Downloaded the C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Reproductive Efficiency of Entomopathogenic Nematodes As Scavengers. Are They Able to 1 Fight for Insect's Cadavers?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sapientia 1 Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to 2 fight for insect’s cadavers? 3 4 Rubén Blanco-Péreza,b, Francisco Bueno-Palleroa,b, Luis Netob, Raquel Campos-Herreraa,b,* 5 6 a MeditBio, Centre for Mediterranean Bioresources and Food, Universidade do Algarve, Campus 7 de Gambelas, 8005, Faro (Portugal) 8 b Universidade do Algarve, Campus de Gambelas, 8005, Faro (Portugal) 9 10 *Corresponding author 11 Email: [email protected] 12 1 13 Abstract 14 15 Entomopathogenic nematodes (EPNs) and their bacterial partners are well-studied insect 16 pathogens, and their persistence in soils is one of the key parameters for successful use as 17 biological control agents in agroecosystems. Free-living bacteriophagous nematodes (FLBNs) in 18 the genus Oscheius, often found in soils, can interfere in EPN reproduction when exposed to live 19 insect larvae. Both groups of nematodes can act as facultative scavengers as a survival strategy. 20 Our hypothesis was that EPNs will reproduce in insect cadavers under FLBN presence, but their 21 reproductive capacity will be severely limited when competing with other scavengers for the same 22 niche. We explored the outcome of EPN - Oscheius interaction by using freeze-killed larvae of 23 Galleria mellonella. The differential reproduction ability of two EPN species (Steinernema 24 kraussei and Heterorhabditis megidis), single applied or combined with two FLBNs (Oscheius 25 onirici or Oscheius tipulae), was evaluated under two different infective juvenile (IJ) pressure: 26 low (3 IJs/host) and high (20 IJs/host). -
Oscheius Tipulae* §
Oscheius tipulae* § Marie-Anne Félix , Institut Jacques Monod, CNRS – Universités Paris, 75251 Paris cedex 05, France Table of Contents 1. Phylogenetic relationships ......................................................................................................... 2 1.1. Phylogenetic position of the Oscheius genus .......................................................................2 1.2. The Oscheius genus .......................................................................................................2 2. Natural populations .................................................................................................................. 3 2.1. Ecology .......................................................................................................................3 2.2. Isolation and wild genetic resources .................................................................................. 3 2.3. Population genetics ........................................................................................................ 3 3. Basic biology in the laboratory ................................................................................................... 3 4. Genetics .................................................................................................................................3 4.1. Basic forward genetic methods ........................................................................................ 3 4.2. Available mutants ........................................................................................................ -
Towards Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius Tipulae to Identify Mutations Affecting Vulva Development
Genetics: Early Online, published on June 19, 2017 as 10.1534/genetics.117.203521 Towards universal forward genetics: using a draft genome sequence of the nematode Oscheius tipulae to identify mutations affecting vulva development 5 Fabrice Besnard*1,2,3, Georgios Koutsovoulos†1,4, Sana Dieudonné*, Mark Blaxter†,5 and Marie-Anne Félix*2,5 10 * Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France † Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK 1 Co-first authors. 2 Co-corresponding authors: [email protected], [email protected] 3 Current Address: Laboratoire de Reproduction de développement des plantes, Lyon, France; 15 4 Current Address: INRA, Université Côte d’Azur, CNRS, ISA, France 5 Co-last authors Besnard F., Koutsovoulos G. et al. Oscheius Mapping-by-sequencing 1/48 Copyright 2017. Running title: Oscheius Mapping-by-sequencing Key words : Oscheius tipulae, genome assembly, mapping-by sequencing, vulva development, mig-13 Co-corresponding authors: Fabrice Besnard Address: Laboratoire Reproduction et Développement des Plantes (RDP) 20 Ecole Normale Supérieure de Lyon (ENS-Lyon) 46, allée d'Italie, 69364 LYON Cedex 07. Tel: +33-4-72-72-86-05 mail: [email protected] Marie-Anne Félix Address: Institute of Biology of the Ecole Normale Supérieure (IBENS) 25 46 rue d'Ulm, 75230 Paris cedex 05, France Tel: +33-1-44-32-39-44 mail: [email protected] Besnard F., Koutsovoulos G. et al. Oscheius Mapping-by-sequencing 2/48 Abstract Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. -
