Conference Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Philosophical Analysis of Causality in Econometrics
A Philosophical Analysis of Causality in Econometrics Damien James Fennell London School of Economics and Political Science Thesis submitted to the University of London for the completion of the degree of a Doctor of Philosophy August 2005 1 UMI Number: U209675 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U209675 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This thesis makes explicit, develops and critically discusses a concept of causality that is assumed in structural models in econometrics. The thesis begins with a development of Herbert Simon’s (1953) treatment of causal order for linear deterministic, simultaneous systems of equations to provide a fully explicit mechanistic interpretation for these systems. Doing this allows important properties of the assumed causal reading to be discussed including: the invariance of mechanisms to intervention and the role of independence in interventions. This work is then extended to basic structural models actually used in econometrics, linear models with errors-in-the-equations. This part of the thesis provides a discussion of how error terms are to be interpreted and sets out a way to introduce probabilistic concepts into the mechanistic interpretation set out earlier. -
ABSTRACT CAUSAL PROGRAMMING Joshua Brulé
ABSTRACT Title of dissertation: CAUSAL PROGRAMMING Joshua Brul´e Doctor of Philosophy, 2019 Dissertation directed by: Professor James A. Reggia Department of Computer Science Causality is central to scientific inquiry. There is broad agreement on the meaning of causal statements, such as \Smoking causes cancer", or, \Applying pesticides affects crop yields". However, formalizing the intuition underlying such statements and conducting rigorous inference is difficult in practice. Accordingly, the overall goal of this dissertation is to reduce the difficulty of, and ambiguity in, causal modeling and inference. In other words, the goal is to make it easy for researchers to state precise causal assumptions, understand what they represent, understand why they are necessary, and to yield precise causal conclusions with minimal difficulty. Using the framework of structural causal models, I introduce a causation coeffi- cient as an analogue of the correlation coefficient, analyze its properties, and create a taxonomy of correlation/causation relationships. Analyzing these relationships provides insight into why correlation and causation are often conflated in practice, as well as a principled argument as to why formal causal analysis is necessary. Next, I introduce a theory of causal programming that unifies a large number of previ- ously separate problems in causal modeling and inference. I describe the use and implementation of a causal programming language as an embedded, domain-specific language called `Whittemore'. Whittemore permits rigorously identifying and esti- mating interventional queries without requiring the user to understand the details of the underlying inference algorithms. Finally, I analyze the computational com- plexity in determining the equilibrium distribution of cyclic causal models. -
Edsger Dijkstra: the Man Who Carried Computer Science on His Shoulders
INFERENCE / Vol. 5, No. 3 Edsger Dijkstra The Man Who Carried Computer Science on His Shoulders Krzysztof Apt s it turned out, the train I had taken from dsger dijkstra was born in Rotterdam in 1930. Nijmegen to Eindhoven arrived late. To make He described his father, at one time the president matters worse, I was then unable to find the right of the Dutch Chemical Society, as “an excellent Aoffice in the university building. When I eventually arrived Echemist,” and his mother as “a brilliant mathematician for my appointment, I was more than half an hour behind who had no job.”1 In 1948, Dijkstra achieved remarkable schedule. The professor completely ignored my profuse results when he completed secondary school at the famous apologies and proceeded to take a full hour for the meet- Erasmiaans Gymnasium in Rotterdam. His school diploma ing. It was the first time I met Edsger Wybe Dijkstra. shows that he earned the highest possible grade in no less At the time of our meeting in 1975, Dijkstra was 45 than six out of thirteen subjects. He then enrolled at the years old. The most prestigious award in computer sci- University of Leiden to study physics. ence, the ACM Turing Award, had been conferred on In September 1951, Dijkstra’s father suggested he attend him three years earlier. Almost twenty years his junior, I a three-week course on programming in Cambridge. It knew very little about the field—I had only learned what turned out to be an idea with far-reaching consequences. a flowchart was a couple of weeks earlier. -
Reinventing Education Based on Data and What Works • Since 1955
