Membrane Lipids: Where They Are and How They Behave
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constitutive Phospholipid Scramblase Activity of a G Protein-Coupled Receptor
ARTICLE Received 19 Feb 2014 | Accepted 1 Sep 2014 | Published 8 Oct 2014 DOI: 10.1038/ncomms6115 Constitutive phospholipid scramblase activity of a G protein-coupled receptor Michael A. Goren1, Takefumi Morizumi2, Indu Menon1, Jeremiah S. Joseph3,w, Jeremy S. Dittman1, Vadim Cherezov3, Raymond C. Stevens3, Oliver P. Ernst2,4 & Anant K. Menon1 Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (410,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that b2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes. 1 Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065, USA. 2 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8. 3 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA. 4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8. -
Membrane Protein Stabilization Strategies for Structural and Functional Studies
membranes Review Membrane Protein Stabilization Strategies for Structural and Functional Studies Ekaitz Errasti-Murugarren 1,2,*, Paola Bartoccioni 1,2 and Manuel Palacín 1,2,3,* 1 Laboratory of Amino acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; [email protected] 2 CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 28029 Barcelona, Spain 3 Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] (E.E.-M.); [email protected] (M.P.) Abstract: Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies. Keywords: membrane proteins; stability; mutagenesis; detergent; lipid; antibody; nanobody; ligand Citation: Errasti-Murugarren, E.; Bartoccioni, P.; Palacín, M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. -
Spring 2013 Lecture 23
CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna LIPIDS III EFFECT OF CHOLESTEROL ON MEMBRANES: - Bulky rigid molecule - Moderates fluidity of membranes – both increases and decreases o Cholesterol in membranes DECREASES fluidity because it is rigid o Prevents crystallization (making solid) of fatty acyl side chains by fitting between them. Disrupts close packing of fatty acyl chains. Therefore, INCREASED fluidity BIOLOGICAL MEMBRANES CONTAIN PROTEINS AS WELL AS LIPIDS: - Proteins are 20-80% of cell membrane - Rest is lipid or carbohydrate; supramolecular assembly of lipid, protein and carbohydrate - Proteins are also distributed asymmetrically - TWO classes of Membrane Proteins: o Integral Membrane Proteins o Peripheral Membrane Proteins 178 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - INTEGRAL MEMBRANE PROTEINS o Located WITHIN the lipid bilayer o Usually span the bilayer one or more times – called transmembrane (TM) proteins o Hydrophobic amino acids interact with fatty acid chains in the hydrophobic core of the membrane o Can be removed from the membrane with detergents like SDS – need to disrupt the hydrophobic interactions § Membrane Disruption Animation: o http://www.youtube.com/watch?v=AHT37pvcjc0 o Function: § Transporters – moving molecules into or out of cells or cell membranes § Receptors – transmitting signals from outside of the cell to the inside - β Barrel Integral Membrane Proteins § Barrel-shaped membrane protein that is made up of antiparallel β-strands with hydrophilic (interior) and hydrophobic (facing lipid tails). § So far found only in outer membranes of Gram-negative bacteria, cell wall of Gram-positive bacteria, and outer membranes of mitochondria and chloroplasts. 179 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - α-Helical Membrane Proteins - Can cross the membrane once or many times and have multiple transmembrane segments. -
Snapshot: ER-Associated Protein Degradation Pathways Shinichi Kawaguchi and Davis T.W
SnapShot: ER-Associated Protein Degradation Pathways Shinichi Kawaguchi and Davis T.W. Ng Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604 1230 Cell 129, June 15, 2007 ©2007 Elsevier Inc. DOI 10.1016/j.cell.2007.06.005 See online version for legend and references. SnapShot: ER-Associated Protein Degradation Pathways Shinichi Kawaguchi and Davis T.W. Ng Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604 Arrows specify the routes of individual pathways. All pathways culminate in substrate degradation by the 26S proteasome. (Left) ERAD Pathways in Budding Yeast (A) Newly synthesized secretory and membrane proteins enter the ER through the Sec61 protein-conducting channel complex unfolded. Hsp70-related molecular chaperones (Kar2p) bind to nascent polypeptides in the ER lumen and to the