Downloaded from Wormbase.Org
Kraus et al. EvoDevo (2017) 8:16 DOI 10.1186/s13227-017-0081-y EvoDevo RESEARCH Open Access Diferences in the genetic control of early egg development and reproduction between C. elegans and its parthenogenetic relative D. coronatus Christopher Kraus1,4† , Philipp H. Schifer1,2*† , Hiroshi Kagoshima3, Hideaki Hiraki3, Theresa Vogt1,5, Michael Kroiher1 , Yuji Kohara3 and Einhard Schierenberg1 Abstract Background: The free-living nematode Diploscapter coronatus is the closest known relative of Caenorhabditis elegans with parthenogenetic reproduction. It shows several developmental idiosyncracies, for example concerning the mode of reproduction, embryonic axis formation and early cleavage pattern (Lahl et al. in Int J Dev Biol 50:393–397, 2006). Our recent genome analysis (Hiraki et al. in BMC Genomics 18:478, 2017) provides a solid foundation to better understand the molecular basis of developmental idiosyncrasies in this species in an evolutionary context by com- parison with selected other nematodes. Our genomic data also yielded indications for the view that D. coronatus is a product of interspecies hybridization. Results: In a genomic comparison between D. coronatus, C. elegans, other representatives of the genus Caenorhab- ditis and the more distantly related Pristionchus pacifcus and Panagrellus redivivus, certain genes required for central developmental processes in C. elegans like control of meiosis and establishment of embryonic polarity were found to be restricted to the genus Caenorhabditis. The mRNA content of early D. coronatus embryos was sequenced and compared with similar stages in C. elegans and Ascaris suum. We identifed 350 gene families transcribed in the early embryo of D. coronatus but not in the other two nematodes. -
Research/Investigación Addition of a New Insect Parasitic Nematode, Oscheius Tipulae, to Iranian Fauna
RESEARCH/INVESTIGACIÓN ADDITION OF A NEW INSECT PARASITIC NEMATODE, OSCHEIUS TIPULAE, TO IRANIAN FAUNA J. Karimi1*, N. Rezaei1, and E. Shokoohi2 1Biocontrol and Insect Pathology Lab., Department of Plant Protection, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran; 2Unit for Environmental Sciences and Management, Potchefstroom, North West University, South Africa; *Corresponding author: [email protected] ABSTRACT Karimi, J., N. Rezaei, and E. Shokoohi. 2018. Addition of a new insect parasitic nematode, Oscheius tipulae, to Iranian fauna. Nematropica 48:00-00. On behalf of an ongoing project on diversity of insect pathogenic and insect parasitic nematodes of Iran, a new species was collected and characterized. This species was collected in soil from the Mashhad, Arak, and Mahalat regions of Iran through 2011-2012 using Galleria larvae baits. Based on morphologic and morphometric traits as well as SEM images, the species tentatively has been identified as Oscheius tipulae. Phylogenetic analysis based on ITS and 18S rDNA genes confirmed the species delimitation. This is the first record of this species from Iran. Key words: 18S rDNA, insect parasitic nematode, Iran, ITS, Oscheius tipulae, SEM RESUMEN Karimi, J., N. Rezaei, y E. Shokoohi. 2018. Adición de un nuevo nematodo parásito de insectos, Oscheius tipulae, a la fauna Irán. Nematropica 48:00-00. En nombre de un proyecto en curso sobre diversidad de patógenos de insectos y nematodos parásitos de insectos de Irán, se recolectó y caracterizó una nueva especie. Esta especie fue recolectada en suelo de las regiones de Mashhad, Arak y Mahalat de Irán durante el período 2011-2012 utilizando cebos Galleria. -
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts. -
Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae
Developmental Plasticity, Ecology, and Evolutionary Radiation of Nematodes of Diplogastridae Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Vladislav Susoy aus Berezniki, Russland Tübingen 2015 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 5 November 2015 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ralf J. Sommer 2. Berichterstatter: Prof. Dr. Heinz-R. Köhler 3. Berichterstatter: Prof. Dr. Hinrich Schulenburg Acknowledgements I am deeply appreciative of the many people who have supported my work. First and foremost, I would like to thank my advisors, Professor Ralf J. Sommer and Dr. Matthias Herrmann for giving me the opportunity to pursue various research projects as well as for their insightful scientific advice, support, and encouragement. I am also very grateful to Matthias for introducing me to nematology and for doing an excellent job of