Reinventing Education Based on Data and What Works • Since 1955 Carnegie Mellon is reinventing education and the way we think about leveraging technology through its study of the science of learning – an interdisciplinary effort that we’ve been tackling for more than 50 years with both computer scientists and psychologists. CMU's educational technology innovations have inspired numerous startup companies, which are helping students to learn more effectively and efficiently. 1955: Allen Newell (TPR ’57) joins 1995: Prof. Kenneth R. Koedinger (HSS Prof. Herbert Simon’s research team as ’88,’90) and Anderson develop Practical a Ph.D. student. Algebra Tutor. The program pioneers a new form of computer-aided instruction for high 1956: CMU creates one of the world’s first school students based on cognitive tutors. university computation centers. With Prof. Alan Perlis (MCS ’42) as its head, it is a joint 1995: Prof. Jack Mostow (SCS ’81) undertaking of faculty from the business, develops Project LISTEN, an intelligent tutor Simon, Newell psychology, electrical engineering and that helps children learn to read. The National mathematics departments, and the Science Foundation included Project precursor to computer science. LISTEN’s speech recognition system as one of its top 50 innovations from 1950-2000. 1956: Simon creates a “thinking machine”—enacting a mental process 1995: The Center for Automated by breaking it down into its simplest Learning and Discovery is formed, led steps. Later that year, the term “artificial by Prof. Thomas M. Mitchell. intelligence” is coined by a small group Perlis including Newell and Simon. 1998: Spinoff company Carnegie Learning is founded by CMU scientists to expand 1956: Simon, Newell and J. -
Towards a Secure Agent Society
Towards A Secure Agent So ciety Qi He Katia Sycara The Rob otics Institute The Rob otics Institute Carnegie Mellon University Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. Pittsburgh, PA 15213, U.S.A [email protected] [email protected] March 23, 1998 Abstract We present a general view of what a \secure agent so ciety" should b e and howtode- velop it rather than fo cus on any sp eci c details or particular agent-based application . We b elieve that the main e ort to achieve security in agent so cieties consists of the following three asp ects:1 agent authentication mechanisms that form the secure so ciety's foundation, 2 a security architecture design within an agent that enables security p olicy making, se- curity proto col generation and security op eration execution, and 3 the extension of agent communication languages for agent secure communication and trust management. In this pap er, all of the three main asp ects are systematically discussed for agent security based on an overall understanding of mo dern cryptographic technology. One purp ose of the pap er is to give some answers to those questions resulting from absence of a complete picture. Area: Software Agents Keywords: security, agent architecture, agent-based public key infrastructure PKI, public key cryptosystem PKCS, con dentiality, authentication, integrity, nonrepudiation. 1 1 Intro duction If you are going to design and develop a software agent-based real application system for elec- tronic commerce, you would immediately learn that there exists no such secure communication between agents, which is assumed by most agent mo del designers. -
Prominence of Expert System and Case Study- DENDRAL Namita Mirjankar, Shruti Ghatnatti Karnataka, India [email protected],[email protected]
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282 Prominence of Expert System and Case Study- DENDRAL Namita Mirjankar, Shruti Ghatnatti Karnataka, India [email protected],[email protected] Abstract—Among many applications of Artificial Intelligence, Expert System is the one that exploits human knowledge to solve problems which ordinarily would require human insight. Expert systems are designed to carry the insight and knowledge found in the experts in a particular field and take decisions based on the accumulated knowledge of the knowledge base along with an arrangement of standards and principles of inference engine, and at the same time, justify those decisions with the help of explanation facility. Inference engine is continuously updated as new conclusions are drawn from each new certainty in the knowledge base which triggers extra guidelines, heuristics and rules in the inference engine. This paper explains the basic architecture of Expert System , its first ever success DENDRAL which became a stepping stone in the Artificial Intelligence field, as well as the difficulties faced by the Expert Systems Keywords—Artificial Intelligence; Expert System architecture; knowledge base; inference engine; DENDRAL I INTRODUCTION the main components that remain same are: User Interface, Knowledge Base and Inference Engine. For more than two thousand years, rationalists all over the world have been striving to comprehend and resolve two unavoidable issues of the universe: how does a human mind work, and can non-people have minds? In any case, these inquiries are still unanswered. As humans, we all are blessed with the ability to learn and comprehend, to think about different issues and to decide; but can we design machines to do all these things? Some philosophers are open to the idea that machines will perform all the tasks a human can do. -