cytosolic domains of membrane proteins (Hsp70, B). These factors assist in substrate folding and also assist in their disposal if they fail to fold. Mannose residues on misfolded glycoproteins are trimmed by the ER mannosidase Mns1p (E). Mannose trimming facilitates the recognition of misfolded glycoproteins by luminally oriented lectin factors Htm1p and Yos9p. (C, D, and F) At least two ER membrane-localized E3 ubiquitin ligases organize protein complexes that receive and process misfolded proteins. These complexes define three pathways that recognize lesions in the cytosolic (ERAD-C), transmembrane (ERAD-M), and luminal (ERAD-L) domains of substrates. Both ERAD-M and ERAD-L use the Hrd1 ubiquitin ligase but the luminal factor Yos9p is dispensable for ERAD-M. A Hrd1 complex lacking Yos9p has been observed suggesting dedicated complexes for all three pathways. -
A Novel Lipid Screening Platform That Provides a Complete Solution for Lipidomics Research
A Novel Lipid Screening Platform that Provides a Complete Solution for Lipidomics Research The Lipidyzer™ Platform, powered by Metabolon® Baljit K Ubhi1, Alex Conner1, Eva Duchoslav3, Annie Evans1, Richard Robinson1, Paul RS Baker4 and Steve Watkins1 1SCIEX, CA, USA, 2Metabolon, USA, 3SCIEX, Ontario, Canada and 4SCIEX, MA, USA INTRODUCTION MATERIALS AND METHODS A major challenge in lipid analysis is the many isobaric Applying the kit for simplified sample extraction and preparation, interferences present in highly complex samples that confound a serum matrix was used following the protocols provided. A identification and accurate quantitation. This problem, coupled QTRAP® System with SelexION® DMS Technology (SCIEX) with complicated sample preparation techniques and data was used for targeted profiling of over a thousand lipid species analysis, highlights the need for a complete solution that from 13 different lipid classes (Figure 2) allowing for addresses these difficulties and provides a simplified method for comprehensive coverage. Two methods were used covering analysis. A novel lipidomics platform was developed that thirteen lipid classes using a flow injection analysis (FIA); one includes simplified sample preparation, automated methods, and injection with SelexION® Technology ON and another with the streamlined data processing techniques that enable facile, SelexION® Technology turned OFF. The lipid molecular species quantitative lipid analysis. Herein, serum samples were analyzed were measured using MRM and positive/negative switching. quantitatively using a unique internal standard labeling protocol, Positive ion mode detected the following lipid classes – a novel selectivity tool (differential mobility spectrometry; DMS) SM/DAG/CE/CER/TAG. Negative ion mode detected the and novel lipid data analysis software. -
The First Cells Were Most Likely Very Simple Prokaryotic Forms. Ra- Spirochetes
T HE O RIGIN OF E UKARYOTIC C ELLS The first cells were most likely very simple prokaryotic forms. Ra- spirochetes. Ingestion of prokaryotes that resembled present-day diometric dating indicates that the earth is 4 to 5 billion years old cyanobacteria could have led to the endosymbiotic development of and that prokaryotes may have arisen more than 3.5 billion years chloroplasts in plants. ago. Eukaryotes are thought to have first appeared about 1.5 billion Another hypothesis for the evolution of eukaryotic cells proposes years ago. that the prokaryotic cell membrane invaginated (folded inward) to en- The eukaryotic cell might have evolved when a large anaerobic close copies of its genetic material (figure 1b). This invagination re- (living without oxygen) amoeboid prokaryote ingested small aerobic (liv- sulted in the formation of several double-membrane-bound entities ing with oxygen) bacteria and stabilized them instead of digesting them. (organelles) in a single cell. These entities could then have evolved This idea is known as the endosymbiont hypothesis (figure 1a) and into the eukaryotic mitochondrion, nucleus, and chloroplasts. was first proposed by Lynn Margulis, a biologist at Boston Univer- Although the exact mechanism for the evolution of the eu- sity. (Symbiosis is an intimate association between two organisms karyotic cell will never be known with certainty, the emergence of of different species.) According to this hypothesis, the aerobic bac- the eukaryotic cell led to a dramatic increase in the complexity and teria developed into mitochondria, which are the sites of aerobic diversity of life-forms on the earth. At first, these newly formed eu- respiration and most energy conversion in eukaryotic cells. -
