Pollinators, Role Of

Total Page:16

File Type:pdf, Size:1020Kb

Pollinators, Role Of POLLINATORS, ROLE OF David W. Inouye University of Maryland I. What Is Pollination? Adaptations to subterranean life often include reduced II. The Diversity of Pollinators metabolism, longer life spans, reduced aggressive III. Coevolutionary History of Plants and Pollinators behavior, elongation of appendages, and reduction of IV. Pollinators in Natural Systems eyes and pigment. Eye and pigment loss (evolution in V. Pollinators in Agriculture and Their Economic reverse) are especially common and likely result from a Value combination of natural selection and genetic drift. VI. Conservation Biology and Pollination Colonization of subterranean environments may be active or passive (e.g., stranding). After isolation, migration is often highly restricted and levels of ende- mism are very high. Species stranded by the regression of marine seas often leave a record of ancient events, THE SUBTERRANEAN DOMAIN includes both air- for example, the pre-Triassic breakup of Pangaea. and water-filled spaces, both large (e.g., caves) and Species richness is especially high in the Dinaric karst small (e.g., gravel aquifers). They share an absence of of the western Balkans, probably because of the light, limited productivity, biological activity, and extensive karst development and because drying events reduced environmental variability. Major subterranean in the Mediterranean may have forced animals into aquatic habitats include percolating water (epikarst), subterranean habitats. For troglobionts, diversity is cave streams, permanent groundwater lakes, and highest a mid-latitudes in the Northern Hemisphere. interstitial habitats, both shallow and deep. Major This ridge of high diversity corresponds to the zone of subterranean terrestrial habitats include air-filled maximum surface terrestrial productivity, the ultimate caves, air-filled cavities in epikarst, cracks and fissures source of energy in caves. A largely unsampled habitat in rock and debris, and deep soil. Except in rare cases that is particular diverse in those few areas where it has there is little or no primary productivity in the sub- been sampled is epikarst. Protection of subterranean terranean domain, and most organic matter is brought fauna requires the protection of surface riparian habitat, in by the action of water or in the case of terrestrial protection excessive water draw-down for aquatic cave habitats, the results (especially fecal material) of habitats, and protection of the flow of energy in and the movement of animals in and out of caves. Some out of cave entrances in the case of terrestrial fauna. systems, especially deep phreatic aquifers and a few caves, have chemoautotrophic production. Some plants and animals typically live at cave entrances I. WHAT IS POLLINATION? and some species (especially bats) spend part of their life cycle in caves. Obligate subterranean dwellers Pollination is the transfer of a pollen grain (male (terrestrial troglobionts and aquatic stygobionts) gametophyte) to a flower’s stigma (receptive surface of include many Crustacea (especially Amphipoda, the female reproductive organ), where it may germin- Copepoda, and Isopoda), Arachnida, Diplopoda, and ate, grow through the style, and fertilize an ovule to Insecta (especially Coleoptera and Collembola). produce a seed. This transfer can be accomplished by Encyclopedia of Biodiversity Copyright & 2007 Elsevier Inc. All rights of reproduction in any form reserved. 1 2 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ POLLINATORS, ROLE OF________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ abiotic agents such as wind and water, but the majority and at least one reptile have been recorded as polli- of pollination is effected by animal pollinators seeking nators. Table I shows a list of pollinator classes for the nutritional rewards such as pollen and nectar, or world’s wild flowering plants (the angiosperms; sometimes other resources such as floral perfumes, B240,000 species), and estimates of the number of oils, or resins. The relationship between the plants and species in each. Much work remains to be done to pollinators is commonly assumed to be mutualistic, confirm the activities of these taxa as pollinators, but with the plants benefiting from the transfer of pollen these numbers are the first estimates available. and the pollinators receiving a nutritional or other re- ward, but there are also instances in which the plants appear to provide no reward and cases in which polli- A. Invertebrate Pollinators nators may also be seed predators. This rich diversity Although flower visitation has been observed by species of relationships has been fertile ground for investigat- from at least 16 orders of insects, only four of them ion by pollination biologists for hundreds of years. include many species that regularly pollinate flowers The importance of pollination in agriculture has also and that seem to have been involved in coevolutionary been a powerful stimulus for the study of plants and interactions with plants. These are the beetles (Cole- pollinators. optera), flies (Diptera), butterflies and moths (Lepid- There is an important distinction to be made be- optera), and ants, bees, and wasps (Hymenoptera). In tween ‘‘flower visitor’’ and ‘‘pollinator.’’ Visitors to addition, the thrips (Thysanoptera) include some flowers (anthophilous animals) cannot be assumed to pollen-eating species that may be pollinators, some be pollinators, as in reality they may be nectar or pol- stoneflies (Plecoptera) and true bugs (Hemiptera) will len thieves which, owing to a mismatch in morphology visit flowers and eat pollen and nectar, and some or an unusual behavior, do not pollinate. For example, lacewing (Neuroptera), scorpionfly (Mecoptera), and ‘‘base workers,’’ or insects that remove nectar from caddisfly (Trichoptera) species eat nectar. Additional between the petals of a flower with an unfused corolla, work is needed to confirm whether most of these lesser- or insects too small to contact the reproductive parts known flower visitors are indeed pollinators. of a flower, would not be pollinators despite the fact that they may spend a lot of time harvesting nectar. However, their activities may be detrimental to the 1. Beetles flowers’ pollination, as pollinators may be deterred by Beetles have been abundant since at least the finding no nectar in flowers already visited by nectar Mesozoic, and it is likely that some of them have thieves. Similarly, a small insect that collects pollen from anthers but never contacts stigmas is an example of a pollen thief that does not pollinate. Simple ex- TABLE I periments, such as collecting stigmas of flowers to Pollinator classes for the world’s wild flowering plants (B240,000 confirm pollen deposition, or the observation of trans- angiosperm species). The numbers are ‘‘the number of species com- fer of a pollinium (a packet of pollen, characteristic of prising the invertebrate and vertebrate genera, families, and orders flowers in the Orchidaceae or Asclepiadaceae), can in which there are more known effective pollinators than there are help to distinguish between visitors and pollinators. pollen or nectar cheaters, robbers, or avoiders’’ Unfortunately, many animals observed on flowers are Pollination categories Estimated pollinator taxa probably best categorized as flower visitors because Wind (abiotic) 20,000 this kind of confirmation of pollination has not been Water 150 conducted. It is surprising that much remains to be All insects 289,166 learned about the pollinators of many important agri- Bees 40,000 cultural species, in addition to other plants. Hymenoptera (bees and wasps) 43,295 Lepidoptera (butterflies and moths) 19,310 Diptera (flies) 14,126 Coleoptera (beetles) 211,935 Thrips 500 II. THE DIVERSITY OF POLLINATORS All vertebrates 1,221 Birds 923 The list of species of animals that serve as pollinators Bats 165 Mammals other than bats 133 is long and diverse. The largest group of pollinators is insects, but both flying and nonflying mammals, birds, Reproduced from Nabhan and Buchmann (1997), with permission. __________________________________________________________________________________________________________________________________________________________________________________ POLLINATORS, ROLE OF________________________________________________________________________________________________________________________________________________________________________________ 3 been flower visitors since the origin of the earliest sapromyophily. The basis for attraction of the flies is angiosperms. For example, the current association of floral fragrances that mimic rotting flesh or dung, and beetle pollination (cantharophily) with primitive typically the flies do not receive any nutritional reward woody angiosperms (Magnolia is an example) proba- for their visits. Some of the most spectacular flowers in bly dates back to the evolutionary origins of both the world are fly pollinated, such as the inflorescence groups. Beetle pollination is considered to be the most of the titan lily (Amorphophallus,
Recommended publications
  • Investigations Into Stability in the Fig/Fig-Wasp Mutualism
    Investigations into stability in the fig/fig-wasp mutualism Sarah Al-Beidh A thesis submitted for the degree of Doctor of Philosophy of Imperial College London. Declaration I hereby declare that this submission is my own work, or if not, it is clearly stated and fully acknowledged in the text. Sarah Al-Beidh 2 Abstract Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are involved in an obligate mutualism where each partner relies on the other in order to reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig trees provide the wasps with places in which to lay their eggs. Mutualistic interactions are, however, ultimately genetically selfish and as such, are often rife with conflict. Fig trees are either monoecious, where wasps and seeds develop together within fig fruit (syconia), or dioecious, where wasps and seeds develop separately. In interactions between monoecious fig trees and their pollinating wasps, there are conflicts of interest over the relative allocation of fig flowers to wasp and seed development. Although fig trees reap the rewards associated with wasp and seed production (through pollen and seed dispersal respectively), pollinators only benefit directly from flowers that nurture the development of wasp larvae, and increase their fitness by attempting to oviposit in as many ovules as possible. If successful, this oviposition strategy would eventually destroy the mutualism; however, the interaction has lasted for over 60 million years suggesting that mechanisms must be in place to limit wasp oviposition. This thesis addresses a number of factors to elucidate how stability may be achieved in monoecious fig systems.