Oracle Vs. Nosql Vs. Newsql Comparing Database Technology
Oracle vs. NoSQL vs. NewSQL Comparing Database Technology John Ryan Senior Solution Architect, Snowflake Computing Table of Contents The World has Changed . 1 What’s Changed? . 2 What’s the Problem? . .. 3 Performance vs. Availability and Durability . 3 Consistecy vs. Availability . 4 Flexibility vs . Scalability . 5 ACID vs. Eventual Consistency . 6 The OLTP Database Reimagined . 7 Achieving the Impossible! . .. 8 NewSQL Database Technology . 9 VoltDB . 10 MemSQL . 11 Which Applications Need NewSQL Technology? . 12 Conclusion . 13 About the Author . 13 ii The World has Changed The world has changed massively in the past 20 years. Back in the year 2000, a few million users connected to the web using a 56k modem attached to a PC, and Amazon only sold books. Now billions of people are using to their smartphone or tablet 24x7 to buy just about everything, and they’re interacting with Facebook, Twitter and Instagram. The pace has been unstoppable . Expectations have also changed. If a web page doesn’t refresh within seconds we’re quickly frustrated, and go elsewhere. If a web site is down, we fear it’s the end of civilisation as we know it. If a major site is down, it makes global headlines. Instant gratification takes too long! — Ladawn Clare-Panton Aside: If you’re not a seasoned Database Architect, you may want to start with my previous articles on Scalability and Database Architecture. Oracle vs. NoSQL vs. NewSQL eBook 1 What’s Changed? The above leads to a few observations: • Scalability — With potentially explosive traffic growth, IT systems need to quickly grow to meet exponential numbers of transactions • High Availability — IT systems must run 24x7, and be resilient to failure. -
1. Course Information Are Handed Out
6.826—Principles of Computer Systems 2006 6.826—Principles of Computer Systems 2006 course secretary's desk. They normally cover the material discussed in class during the week they 1. Course Information are handed out. Delayed submission of the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM. Students in the class will be asked to help grade the problem sets. Each week a team of students Staff will work with the TA to grade the week’s problems. This takes about 3-4 hours. Each student will probably only have to do it once during the term. Faculty We will try to return the graded problem sets, with solutions, within a week after their due date. Butler Lampson 32-G924 425-703-5925 [email protected] Policy on collaboration Daniel Jackson 32-G704 8-8471 [email protected] We encourage discussion of the issues in the lectures, readings, and problem sets. However, if Teaching Assistant you collaborate on problem sets, you must tell us who your collaborators are. And in any case, you must write up all solutions on your own. David Shin [email protected] Project Course Secretary During the last half of the course there is a project in which students will work in groups of three Maria Rebelo 32-G715 3-5895 [email protected] or so to apply the methods of the course to their own research projects. Each group will pick a Office Hours real system, preferably one that some member of the group is actually working on but possibly one from a published paper or from someone else’s research, and write: Messrs. -
The Declarative Imperative Experiences and Conjectures in Distributed Logic
The Declarative Imperative Experiences and Conjectures in Distributed Logic Joseph M. Hellerstein University of California, Berkeley [email protected] ABSTRACT The juxtaposition of these trends presents stark alternatives. The rise of multicore processors and cloud computing is putting Will the forecasts of doom and gloom materialize in a storm enormous pressure on the software community to find solu- that drowns out progress in computing? Or is this the long- tions to the difficulty of parallel and distributed programming. delayed catharsis that will wash away today’s thicket of im- At the same time, there is more—and more varied—interest in perative languages, preparing the ground for a more fertile data-centric programming languages than at any time in com- declarative future? And what role might the database com- puting history, in part because these languages parallelize nat- munity play in shaping this future, having sowed the seeds of urally. This juxtaposition raises the possibility that the theory Datalog over the last quarter century? of declarative database query languages can provide a foun- Before addressing these issues directly, a few more words dation for the next generation of parallel and distributed pro- about both crisis and opportunity are in order. gramming languages. 1.1 Urgency: Parallelism In this paper I reflect on my group’s experience over seven years using Datalog extensions to build networking protocols I would be panicked if I were in industry. and distributed systems. Based on that experience, I present — John Hennessy, President, Stanford University [35] a number of theoretical conjectures that may both interest the database community, and clarify important practical issues in The need for parallelism is visible at micro and macro scales. -