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces Cerevisiae
YEASTBOOK GENE EXPRESSION & METABOLISM Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae Susan A. Henry,*,1 Sepp D. Kohlwein,† and George M. Carman‡ *Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, †Institute of Molecular Biosciences, University of Graz, A8010 Graz, Austria, and ‡Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901 ABSTRACT Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. -
Lipid Bilayer, with the Nonpolar Regions of the Lipids Facing Inward
Chapter 7 Membranes: Their Structure, Function, and Chemistry Lectures by Kathleen Fitzpatrick Simon Fraser University © 2012 Pearson Education, Inc. Membranes: Their Structure, Function, and Chemistry • Membranes define the boundaries of a cell, and its internal compartments • Membranes play multiple roles in the life of a cell © 2012 Pearson Education, Inc. Figure 7-1A © 2012 Pearson Education, Inc. Figure 7-1B © 2012 Pearson Education, Inc. The Functions of Membranes • 1. Define boundaries of a cell and organelles and act as permeability barriers • 2. Serve as sites for biological functions such as electron transport • 3. Possess transport proteins that regulate the movement of substances into and out of cells and organelles © 2012 Pearson Education, Inc. The Functions of Membranes (continued) • 4. Contain protein molecules that act as receptors to detect external signals • 5. Provide mechanisms for cell-to-cell contact, adhesion, and communication © 2012 Pearson Education, Inc. Figure 7-2 © 2012 Pearson Education, Inc. Models of Membrane Structure: An Experimental Approach • The development of electron microscopy in the 1950s was important for understanding membrane structure • The fluid mosaic model is thought to be descriptive of all biological membranes • The model envisions a membrane as two fluid layers of lipids with proteins within and on the layers © 2012 Pearson Education, Inc. Overton and Langmuir: Lipids Are Important Components of Membranes • In the 1890s Overton observed the easy penetration of lipid-soluble substances into cells and concluded that the cell surface had some kind of lipid “coat” on it • Langmuir studied phospholipids and found that they were amphipathic and reasoned that they must orient on water with the hydrophobic tails away from the water © 2012 Pearson Education, Inc. -
Phospholipid Ebb and Flow Makes Mitochondria Go
REVIEW Phospholipid ebb and flow makes mitochondria go Michelle Grace Acoba, Nanami Senoo, and Steven M. Claypool Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture. Introduction (PS), phosphatidylinositol (PI), and phosphatidylcholine (PC), as Biological membranes give a means of regulated communi- well as sphingolipids, cholesterol, and many lysophospholipids, it cation, as the lipid bilayer itself acts as a platform for many has to recruit from other organelles. This section will focus on the reactions. The amphipathic nature of lipids underlies the mitochondrion’s contribution to the generation of two highly creation of a bilayer; the hydrophobic acyl chains cluster at abundant phospholipids in its membranes: CL and PE (Fig. 1). the middle to get buried, while the hydrophilic head groups face the aqueous surroundings. A diverse array of lipids, in- CL metabolism cluding glycerophospholipids, sphingolipids, and sterols, present CL production. CL is the defining membrane constituent of in different amounts, gives a biological membrane its identity the mitochondrion, the organelle in which it is made (Fig. -
Biological Membranes and Transport Membranes Define the External
Biological Membranes and Transport Membranes define the external boundaries of cells and regulate the molecular traffic across that boundary; in eukaryotic cells, they divide the internal space into discrete compartments to segregate processes and components. Membranes are flexible, self-sealing, and selectively permeable to polar solutes. Their flexibility permits the shape changes that accompany cell growth and movement (such as amoeboid movement). With their ability to break and reseal, two membranes can fuse, as in exocytosis, or a single membrane-enclosed compartment can undergo fission to yield two sealed compartments, as in endocytosis or cell division, without creating gross leaks through cellular surfaces. Because membranes are selectively permeable, they retain certain compounds and ions within cells and within specific cellular compartments, while excluding