<<

Transmission Line Theory

EE142 Dr. Ray Kwok Transmission Line Dr. Ray Kwok

RF Spectrum

km mm m Å

Advanced Source Berkeley Lab Transmission Line Dr. Ray Kwok

RF / Circuit

1 – port 2 wires network GND

2 – port input output source network load Transmission Line Dr. Ray Kwok

Series connection

low f A B

RF

A B Transmission Line Dr. Ray Kwok

Parallel connection

low f A

B

RF

A

B Transmission Line Dr. Ray Kwok Common transmission lines

Zo l most correct schematic

(line) VLF no distortion lossy & noisy wide freq range lowest cost

co-planar low cost flip chip access paralllel wire complex design LF HF noisy & lossy waveguide lowest loss freq bands no distortion wide freq range Transmission Line Dr. Ray Kwok

Equivalent circuit

i(z,t) i(z+ z,t) Ideal transmission line V(z,t) Lz V(z+ z,t) Cz

Taylor ∂ )t,z(i ∂V )t,z( Kirchhoff”s law: V )t,z( − L( )z = V z( + )t,z ≈ V )t,z( + z ∂t ∂z ∂ )t,z(i ∂V )t,z( − L = ∂t ∂z

Q=CV ∂V )t,z( ∂ )t,z(i dQ/dt=i=C dV/dt Junction rule: z(i + )t,z − )t,z(i = −(C )z ≈ z ∂t ∂z

∂V )t,z( ∂ )t,z(i − C = ∂t ∂z Transmission Line Dr. Ray Kwok

Coupled equations (V – i)

∂ )t,z(i ∂V )t,z( ∂V )t,z( ∂ )t,z(i − L = − C = ∂t ∂z ∂t ∂z

∂2i ∂2V ∂  1 ∂i  1 ∂2i − L = = −  = − ∂t 2 ∂t∂z ∂z  C ∂z  C ∂z2 ∂2i ∂2i = LC current ∂z2 ∂t 2

∂ 2V ∂ 2i ∂  1 ∂V  1 ∂ 2V similarly − C = = −  = − ∂t 2 ∂t∂z ∂z  L ∂z  L ∂z2 ∂ 2V ∂ 2V = LC wave ∂z2 ∂t 2 Transmission Line Dr. Ray Kwok

Wave equation x(f ± vt) ≡ )u(f reverse / forward traveling wave ∂f ∂u = )u('f = )u('f ∂x ∂x ∂2f ∂u note: 2 = )u("f = )u("f 1  2π 2π  ∂x ∂x x ± vt =  x ± vt k λ λ ∂f ∂u   1 = )u('f = ±vf )u(' = ()kx ± 2πft ∂t ∂t k ∂ 2f ∂u 1 = ±vf )u(" = v2 )u("f = ± ()ωt ± kx ∂t 2 ∂t k 2 2 x(f ± vt) = f ()ωt ± kx ∂ f 1 ∂ f r r = f ()ωt − k ⋅ r ∂x 2 v2 ∂t 2 (3D) Transmission Line Dr. Ray Kwok

Voltage & Current 2π + (j ωt−β )z − (j ωt+β )z where β = V )t,z( = Vo e + Vo e λ + (j ωt−β )z − (j ωt+β )z  λ  ω 1 )t,z(i = Io e − Io e v = fλ = 2( π )f   = =  2π  β LC why “” ? ∂i = −jβI+e (j ωt−β )z − jβI−e (j ωt+β )z ∂z o o ∂i ∂V = −C = −C[]jωV+e (j ωt−β )z + jωV−e (j ωt+β )z ∂z ∂t o o + + βIo = CωVo 1 − − v = βIo = CωVo LC L ± β ± LC ± L ± ± Z = V = I = I = I ≡ Z I o C o Cω o C o C o o o Transmission Line Dr. Ray Kwok

Fields and circuits r r  E  ∂ 2  E  ∇2  r  = ε  r  1   2   v = H ∂t H ε r r r r r r r (j ωt−ki ⋅ )r (j ωt−k r ⋅ )r )t,z(E = Eoie + Eore η = r r r r r r r ε (j ωt−ki ⋅ )r (j ωt−k r ⋅ )r H )t,z( = Hoie − Hore

∂2 V ∂2 V   = LC   1 ∂z2  i  ∂t 2  i  v =     LC + (j ωt−β )z − (j ωt+β )z V )t,z( = V e + V e L o o Z = + (j ωt−β )z − (j ωt+β )z o C )t,z(i = Io e − Io e Transmission Line Dr. Ray Kwok

What is Zo?