Twenty Years of Berkeley Unix : from AT&T-Owned to Freely
Twenty Years of Berkeley Unix : From AT&T-Owned to Freely Redistributable Marshall Kirk McKusick Early History Ken Thompson and Dennis Ritchie presented the first Unix paper at the Symposium on Operating Systems Principles at Purdue University in November 1973. Professor Bob Fabry, of the University of California at Berkeley, was in attendance and immediately became interested in obtaining a copy of the system to experiment with at Berkeley. At the time, Berkeley had only large mainframe computer systems doing batch processing, so the first order of business was to get a PDP-11/45 suitable for running with the then-current Version 4 of Unix. The Computer Science Department at Berkeley, together with the Mathematics Department and the Statistics Department, were able to jointly purchase a PDP-11/45. In January 1974, a Version 4 tape was delivered and Unix was installed by graduate student Keith Standiford. Although Ken Thompson at Purdue was not involved in the installation at Berkeley as he had been for most systems up to that time, his expertise was soon needed to determine the cause of several strange system crashes. Because Berkeley had only a 300-baud acoustic-coupled modem without auto answer capability, Thompson would call Standiford in the machine room and have him insert the phone into the modem; in this way Thompson was able to remotely debug crash dumps from New Jersey. Many of the crashes were caused by the disk controller's inability to reliably do overlapped seeks, contrary to the documentation. Berkeley's 11/45 was among the first systems that Thompson had encountered that had two disks on the same controller! Thompson's remote debugging was the first example of the cooperation that sprang up between Berkeley and Bell Labs. -
Computer Organization and Design
THIRD EDITION Computer Organization Design THE HARDWARE/SOFTWARE INTERFACE ACKNOWLEDGEMENTS Figures 1.9, 1.15 Courtesy of Intel. Computers in the Real World: Figure 1.11 Courtesy of Storage Technology Corp. Photo of “A Laotian villager,” courtesy of David Sanger. Figures 1.7.1, 1.7.2, 6.13.2 Courtesy of the Charles Babbage Institute, Photo of an “Indian villager,” property of Encore Software, Ltd., India. University of Minnesota Libraries, Minneapolis. Photos of “Block and students” and “a pop-up archival satellite tag,” Figures 1.7.3, 6.13.1, 6.13.3, 7.9.3, 8.11.2 Courtesy of IBM. courtesy of Professor Barbara Block. Photos by Scott Taylor. Figure 1.7.4 Courtesy of Cray Inc. Photos of “Professor Dawson and student” and “the Mica micromote,” courtesy of AP/World Wide Photos. Figure 1.7.5 Courtesy of Apple Computer, Inc. Photos of “images of pottery fragments” and “a computer reconstruc- Figure 1.7.6 Courtesy of the Computer History Museum. tion,” courtesy of Andrew Willis and David B. Cooper, Brown University, Figure 7.33 Courtesy of AMD. Division of Engineering. Figures 7.9.1, 7.9.2 Courtesy of Museum of Science, Boston. Photo of “the Eurostar TGV train,” by Jos van der Kolk. Figure 7.9.4 Courtesy of MIPS Technologies, Inc. Photo of “the interior of a Eurostar TGV cab,” by Andy Veitch. Figure 8.3 ©Peg Skorpinski. Photo of “firefighter Ken Whitten,” courtesy of World Economic Forum. Figure 8.11.1 Courtesy of the Computer Museum of America. Graphic of an “artificial retina,” © The San Francisco Chronicle. -
You and Your Research & the Elements of Style
You and Your Research & The Elements of Style Philip Wadler University of Edinburgh Logic Mentoring Workshop Saarbrucken,¨ Monday 6 July 2020 Part I You and Your Research Richard W. Hamming, 1915–1998 • Los Alamos, 1945. • Bell Labs, 1946–1976. • Naval Postgraduate School, 1976–1998. • Turing Award, 1968. (Third time given.) • IEEE Hamming Medal, 1987. It’s not luck, it’s not brains, it’s courage Say to yourself, ‘Yes, I would like to do first-class work.’ Our society frowns on people who set out to do really good work. You’re not supposed to; luck is supposed to descend on you and you do great things by chance. Well, that’s a kind of dumb thing to say. ··· How about having lots of ‘brains?’ It sounds good. Most of you in this room probably have more than enough brains to do first-class work. But great work is something else than mere brains. ··· One of the characteristics of successful scientists is having courage. Once you get your courage up and believe that you can do important problems, then you can. If you think you can’t, almost surely you are not going to. — Richard Hamming, You and Your Research Develop reusable solutions How do I obey Newton’s rule? He said, ‘If I have seen further than others, it is because I’ve stood on the shoulders of giants.’ These days we stand on each other’s feet! Now if you are much of a mathematician you know that the effort to gen- eralize often means that the solution is simple.