others. Membranes are not merely passive barriers. Membranes consist of just two layers of molecules and are therefore very thin; they are essentially two-dimensional. Because intermolecular collisions are far more probable in this two-dimensional space than in three-dimensional space, the efficiency of enzyme-catalyzed processes organized within membranes is vastly increased. The Molecular Constituents of Membranes Molecular components of membranes include proteins and polar lipids, which account for almost all the mass of biological membranes, and carbohydrate present as part of glycoproteins and glycolipids. Each type of membrane has characteristic lipids and proteins. The relative proportions of protein and lipid vary with the type of membrane, reflecting the diversity of biological roles (as shown in table 12-1, see below). For example, plasma membranes of bacteria and the membranes of mitochondria and chloroplasts, in which many enzyme-catalyzed processes take place, contain more protein than lipid. -
Membrane Transport, Absorption and Distribution of Drugs
Chapter 2 1 Pharmacokinetics: Membrane Transport, Absorption and Distribution of Drugs Pharmacokinetics is the quantitative study of drug movement in, through and out of the body. The overall scheme of pharmacokinetic processes is depicted in Fig. 2.1. The intensity of response is related to concentration of the drug at the site of action, which in turn is dependent on its pharmacokinetic properties. Pharmacokinetic considerations, therefore, determine the route(s) of administration, dose, and latency of onset, time of peak action, duration of action and frequency of administration of a drug. Fig. 2.1: Schematic depiction of pharmacokinetic processes All pharmacokinetic processes involve transport of the drug across biological membranes. Biological membrane This is a bilayer (about 100 Å thick) of phospholipid and cholesterol molecules, the polar groups (glyceryl phosphate attached to ethanolamine/choline or hydroxyl group of cholesterol) of these are oriented at the two surfaces and the nonpolar hydrocarbon chains are embedded in the matrix to form a continuous sheet. This imparts high electrical resistance and relative impermeability to the membrane. Extrinsic and intrinsic protein molecules are adsorbed on the lipid bilayer (Fig. 2.2). Glyco- proteins or glycolipids are formed on the surface by attachment to polymeric sugars, 2 aminosugars or sialic acids. The specific lipid and protein composition of different membranes differs according to the cell or the organelle type. The proteins are able to freely float through the membrane: associate and organize or vice versa. Some of the intrinsic ones, which extend through the full thickness of the membrane, surround fine aqueous pores. CHAPTER2 Fig. -
Cell Membrane
John Lenyo Corrina Perez Hazel Owens Cell Membrane http://micro.magnet.fsu.edu/cells/plasmamembrane/plasmamembrane.html • Cell membranes are composed of proteins and lipids. • Since they are made up of mostly lipids, only certain substances can move through. spmbiology403.blogspot.com •Phospholipids are the most abundant type of lipid found in the membrane. Phospholipids are made up of two layers, the outer and inner layers. The inside layer is made of hydrophobic fatty acid tails, while the outer layer is made up of hydrophilic polar heads that are pointed toward the water. academic.brooklyn.cuny.edu •Membrane structure relies on the tendency of fatty acid molecules to spread on the surface of water. • Membrane proteins (which take up half of the membrane) determine what gets into and leaves the cell. •Glycolipids are found on the outer part of the cell membrane. Single Chain vs. Phospholipid • Single chain lipids were assumed to be the first of those to form cell membranes with the more complex phospholipids evolving later • Phospholipids can be synthesized in an abiotic environment without enzymes now • Phosphoplipid bilayers now make up the plasma cell membranes that regulate movement into and out of prokaryotic and eukaryotic cells. Single chain lipid http://web.nestucca.k12.or.us/nvhs/staff/whitehead/homewor http://clincancerres.aacrjournals.org/content/11/5/2018/F1. k.htm expansion Types of Lipids • Today Plasma Membranes are made primarily of phospholipids • It is thought that early membranes may have been made of simpler fatty acids. http://exploringorigins.org/fattyacids.html Properties of Fatty Acids • They are Ampipathic, meaning that they have a hydrophobic (“water hating”) end and a hydrophilic (water loving”) end.