. • 50 for most , • 75 ohms for TV cable. • Measure 75 ohms with a ohmmeter? • Two 75 cables together (in series) makes a 150 cable? • 75 + 75 = 75 !!!!

• What does Zo represent? Transmission Line Dr. Ray Kwok

Reflection at Load + − jβx − jβx V )x( = Vo e + Vo e + − jβx − jβx Zo l Z L )x(i = Io e − Io e

+ − V )0( ≡ VL = Vo + Vo at the load x = − l x = 0 + − 1 + − )0(i ≡ IL = Io − Io = ()Vo − Vo Zo V  V+ + V−  L ≡ Z = Z  o o  L o  + −  Define normalized impedance IL  Vo − Vo  Z Z ()()V+ − V− = Z V+ + V− Z ≡ L o o o o o + − Zo Vo ()()ZL − Zo = Vo ZL + Zo Z −1 − L Vo ZL − Zo ΓL = ≡ Γ = Z ≠ Z Z +1 + L L o L Vo ZL + Zo reflection Transmission Line Dr. Ray Kwok

Example

does it work?

75

50

75 Transmission Line Dr. Ray Kwok Impedance at Input l + jβl − − jβl Vin V(− ) Vo e + Vo e Zin ≡ = = l 1 l l Iin (i − ) + jβ − − jβ ()Vo e − Vo e Z Z l Zo in o ZL  e jβl + Γ e− jβl  Z = Z  L  in o  jβl − jβl   e − ΓLe  x = − l x = 0 l 1+ jtanβl   Z −1 l e− jβ   +  L e− jβ  l    1− jtanβ   ZL +1 Zin = l 1+ jtanβl   Z −1 l V )x( = V+e− jβx + V−e jβx e− jβ   −  L e− jβ o o  l    1− jtanβ   ZL +1 + − jβx − jβx )x(i = Io e − Io e ()Z +1 ()1+ jtanβl + ()Z −1 ()1− jtanβl Z = L L in l l ()ZL +1 ()1+ jtanβ − ()ZL −1 ()1− jtanβ 2()Z + jtanβl Z = L in l 2()1+ Zj L tanβ Z + jtanβl Z = L in l 1+ Zj L tanβ  Z + jZ tanβl  Z = Z  L o  in o  l   Zo + jZL tanβ  Transmission Line Dr. Ray Kwok

Exercise

Zo = 50 Zin Zo l Z L ZL = 100 Zin = ?

x = − l x = 0 For length = λ/8? λ/4? λ/2?

What if Z = Z = 50 ? Z + jtanβl o L Z = L Would the length make any difference? in l 1+ Zj L tanβ  Z + jZ tanβl  Z = Z  L o  in o  l   Zo + jZL tanβ  50 (37 o) 25 100

Zin =Zo=Z L Transmission Line Dr. Ray Kwok

Transmission Line Impedance

case 1: βl= 0, or l = 0 Zin Z l o ZL tan β = 0

Zin = Z L

x = − l x = 0 case 2: βl= π, or l = λ/2 tan βl = 0 Z + jtanβl Z = Z Z = L in L in l 1+ Zj L tanβ case 3: βl= π/2 , or l = λ/4  Z + jZ tanβl  Z = Z  L o  tan β l → ∞ in o  l  2  Zo + jZL tanβ  Zin = Z o / Z L Quarterwave transformer (impedance), realtoreal, complextocomplex .

note: at low freq, β → 0, Zin = Z L regardless of line length or line impedance. Transmission Line Dr. Ray Kwok

Reflection at Input Z + jtanβl Z = L in l 1+ Zj L tanβ Z l Z’ o Zin o ZL l  ZL + jZo tanβ  Zin = Zo   Γin  l   Zo + jZL tanβ  ' ' x = − l x = 0 Zin − Zo Zin −1 Γin = ' = ' Zin + Zo Zin +1

