without the name of Prof. Harold V. McIntosh (1929-2015) [1, 2, 3]. For almost 50 years, in Mexico he contributed to the development of computer science with wide international recognition. Approximately in 1964, McIntosh began working in the Physics Department of the Advanced Studies Center (CIEA) of the National Polytechnic Institute (IPN), now called CINVESTAV. In 1965, at the National Center of Calculus (CeNaC), he was a founding member of the Master in Computing, first in Latin America. With the support of Mario Baez Camargo and Enrique Melrose, McIntosh continues his research of Martin-Baltimore Computer Center and University of Florida at IBM 709.