    [Show full text]
  • Weiblen, G.D. 2002 How to Be a Fig Wasp. Ann. Rev. Entomol. 47:299
    25 Oct 2001 17:34 AR ar147-11.tex ar147-11.sgm ARv2(2001/05/10) P1: GJB Annu. Rev. Entomol. 2002. 47:299–330 Copyright c 2002 by Annual Reviews. All rights reserved ! HOW TO BE A FIG WASP George D. Weiblen University of Minnesota, Department of Plant Biology, St. Paul, Minnesota 55108; e-mail: [email protected] Key Words Agaonidae, coevolution, cospeciation, parasitism, pollination ■ Abstract In the two decades since Janzen described how to be a fig, more than 200 papers have appeared on fig wasps (Agaonidae) and their host plants (Ficus spp., Moraceae). Fig pollination is now widely regarded as a model system for the study of coevolved mutualism, and earlier reviews have focused on the evolution of resource conflicts between pollinating fig wasps, their hosts, and their parasites. Fig wasps have also been a focus of research on sex ratio evolution, the evolution of virulence, coevolu- tion, population genetics, host-parasitoid interactions, community ecology, historical biogeography, and conservation biology. This new synthesis of fig wasp research at- tempts to integrate recent contributions with the older literature and to promote research on diverse topics ranging from behavioral ecology to molecular evolution. CONTENTS INTRODUCING FIG WASPS ...........................................300 FIG WASP ECOLOGY .................................................302 Pollination Ecology ..................................................303 Host Specificity .....................................................304 Host Utilization .....................................................305
    [Show full text]
  • (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus Sensu Lato [Glochidion]) in Southeastern Polynesia
    Coevolutionary Diversification of Leafflower Moths (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in Southeastern Polynesia By David Howard Hembry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rosemary Gillespie, Chair Professor Bruce Baldwin Professor Patrick O’Grady Spring 2012 1 2 Abstract Coevolution between phylogenetically distant, yet ecologically intimate taxa is widely invoked as a major process generating and organizing biodiversity on earth. Yet for many putatively coevolving clades we lack knowledge both of their evolutionary history of diversification, and the manner in which they organize themselves into patterns of interaction. This is especially true for mutualistic associations, despite the fact that mutualisms have served as models for much coevolutionary research. In this dissertation, I examine the codiversification of an obligate, reciprocally specialized pollination mutualism between leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) on the oceanic islands of southeastern Polynesia. Leafflower moths are the sole known pollinators of five clades of leafflowers (in the genus Phyllanthus s. l., including the genera Glochidion and Breynia), and thus this interaction is considered to be obligate. Female moths actively transfer pollen from male flowers to female flowers, using a haired proboscis to transfer pollen into the recessed stigmatic surface at the end of the fused stylar column. The moths then oviposit into the flowers’ ovaries, and the larva which hatches consumes a subset, but not all, of the developing fruit’s seed set.
    [Show full text]
  • Game Structures in Mutualistic Interactions: What Can the Evidence Tell Us About the Kind of Models We Need?
    ADVANCES IN THE STUDY OF BEHAVIOR, VOL. 34 Game Structures in Mutualistic Interactions: What Can the Evidence Tell Us About the Kind of Models We Need? Redouan Bshary* and Judith L. Bronstein{ *institut de zoologie universite´ de neuchaˆ tel neuchaˆ tel, switzerland {department of ecology and evolutionary biology university of arizona tucson, arizona 85721 I. The Puzzle of Cooperative Behavior Nature is full of examples in which individuals of different species cooperate with each other. Some of these interactions (mutualisms) are crucial to the persistence of the world that we know: most plants need mycorrhizal fungi and/or rhizobial bacteria for successful growth, as well as pollinators for reproduction; coral reefs are the result of a mutualistic symbiosis between polyps and algae; and virtually all animals appear to have endosymbionts that help with digestion of food. Other mutualisms attract human attention because of their oddity: birds and fish that enter the mouths of predators in search of food, birds that lead other animals to a mutually appreciated food source, and anemones that defend the crabs on whose backs they ride. Darwin (1859) was well aware that interspecific mutualism, like intraspe- cific cooperation, provided a challenge to his theory of evolution. Selection favors individuals that behave selfishly and maximize their own benefit. Cooperative behavior, however, often involves costly investment by one individual for the benefit of its partner. This puzzle of cooperative behavior is best illustrated with the so-called prisoner’s dilemma game. In this game, each of two genetically unrelated players can either cooperate or defect. Both players receive a payoff from the interaction (assumed to be of some relevance to the players’ fitness) that depends on the combination of 59 Copyright 2004, Elsevier Inc.