Zin − Zo Zin −1 In general Γin = = Zin + Zo Zin +1

just have to know what Z to use Transmission Line Dr. Ray Kwok

Exercise

Z l Z’ o Zin o ZL Zo = 50 Γin Z’ o = 50 Z = 100 l L x = − x = 0 Length = λ/8

ΓL = ? Γin = ? Z + jtanβl What if Z’ is 75 ? Z = L o in l 1+ Zj L tanβ  Z + jZ tanβl  Z = Z  L o  in o  l   Zo + jZL tanβ  ' ' Zin − Zo Zin −1 Γin = ' = ' Zin + Zo Zin +1 1/3 o 1/3 (90 ) only change phase !?! 0.388 (235 o) Transmission Line Dr. Ray Kwok

Voltage wave in transmission line

+ − jβx − jβx V )x( = Vo e + Vo e + − jβx j2 βx Z Z l V )x( = V e ()1+ Γ e in o ZL o L + j2 βx V = Vo 1+ ΓLe jθ x = − l x = 0 ΓL ≡ ρe + (j θ+2β )x V = Vo 1+ ρe

+ 2 2 2 V = Vo ()1+ ρcos(θ + 2β )x + ρ sin (θ + 2β )x

+ 2 min when sine = 1 V = Vo 1+ 2ρcos(θ + 2β )x + ρ 2 + 2 + V = V+ ()()1+ ρ − 2ρ 1− cos(θ + 2β )x Vmin = Vo ()1+ ρ − 4ρ = Vo ()1− ρ o

2  θ + 2βx  max when sine = 0 V = V+ ()1+ ρ − 4ρsin 2   o 2 + 2 +   Vmax = Vo ()1+ ρ = Vo ()1+ ρ Transmission Line Dr. Ray Kwok

Voltage

+ − jβx − jβx V )x( = Vo e + Vo e V V min max ZL standing wave + − Γ ≡ ρ = ±1 If V o = V o , L perfect standing wave with nodes

x = − l x = 0 + 2 2  θ + 2βx  V = Vo ()1+ ρ − 4ρsin    2 

min when θ + 2βx 2( n + )1 π max when θ + 2βx = ± = ±nπ 2 2 2 λ λ (x < 0) x = −[]θ m 2( n + )1 π x = −[]θ m 2nπ 4π 4π Transmission Line Dr. Ray Kwok

VSWR (Voltage )

+ 2 2  θ + 2βx  V V V = Vo ()1+ ρ − 4ρsin   min max ZL  2 

+ 2 + Vmin = Vo ()1+ ρ − 4ρ = Vo ()1− ρ

+ 2 + x = − l x = 0 Vmax = Vo ()1+ ρ = Vo ()1+ ρ

V 1+ ρ 1+ Γ VSWR ≡ max = = Vmin 1− ρ 1− Γ

perfect match: ρ = 0, VSWR = 1.0 open / short: ρ = 1, VSWR → ∞ It is an indicator on how well the load matches the line. VSWR is the standing wave pattern INSIDE the line. Only Γ at the reflected junction that counts Transmission Line Dr. Ray Kwok

Exercise

Zo = 50 Z’ Z Zo l o in ZL Z’ o = 75 Γin ZL = 100 Length = λ/8 x = − l x = 0 VSWR = ?

ΓL = 1/3 VSWR = 2 Transmission Line Dr. Ray Kwok

RL ≡ − 20 log ρ (dB)

perfect match: ρ → 0, VSWR → 1.0, RL → ∞

open / short: ρ = 1, VSWR → ∞, RL → 0 dB 1+ ρ 1+ Γ VSWR −1 VSWR ≡ = ρ = Γ = 1− ρ 1− Γ VSWR +1

Typical VSWR = 1.1 to 2 ρ = 0.048 to 0.33 RL = 26 dB to 9.5 dB Transmission Line Dr. Ray Kwok

Stub

Transmission line connecting nowhere(?)