organizing fieldwork in Germany, Arizona and on La Réunion. I would like to thank the members of my examination committee: Professor Heinz-R. Köhler and Professor Hinrich Schulenburg for evaluating this dissertation and Dr. Felicity Jones, Professor Karl Forchhammer, and Professor Rolf Reuter for being my examiners. I consider myself fortunate for having had Dr. Erik J. Ragsdale as a colleague for several years, and more than that to count him as a friend. We have had exciting collaborations and great discussions and I would like to thank you, Erik, for your attention, inspiration, and thoughtful feedback. I also want to thank Erik and Orlando de Lange for reading over drafts of this dissertation and spelling out some nuances of English writing. -
First Record of Diploscapter Coronata (Rhabditida), a Possible Health Significance Nematode Associated with Tomato Crops in Argentina
Rev. FCA UNCUYO. 2016. XX(X): XXX-XXX. ISSN impreso 0370-4661. ISSN (en línea) 1853-8665. First record of Diploscapter coronata (Rhabditida), a possible health significance nematode associated with tomato crops in Argentina Primer registro de Diploscapter coronata (Rhabditida), un posible nematodo de importancia sanitaria asociado a cultivos de tomate en Argentina Augusto Salas 1, José Matías Rusconi 1, Nora Camino 1, 2, Daiana Eliceche 1, María Fernanda Achinelly 1, 3 Originales: Recepción: 21/03/2016 - Aceptación: 08/10/2016 Nota científica Abstract Diploscapter coronata is a free-living soil bacterial-feeding nematode found in compost, sewage or agricultural soil and as a facultative parasite of insects and verte- brates, even humans. The clinical symptoms include epigastric tenderness, diarrhea, crampy abdominal pain, weakness and nauseas. Also, they have been considered as potential carriers of bacteria pathogenic to the surface of preharvest fruits and vegetables in contact with soil. In this note, we reported the presence of D. coronata in the framework Argentina. Soil samples taken from tomato growing (Lycopersicon esculentum) were processedof diverse soilin the nematodes laboratory samplings by the centrifugationin orchards of Abastomethod, town, while Buenos collected Aires roots province, were observed directly under stereomicroscope in order to isolate nematodes. Specimens presence of D. coronata in agricultural soil and in association with root galls, caused by thewere plant-parasitic identified by morphologicalnematode, Nacobbus and morphometric aberrans. Females characteristics. were the Resultsonly isolated showed stage. the The detection of this nematode in greenhouses where dogs, cats and poultry live together without any health control highlights the importance of applying proper hygiene measures during agricultural practices to avoid contamination of fruits and vegetables and prevent Diploscapter genus with the species D. -
Description of Oscheius Indicus N. Sp. (Rhabditidae: Nematoda) from India
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2019-004 e2019-04 | Vol. 51 Description of Oscheius indicus n. sp. (Rhabditidae: Nematoda) from India Puneet Kumar1,2, Wajih Jamal1, Vishal S. Somvanshi2*, Khushbu Chauhan2 and Sabia Mumtaz1 Abstract 1Department of Zoology, Aligarh A new amphimictic species Oscheius indicus n. sp. is described Muslim University, Aligarh, India. and illustrated with morphological and molecular data. The species 2 is characterized by a medium-sized and slender body (female: L = Division of Nematology, ICAR – 1.1 to 1.5 mm; a = 16.8 to 20.6; b = 5.7 to 7.1; c = 7.5 to 10.4; c’ = Indian Agricultural Research Insti- 5.0 to 7.6; V = 45 to 51%), presence of four incisures each in the tute, LBS Center, PUSA Campus, lateral fields with three minute warts, long rectum (2 to 3 anal body New Delhi, India. diameters), nine pairs of papillae arranged as 1+1+1/3+3 pattern, a *E-mail: [email protected]. prominent double-flapped epipytigma on vulval opening, presence of open leptoderan bursa and crochet needle-shaped spicules place This paper was edited by: Eyualem it in the insectivora group. Morphologically, O. indicus n. sp. closely Abebe. resembles O. carolinensis, O. chongmingensis, O. colombiana, and Received for publication September O. nadarajani. Molecular phylogenetic analysis carried out using ITS 3, 2018. and D2/D3 expansion region of 28S rDNA sequences suggests that O. indicus n. sp. is closer to O. chongmingensis and O. rugaonensis. In summary, the morphometrical data, morphological observations and molecular phylogenetic analysis suggested that O. -
Ecology of Caenorhabditis Species* §