    [Show full text]
  • The Mechanism of Pollinator Specificity Between Two Sympatric
    Annals of Botany 111: 173–181, 2013 doi:10.1093/aob/mcs250, available online at www.aob.oxfordjournals.org The mechanism of pollinator specificity between two sympatric fig varieties: a combination of olfactory signals and contact cues Gang Wang1,2, Stephen G. Compton3 and Jin Chen1,* 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China, 2University of Chinese Academy of Science, Beijing 100039, China and 3School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK * For correspondence. E-mail [email protected] Downloaded from https://academic.oup.com/aob/article/111/2/173/254661 by guest on 30 September 2021 Received: 4 April 2012 Returned for revision: 9 August 2012 Accepted: 11 October 2012 Published electronically: 23 November 2012 † Background and Aims Pollinator specificity facilitates reproductive isolation among plants, and mechanisms that generate specificity influence species boundaries. Long-range volatile attractants, in combination with mor- phological co-adaptations, are generally regarded as being responsible for maintaining extreme host specificity among the fig wasps that pollinate fig trees, but increasing evidence for breakdowns in specificity is accumulat- ing. The basis of host specificity was examined among two host-specific Ceratosolen fig wasps that pollinate two sympatric varieties of Ficus semicordata, together with the consequences for the plants when pollinators entered the alternative host variety. † Methods The compositions of floral scents from receptive figs of the two varieties and responses of their polli- nators to these volatiles were compared. The behaviour of the wasps once on the surface of the figs was also recorded, together with the reproductive success of figs entered by the two Ceratosolen species.
    [Show full text]
  • A Comment on Iranian Fig Wasps (Chalcidoidea: Agaonidae, Pteromalidae)
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 43/2 1247-1252 19.12.2011 A comment on Iranian fig wasps (Chalcidoidea: Agaonidae, Pteromalidae) H. GHAHARI & S. VAN NOORT Abstract: A total of 5 species of fig wasps from 5 genera including, Blastophaga, Elisabethiella (Agaonidae), and Apocrypta, Sycophaga, Apocryptophagus (Pteromalidae) are recorded from Iran. Among the collected fig wasps, Apocryptophagus gigas (MAYR) is a new record for the Iranian fauna. Key words: Fig wasp, Agaonidae, Pteromalidae, Ficus, Iran. Introduction Fig wasps include the pollinating fig wasps (Chalcidoidea: Agaonidae) and a diverse assemblage of non-pollinating fig wasps (Chalcidoidea: Pteromalidae, Eurytomidae, Ormyridae) that are also associated with individual fig tree species (VAN NOORT & VAN HARTEN 2006). The relationship between pollinating fig wasps (Chalcidoidea, Agaoni- dae) and their host fig trees (Ficus L. 1753, Moraceae) is a classic example of an obligate mutualism, where neither partner can reproduce without the other, the wasp providing a pollination service and the fig tree in turn providing a breeding site for the pollinating wasp’s progeny (JANZEN 1979). The obligate mutualism between pollinating fig wasps and their host fig trees (Ficus, Moraceae) has historically been considered to be a one-to- one relationship (RAMIREZ 1970; WIEBES 1979; WIEBES & COMPTON 1990; VAN NOORT 2004), but increasing evidence is suggesting that the relationship is not as tight as has previously been supposed, with records of more than one species of pollinator associated with a single host and, conversely, of a single pollinator species associated with more than one host fig species (COMPTON & VAN NOORT 1992; WEST & HERRE 1994; WEST et al.