 Open

 Short stub (short)

 Series stub

 stub

(short) Transmission Line Dr. Ray Kwok

Open Shunt Stub

LBand Transmission Line Dr. Ray Kwok

Short Shunt Stub

20 GHz Interdigital Filter Transmission Line Dr. Ray Kwok

Radial Stub

18 GHz Rat Race Transmission Line Dr. Ray Kwok Tuning stub (open) Transmission Line Dr. Ray Kwok Short Stub Z + jtanβl Z = L in l 1+ Zj L tanβ Z Zo l in ZL (Z → 0) l L Zsh = jtanβ 1 l Ysh ≡ = −jcotβ Zin Zsh

Zcoil = jωL

Zcap = j/ ωC  1  Zsres = jωL1−   ω2LC π/2 π 3π /2 2π βl 1 Z = pres  1  jωC1−   ω2LC 

period of π Transmission Line Dr. Ray Kwok

Open Stub Z + jtanβl Z = L in l Z l 1+ Zj L tanβ Zin o ZL Z = −jcotβl (Z L → ∞) op l Zin Yop = jtanβ

Zcap = j/ ωC

Zcoil = jωL  1  Zsres = jωL1−   ω2LC π/2 π 3π /2 2π βl 1 Z = pres  1  jωC1−   ω2LC 

period of π Transmission Line Dr. Ray Kwok

Exercise 75 , λ /8 Find Zin & Γin .

Zin Zsh = j Zotan( βl) 50 = j 75 tan(45 o) = j 75 λ/2 100 Zop = j Zocot( βl) 0.1 λ = j 100 cot(36 o) = j 138

Y =1/j75 = j 0.0133 Zin 50 λ/2 Y = j/138 = j0.0073

Zin Z = 1/Y = 1/(j0.006) = j166 50 Z + jtanβl λ/2 Z = L = Z in l L Zin = j 166 1+ Zj L tanβ

Zin − Zo j166 − 50 o o o Γin = = =1∠(107 − 73 ) =1∠34 Zin + Zo j166 + 50 Transmission Line Dr. Ray Kwok

Admittance (Y = 1/Z)

Y Y l YL l 1 in Yo ZL + jtan β Zin = l Γin 1+ Zj L tan β l 1 1+ Zj L tan β Yin ≡ = Z Z + jtan βl Zin − Z1 in L Γin = 1+ /1(j Y ) tan βl Zin + Z1 Y = L in l /1 Y − /1 Y /1 YL + jtan β in 1 Γin = Y + jtan βl /1 Yin + /1 Y1 Y = L in 1+ jY tan βl L Y1 − Yin 1− Yin Γin = =  Y + jY tan βl  Y + Y 1+ Y Y = Y  L o  1 in in in o  l   Yo + jYL tan β  useful for shunt circuits Transmission Line Dr. Ray Kwok

Earlier exercise 75 , λ /8 Find Zin & Γin .

Zin Ysh = j Yocot( βl) 50 = j (1/75) cot(45 o) = j 0.0133 λ/2 100 Yop = j Yotan( βl) 0.1 λ = j 0.01 tan(36 o) = j 0.0073

Y = j 0.0133 Zin 50 λ/2 Y = j0.0073

Zin Y = j 0.006 50 Y + jtanβl Y = L = Y YL = j 0.006 λ/2 in l L 1+ jYL tanβ Zin = j 166

Yo − Yin /1 50 + .0j 006 o o o Γin = = =1∠(17 +17 ) =1∠34 Yo + Yin /1 50 − .0j 006 Transmission Line Dr. Ray Kwok

Earlier Exercise – power consideration

Z = 50 Z l o Z’ o Zin o ZL Z’ o = 50 Γin ZL = 100 Length = λ/8 x = − l x = 0 o ΓL = ? 1/3 Γin = ?1/3 (90 ) Z + jtanβl only change phase Z = L in l 1+ Zj L tanβ l  ZL + jZo tanβ  Z = Z   2 in o   − 2 Z + jZ tanβl V 2 1  o L  Power reflected = ? + = Γ = =11% Z − Z' Z' −1 V 3 Γ = in o = in in ' ' 2 Zin + Zo Zin +1 Power delivered = ? 1− Γ = 89%

