Journal of Algebra 238, 502᎐533Ž. 2001 doi:10.1006rjabr.2000.8613, available online at http:rrwww.idealibrary.com on Characters of the Partition Algebras Tom Halverson1 Department of Mathematics and Computer Science, Macalester College, Saint Paul, CORE Minnesota 55105 Metadata, citation and similar papers at core.ac.uk E-mail:
[email protected] Provided by Elsevier - Publisher Connector Communicated by Peter Littelmann Received January 10, 2000 Frobeniuswx Fr determined the irreducible characters of the symmetric group by showing that they form the change of basis matrix between power symmetric functions and Schur functions. Schurwx Sc1, Sc2 later showed that this is a consequence of the fact that the symmetric group and the general linear group generate full centralizers of each other on tensor space. In his book, ‘‘The Classical Groups,’’ Weylwx Wy uses this duality to study representations and invariants for the general linear, orthogonal, symplectic, and symmetric groups. In 1937, Brauerwx Br analyzed Schur᎐Weyl duality for the symplectic and orthogonal groups and gave a combinatorial description of their centralizer algebras on tensor space. These centralizers are now called Brauer algebras. Only recently has Schur᎐Weyl duality been studied for the last of Weyl’s classical groups. If V s ރ r is the permutation representation for the symmetric group Sr , then its centralizer algebra has a combinatorial basis given by the collection of set partitions ofÄ4 1, 2, . , 2n . The algebra is denoted PrnrŽ.and is called the partition algebra. Since S lives inside the general linear and orthogonal groupŽ as the subgroup of permutation matrices. , the partition algebra contains the Brauer algebra and the mn symmetric group Sn Žthis is a different symmetric group which acts on V by tensor place permutations.