    [Show full text]
  • WRA.Datasheet.Template
    Assessment date 16 October 2018 Prepared by Young and Lieurance Ficus carica ALL ZONES Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2-high) 2 North Zone: suited to Zones 8, 9 Central Zone: suited to Zones 9, 10 South Zone: suited to Zone 10 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatil+B8:B24ity) y 1 2.04 Native or naturalized in habitats with periodic inundation y North Zone: mean annual precipitation 50-70 inches Central Zone: mean annual precipitation 40-60 inches South Zone: mean annual precipitation 40-60 inches 1 2.05 Does the species have a history of repeated introductions outside its natural range? y 3.01 Naturalized beyond native range y 2 3.02 Garden/amenity/disturbance weed unk 3.03 Weed of agriculture n 0 3.04 Environmental weed y 4 3.05 Congeneric weed y 2 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals n -1 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens y 1 4.07 Causes allergies or is otherwise toxic to humans y 1 4.08 Creates a fire hazard in natural ecosystems unk 0 4.09 Is a shade tolerant plant at some stage of its life cycle n 0 4.10 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils).
    [Show full text]
  • Phylogenetic Relationships, Historical Biogeography and Character Evolution of Ž G-Pollinating Wasps Carlos A
    doi 10.1098/rspb.2000.1418 Phylogenetic relationships, historical biogeography and character evolution of g-pollinating wasps Carlos A. Machado1*, Emmanuelle Jousselin2, Finn Kjellberg2, Stephen G. Compton3 and Edward Allen Herre1 1SmithsonianTropical Research Institute, Apartado 2072, Balboa, Republic of Panama 2CNRS-CEFE, 1919 Route de Mende, 34293 Montpellier Ce¨ dex 5, France 3Centre for Ecology and Evolution, School of Biology, University of Leeds, Leeds LS2 9JT, UK Nucleotide sequences from the cytochrome oxidase I (COI) gene were used to reconstruct phylogenetic relationships among 15 genera of ¢g-pollinating wasps. We present evidence supporting broad-level co- cladogenesis with respect to most but not all of the corresponding groups of ¢gs. Using fossil evidence for calibrating a molecular clock for these data, we estimated the origin of the ¢g^wasp mutualism to have occurred ca. 90 million years ago. The estimated divergence times among the pollinator genera and their current geographical distributions corresponded well with several features of the break-up of the southern continents during the Late Cretaceous period. We then explored the evolutionary trajectories of two char- acteristics that hold profound consequences for both partners in the mutualism: the breeding system of the host (monoecious or dioecious) and pollination behaviour of the wasp (passive or active). The ¢g^ wasp mutualism exhibits extraordinarily long-term evolutionary stability despite clearly identi¢able con£icts of interest between the interactors, which are re£ected by the very distinct variations found on the basic mutualistic theme. Keywords: ¢g wasp ; pollination; biogeography; coevolution; Gondwana; mutualism species, some individuals produce only seed-bearing fruit 1.
    [Show full text]
  • Competitive Exclusion Among Fig Wasps Achieved Via Entrainment of Host Plant Flowering Phenology
    Competitive Exclusion among Fig Wasps Achieved via Entrainment of Host Plant Flowering Phenology Min Liu1., Rui Zhao1., Yan Chen2, Jian Zhang1, Stephen G. Compton3, Xiao-Yong Chen1* 1 School of Ecological and Environmental Sciences, Tiantong National Field Station for Forest Ecosystems, East China Normal University, Shanghai, China, 2 Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan, China, 3 School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom Abstract Molecular techniques are revealing increasing numbers of morphologically similar but co-existing cryptic species, challenging the niche theory. To understand the co-existence mechanism, we studied phenologies of morphologically similar species of fig wasps that pollinate the creeping fig (F. pumila) in eastern China. We compared phenologies of fig wasp emergence and host flowering at sites where one or both pollinators were present. At the site where both pollinators were present, we used sticky traps to capture the emerged fig wasps and identified species identity using mitochondrial DNA COI gene. We also genotyped F. pumila individuals of the three sites using polymorphic microsatellites to detect whether the host populations were differentiated. Male F. pumila produced two major crops annually, with figs receptive in spring and summer. A small partial third crop of receptive figs occurred in the autumn, but few of the second crop figs matured at that time. Hence, few pollinators were available to enter third crop figs and they mostly aborted, resulting in two generations of pollinating wasps each year, plus a partial third generation. Receptive figs were produced on male plants in spring and summer, timed to coincide with the release of short-lived adult pollinators from the same individual plants.
