The Effect of Morphology on the Electrochemical Properties of Nanostructured Metal Oxide Thin Films: the Studies Based on Multi
Total Page:16
File Type:pdf, Size:1020Kb
The effect of morphology on the electrochemical properties of nanostructured metal oxide thin films : the studies based on multi-scale time-resolved fast electrogravimetric techniques Fatemeh Razzaghi To cite this version: Fatemeh Razzaghi. The effect of morphology on the electrochemical properties of nanostructured metal oxide thin films : the studies based on multi-scale time-resolved fast electrogravimetric techniques. Chemical Physics [physics.chem-ph]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066346. tel-01477408 HAL Id: tel-01477408 https://tel.archives-ouvertes.fr/tel-01477408 Submitted on 27 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat Pour l’obtention du grade de Docteur De l’Université Pierre et Marie Curie École doctorale 388 - Chimie Physique et Chimie Analytique de Paris Centre The Effect of Morphology on the Electrochemical Properties of Nanostructured Metal Oxide Thin Films: The Studies based on Multi-scale Time-resolved Fast Electrogravimetric Techniques Par Fatemeh Razzaghi Directeur de thèse : Dr Hubert Perrot Présentée et soutenue publiquement le 29 septembre 2016, Devant un jury composé de : Nicole Jaffrezic DR CNRS Émérite Rapporteur Francois Tran-Van Prof. Univ. F. Rabelais Rapporteur Christine Mousty DR CNRS Examinateur Farzaneh Arefi-Khonsari Prof. UPMC Présidente de Jury Hubert Perrot DR CNRS Directeur de thèse Patricia Beaunier IR UPMC Invitée I Dedicated to my mother… II Acknowledgements: First of all, I would like to express my love to my dearest mother for her always unconditional love and support, particularly during my education years in France, it is with no doubt because of her high standard expectations for me if today I stand at this glamourous point in my life. My deepest love and appreciation to my late father, thinking about him at this moment of my life refreshes all the sweet memories of a joyful childhood I spend around him, may his soul rest in peace. I would like to express my highest regards to my thesis supervisor, Dr Hubert Perrot, for his seriousness, kindness and full support during all the steps of this project from beginning to the end. Today, he is one of the pioneers of EQCM and fast electrogravimetric studies in the country and it was indeed a great honor to have him as my mentor. I will be always grateful for all that I have learned from him. I am thoroughly grateful for the prosperous collaboration we had with Prof Farzaneh Arefi and Dr Jerome Pulpytel, Plasma field specialists in LISE. I am really thankful to Dr Christine Mousty (ICCF, Clermont University) for the fruitful collaboration we had regarding the studies on layered double hydroxide (LDHs) materials. I am indeed grateful to Dr Particia Beaunier for her high quality work and for all that I’ve learned from her in the field of surface classical characterization techniques (SAED, TEM, HR-TEM). I am thankful to: Dr Francois Huet (LISE) director, Mrs Francoise Pillier (LISE) SEM-FEG Microscopy, Mr Cyril Bazin (LISE) and Mr Benoit Baptiste (IMPMC lab) X-ray Diffractometry analysis, Dr Houssam Fakhouri (LISE) RF reactive Sputtering, Dr Catherine Debiemme-Chouvy (LISE) XPS analysis, Mrs Sandra Casale (LRS) HR-TEM, Mr Axel Desnoyers de Marbaix (LISE) Mecanicien, Mr Daniel Rose (LISE) Electrician, Mrs Florence Billon (LISE) Engineer and Mrs Veronique Martin (LISE) documentalist. During these three years of my PhD project I received the permanent kindness on the behalf of all my friends and colleagues, my kindest regards to Dr Mireille Turmine and Dr Vincent Vivier, my colleague Freddy Escobar, PhD Students: Pierre, Marie S, Thomas, Azadeh, Larbi. I am also thankful to Miss Marie Brel, our previous M1 student, with whom I have initiated the work on composite materials. Lastly, I would like to thank all my other friends for their support, special thanks to my lovely sister Maryam. III Table of Contents General Introduction ..............................................................................................................................1 Résumé du Chapitre I ..............................................................................................................................3 Chapter I: Bibliography ...........................................................................................................................6 I. Supercapacitors as Energy Storage Devices .........................................................................................6 I-1. Basic principle of Electrochemical Supercapacitors .......................................................................8 Two types of Electrochemical Supercapacitors ...............................................................................9 I. 1.1. Electrostatic supercapacitors ................................................................................................9 I .1.2 Faradaic supercapacitors ........................................................................................................9 II. State of the Art of Different Types of Electrochemical Capacitors (ECs): ....................................... 10 II-1. EC based on Carbon materials ................................................................................................... 11 II-2. Pseudocapacitive oxide materials ............................................................................................ 14 II. 2. 1. WO3.................................................................................................................................... 14 II. 2. 2. TiO2 .................................................................................................................................... 19 II. 2. 3. MnO2 .................................................................................................................................. 20 II. 2. 4. RuO2 ................................................................................................................................... 21 II-3. Conducting Polymers ................................................................................................................. 23 II-4. Carbon-MOx Composites ........................................................................................................... 26 III. Strategies Toward New Ways of Materials Design for High Performance ECs ............................ 29 III. 1. Elaboration Methods and Process ........................................................................................... 29 III-2. Materials Nanostructuration for Development of Flexible Device Architectures ................... 31 IV. Diagnostics Tools for MOx based Electrodes for Energy Storage .................................................. 34 IV-1. Surface and Structural Analysis: SEM, TEM, XRD, XPS, FT-IR ................................................... 34 (i) SEM images .............................................................................................................................. 34 (ii) TEM images ............................................................................................................................. 36 (iii) XRD analysis ............................................................................................................................ 38 (iv) FTIR methods .......................................................................................................................... 38 IV-2. Electrochemical Tools .............................................................................................................. 39 (i) Cyclic voltammetry ................................................................................................................... 39 (ii) EIS technique ........................................................................................................................... 41 (iii) Quartz Crystal Microbalance .................................................................................................. 43 V. The Scope and Principle Objectives of Thesis Project .................................................................... 45 VI. References ...................................................................................................................................... 47 Résumé du Chapitre II ......................................................................................................................... 56 IV Chapter II. Theoretical and Experimental Section .............................................................................. 60 I. Introduction ...................................................................................................................................... 60 II. Experimental .................................................................................................................................... 60 II-1. Electrochemical and (Electro)gravimetric Characterization Techniques ................................ 60 II-1.1. Quartz Crystal Microbalance (QCM) ..................................................................................