Dependable Atomicity in Type

Andreas Nuyts1, Dominique Devriese2

1KU Leuven, Belgium 2Vrije Universiteit Brussel, Belgium

TYPES ’19 Oslo, Norway June 14, 2019

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 1 / 9 Presheaf can model: Parametricity (preservation of ), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness .

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 Presheaf semantics can model: Parametricity (preservation of relations), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness axiom.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 Presheaf semantics can model: Parametricity (preservation of relations), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness axiom.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 Presheaf semantics can model: Parametricity (preservation of relations), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness axiom.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 Presheaf semantics can model: Parametricity (preservation of relations), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness axiom.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 Presheaf semantics can model: Parametricity (preservation of relations), HoTT (preservation of equivalences), Directed TT (preservation of homomorphisms). Operators for using the power of presheaves within type theory? Cubical HoTT: Glue, NVD17, ND18 (parametricity): Glue, Weld → seems to lack expressive power, Moulin16 (PhD on internal param’ty): Ψ (relativity), Φ (functional relativity) → requires substructural (affine-like) interval variables, √ LOPS18 (internal universes): , → based on awkward postulates.

Conjecture The following should suffice: Dependable atomicity, Orton and Pitts’s strictness axiom.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 2 / 9 What’s the Power of Presheaves

Theorem Every presheaf category is a model of DTT...

. . . with extra tools!

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 3 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Presheaf operators

Presheaf categories model: Prop (subobject classifier), Definitional extension types A[ϕ ? a], Orton and Pitts’s strictness axiom (rephrased):

Γ ` ϕ : Prop Γ,ϕ ` A : U Γ ` B : U Γ,ϕ ` i : A =∼ B Γ ` A0 : U[ϕ ? A]Γ ` i0 :(A0 =∼ B)[ϕ ? i]

Orton, Pitts (2018) Glue (definable from strictness), Orton, Pitts (2018) Weld (definable from strictness and pushouts along A × ϕ → A), √ (mill definable from ), Ψ (relativity) and sometimes Φ (func. rel.), Moulin’s PhD (2016) √ Atomicity (a.k.a. tinyness) via . Licata, Orton, Pitts, Spitters (2018)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 4 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Atomicity

Definition Example T is atomic if T →√ − If T is atomic, then has a right adjoint T −. (T → A ] B)→(T → A) ] (T → B) Theorem k o

pT Yoneda-embeddings (e.g. I) A ] B → (T → A) ] (T → B) are atomic. k o

 pT  ... × B → (T → A) ] (T → B) k o ... × ((T → B)→(T → A) ] (T → B))

Corollary Bool is not atomic.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 5 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Dependable Atomicity

Typing rules Definition (Natural in Γ and ∆) T is dependably atomic if Formation: (x : T ) → − : Ty(Γ,x : T ) → Ty(Γ) Γ,(i : ) ∆ i ` Atype has a right adjoint “transpension” I ( Γ,i : ,∆ i ` i A x G − : Ty(Γ) → Ty(Γ,x : T ). I G type Introduction: Theorem Yoneda-embeddings (e.g. I) Γ,(i : I) ( ∆ i ` a : Atype are dependably atomic. Γ,i : I,∆ i ` merid a i : i G Atype

In cartesian settings Elimination (simplified): ( → ) = ((i : ) → ) ◦ wkn I√ xy I xy unmerid : ((i : I) ( i G A) → A. a I xy = (i : I) → (i G xy)

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 6 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Let’s call it Transpension

Claim merid from introduction rule. ∼ The type i G A looks a bit like (=6 ) north: the HIT with constructors: Γ,(i : ) (i = 0) ` : A north : 0 G A, I ( Γ,i : ,i = 0 ` : i A south : 1 G A, I G Γ ` : 0 A merid : A → (i : I) → i G A G [i = 0 ? north | i = 1 ? south]. Rules invertible in the model ⇒ 0 G A is a singleton. Moulin’s Ψ (relativity) can be built Corresp. dependent eliminator: from − G − and strictness. is not always sound for all motives, is probably equivalent to Moulin’s Φ (func. relativity).

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 7 / 9 Roadmap / Plan

Settle on typing rules, Support Transpension type in Menkar, Formal claims about its power.

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 8 / 9 Conclusion Looks like we can internalize presheaf semantics using: Dependable atomicity (transpension type), Orton and Pitts’s strictness axiom.

Thanks!

Questions?

Andreas Nuyts1, Dominique Devriese2 Dependable Atomicity in Type Theory 9 / 9