Don’t double count reflection…. ΓL & Γin

Return Loss (RL) = 20 log| ρ| = + 9.5 dB Transmission Line Dr. Ray Kwok

High f circuit elements

1 GHz lumped element Band pass filter

CAPCAPCAP IND CAP CAPID=INDID=ID=C2ID=C6IND C3 C4 ID=ID=ID=CAPC1L3L4ID= C= 1L7 pF C=ID=C=C=1 pFC511 pF pF C=L=L=11 1 pFnH nHL= 1 nH ….. …..C= 1 pF

12 GHz lumped element Low pass filter much smaller

IND CAPINDCAP ID=CAPINDINDID=L1 C4 ….. ID=ID=ID=ID=ID=C1L3L4 L7C6 C= 1 pF …..L= L=1L=L=C= nH11 11nH nH nHpF C= 1 pF

A small loop of thin wire is an !! Transmission Line Dr. Ray Kwok

High-Z Line as inductor

l Z Zo Zin Z1 L

Γin

l  ZL + jZ1 tanβ  Z1 >> Z L Z = Z   line length < λ/4 ( π/2) in 1 Z + jZ tanβl   1 L  ZL ~ Zo (order of magnitude)  a∠ + Ψ  Zin = Z1  = Zin ∠ + θ  b∠ + ϕ 

Lz Cz Zin has a positive phase → inductorlike !!!

small C, large L, series inductor Transmission Line Dr. Ray Kwok

Low-Z Line as

l Z Zo Zin Z1 L

Γin

l  ZL + jZ1 tanβ  Z1 << Z L Z = Z   line length << λ/4 ( π/2) in 1 Z + jZ tanβl   1 L  ZL ~ Zo  a∠ + ϕ  Zin = Z1  = Zin ∠ − θ  b∠ + Ψ  Y = Y ∠ + θ Lz in in Cz

Yin has a positive phase → capacitorlike !!! small L, large C, shunt capacitor Transmission Line Dr. Ray Kwok

Low pass filter

5 GHz low pass filter

IND CAPINDCAP ID=CAPINDINDID=L1 C4 ….. ID=ID=ID=ID=ID=C1L3L4 L7C6 C= 1 pF …..L= L=1L=L=C= nH11 11nH nH nHpF C= 1 pF

14 GHz low pass filter highlow impedance lines waveguide high power low loss Transmission Line Dr. Ray Kwok

High-Low-Z lines

20 GHz band pass filter high Z lines → Short shunt stubs λ/4

….. INDCAPIND CAPIND ID=INDCAPINDL2IND ID=ID=ID=ID=INDC6C1C4L3L4 …..L=ID=ID=ID=1 L=L6nHL7L5L11 nH C= L=1 1pF nH C=L=L=L=11 1nH pFnH nHnH

13 GHz coupler Tuning with stubs (shunt open) Think of them as shunt → low Z lines Transmission Line Dr. Ray Kwok

Homework 1. A 100 tranmission line has an effective dielectric constant of 1.65. Find the shortest opencircuited length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz. Repeat for an of 5 nH.

2. A is connected to an having an impedance 80 + j40 with a 50 coaxial cable. If the 50 transmitter can deliver 30 W when connected to a 50 load, how much power is delivered to the antenna?

3. A 75 coaxial transmission line has a length of 2 cm and is terminated with a load impedance of 37.5 + j75 . If the dielectric constant of the line is 2.56 and the frequency is 3 GHz, find the to the line, the a the load, the reflection coefficient at the input, and the SWR on the line.

4. The VSWR on a lossless 300 transmission line terminated in an unknown load impedance is 2.0, and the nearest voltage minimum is at a distance 0.3 λ

from the load. Determine (a) ΓL, (b) Z L. Transmission Line Dr. Ray Kwok

VSWR ρρρ RL (dB) 5. Calculate VSWR, ρ, and return loss 1.00 0.00 ∞ values to complete the entries in the 1.01 following table. 0.01 1.05 32 30 1.10 1.20 0.10 1.50 10 6. Measurements on a 0.6 m lossless 2.00 coaxial cable at 100 kHz show a 2.50 capacitance of 54 pF when the cable is opencircuited, and an inductance of 0.30 H when it is shortcircuited. (a)

Determine Zo and εr of the medium.