Ecology of Caenorhabditis species* § Karin Kiontke , Department of Biology, New York University, New York, NY 10003 USA § Walter Sudhaus , Institut für Biologie/Zoologie, Freie Universität Berlin, D-14195 Berlin, Germany Table of Contents 1. Introduction ............................................................................................................................2 2. Associations with other animals .................................................................................................. 2 2.1. Necromeny ..................................................................................................................2 2.2. Phoresy .......................................................................................................................3 2.3. Possible adaptations to nematode-invertebrate associations .................................................... 3 2.4. Vertebrate associations ................................................................................................... 3 3. Ecology of Caenorhabditis species ..............................................................................................3 3.1. Ecology of C. briggsae, C. elegans and C. remanei ..............................................................4 4. Ecology of the Caenorhabditis stem species and evolution of ecological features within Caenorhabditis .. 5 4.1. The Caenorhabditis stem species ..................................................................................... 5 4.2. Evolutionary trends within Caenorhabditis -
Sensory Cilia As the Achilles Heel of Nematodes When Attacked by Carnivorous Mushrooms
Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms Ching-Han Leea,b,c, Han-Wen Changa,b,c, Ching-Ting Yanga, Niaz Walic,d,e, Jiun-Jie Shiec,d,e, and Yen-Ping Hsueha,b,c,f,1 aInstitute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; bMolecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei 11490, Taiwan; cTaiwan International Graduate Program, National Defense Medical Center, Taipei 11490, Taiwan; dInstitute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; eChemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; and fDepartment of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan Edited by Paul W. Sternberg, California Institute of Technology, Pasadena, CA, and approved January 27, 2020 (received for review October 22, 2019) Fungal predatory behavior on nematodes has evolved indepen- Pleurotus-triggered paralysis in the model nematode Caenorhabditis dently in all major fungal lineages. The basidiomycete oyster elegans. We demonstrate that P. ostreatus paralyzes C. elegans via a mushroom Pleurotus ostreatus is a carnivorous fungus that preys previously unreported mechanism that is evolutionarily conserved on nematodes to supplement its nitrogen intake under nutrient- across different nematode species. Through unbiased genetic limiting conditions. Its hyphae can paralyze nematodes within a screens, we found that the toxins produced by the Pleurotus few minutes of contact, but the mechanism had remained unclear. mushrooms could only exert their nematicidal activity via the We demonstrate that the predator–prey relationship is highly con- sensory cilia of C. elegans, triggering massive intracellular calcium served between multiple Pleurotus species and a diversity of nem- influx and hypercontraction of the pharyngeal and body wall atodes. -
Influence of Climatic Variables and Biological Control Agents
INFLUENCE OF CLIMATIC VARIABLES AND BIOLOGICAL CONTROL AGENTS (NEMATODES) ON THE DISTRIBUTION AND SURVIVAL OF THE COFFEE BERRY BORER, HYPOTHENEMUS HAMPEI, IN PUERTO RICO By José Miguel García Peña A dissertation submitted to the DEPARTMENT OF BIOLOGY FACULTY OF NATURAL SCIENCES UNIVERSITY OF PUERTO RICO RÍO PIEDRAS CAMPUS In partial fulfillment of the requirements for the degree of DOCTOR IN PHILOSOPHY December 2019 San Juan, Puerto Rico © José Miguel García Peña All rights reserved ii This dissertation has been accepted by faculty of the: DEPARTMENT OF BIOLOGY FACULTY OF NATURAL SCIENCES UNIVERSITY OF PUERTO RICO RÍO PIEDRAS CAMPUS In partial fulfillment of the requirements for the degree of DOCTOR IN PHILOSOPHY Dissertation Committee: _________________________________________ José Carlos Verle Rodríguez, Ph.D., Advisor __________________________________________ William Gould, Ph.D. __________________________________________ Paul Bayman, Ph.D. __________________________________________ Alberto M. Sabat, Ph.D. __________________________________________ Miguel Acevedo, Ph.D. iii TABLE OF CONTENS LIST OF TABLES ................................................................................................................................vi LIST OF FIGURES ............................................................................................................................. vii ABSTRACT ...................................................................................................................................... viii DEDICATION