    [Show full text]
  • Plants Are the Drivers of Geographic Variation of Floral Scents in a Highly Specialized Pollination Mutualism: a Study of Ficus Hirta in China
    Plants Are the Drivers of Geographic Variation of Floral Scents in a Highly Specialized Pollination Mutualism: a Study of Ficus Hirta in China Deng Xiaoxia CEFE: Centre d'Ecologie Fonctionnelle et Evolutive Buatois Bruno CEFE: Centre d'Ecologie Fonctionnelle et Evolutive Peng Yan-Qiong XTBG: Xishuangbanna Tropical Botanical Garden Hui Yu ( [email protected] ) South China Botanical Garden Chinese Academy of Sciences https://orcid.org/0000-0003-0074-9153 Cheng Yufen South China Botanical Garden Kjellberg Finn CEFE: Centre d'Ecologie Fonctionnelle et Evolutive Prot Magali CEFE Research article Keywords: Geographic variation, mutualism, coevolution, volatile organic compounds, Ficus Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-192226/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Background Floral volatiles play an important role in pollinator attraction. This is particularly true in obligate brood site pollination mutualisms. The plants generally produce inconspicuous owers and depend on odours to attract to their inorescences specialised pollinators that breed in their oral structures. Little is known about the processes shaping the micro-evolution of these oral odours. Here, we investigate geographic variation of oral odour in an obligate host- specic brood site pollination mutualism where plant and pollinator genetic structures are different, Ficus hirta and its specialised pollinators. Results We evidence progressive geographic divergence of oral odours. The pattern of variation ts plant genetic structure but differs from pollinating insect structuring into species and populations. In our study system, the evolution of receptive oral odour presents a pattern that is not distinguishable from neutral drift that is not canalised by the insects.
    [Show full text]
  • Garden Notes with the San Joaquin County Master Gardeners
    Garden Notes with the San Joaquin County Master Gardeners APRIL - J U N E 2 0 1 5 San Joaquin Master Gardener Training - 2015 County Marcy Sousa, Master Gardener Coordinator Master Spring is probably the busiest season for a gar- Gardeners dener and likewise, the Master Gardener Program is as busy as ever. We are in the middle of our bi- INSIDE THIS ISSUE annual Master Gardener training, with 40 stu- dents eager to graduate in June. Our weekend Garden Chores 2 workshops have been in full gear since January and fill up quickly each month. We are currently What is an Heirloom? 3 getting ready for many local fairs, festivals and farmers’ markets and have even begun thinking Pests and Plants 4 about our next Smart Gardening Conference on September 26th. Water conservation is on every- Manroot, Black Vine one’s radar including ours. Be on the lookout for Weevil & Sooty Mold. water talks in your communities hosted by the Canterbury Bells, Pop- Master Gardeners. As the weather gets nicer, we MG trainees testing soil pH in class (above). corn Viburnum, Califor- are seeing an increase in our hotline calls. Re- MG info table at Peterson Park in Lodi nia Buckeye. member if you have a gardening question give us celebrating Arbor Day (below). a call; we are here to help! Our number is 953- Safe Food Preservation 6112. Our website, blog, Facebook and Twitter 6 is full of information as well. Beneficial Insects We hope you find this issue of Garden Notes Dragonflies 7 informative, educational and entertaining.
    [Show full text]
  • Comparison of the Emission of Volatile Compounds by Figs of Ficus Hispida Before, During and After the Phase of Receptivity to Pollinators
    SYMBIOSIS (2008) 45, xx–xx ©2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Signalling receptivity: Comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators Magali Proffit1*, Bertrand Schatz1, Jean-Marie Bessière2, Chun Chen3, Catherine Soler1, and Martine Hossaert-McKey1 1Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175, 1919 route de Mende, F-34293 Montpellier Cedex 5, France, Tel. +33-4-67-613230/62, Fax. +33-4-67-412138, Email. [email protected]; 2Laboratoire de chimie appliquée, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 5, France; 3Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China (Received February 20, 2007; Accepted May 31, 2007) Abstract Figs and pollinating fig wasps are involved in highly specific mutualisms. Because associations between figs and their pollinating wasps are horizontally transmitted, partner encounter is a crucial step, and is mediated by the emission by receptive figs of the volatile compounds that are detected by the pollinator. However, pollinator attraction is probably not the only function of the volatile compounds produced by figs. Other likely functions include signalling to wasps that a fig has already been pollinated, and deterring or defending against visitors with negative effects on developing figs or the pollinators they contain. The functions of volatile compounds will also change over the course of fig development, and the composition of the odour bouquet is thus also likely to vary. However, this variation and its likely functional importance have rarely been studied.
    [Show full text]