© 2020 Yongrui Yang ALL RIGHTS RESERVED

Total Page:16

File Type:pdf, Size:1020Kb

© 2020 Yongrui Yang ALL RIGHTS RESERVED © 2020 Yongrui Yang ALL RIGHTS RESERVED i FLEXIBLE SUPERCAPACITORS WITH NOVEL GEL ELECTROLYTES A Thesis Presented to The Graduated Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Master of Science Yongrui Yang May 2020 i FLEXIBLE SUPERCAPACITORS WITH NOVEL GEL ELECTROLYTES Yongrui Yang Thesis Approved: Accepted: _______________________________ ___________________________ Advisor Department Chair Dr. Xiong Gong Dr. Mark D. Soucek _______________________________ ___________________________ Committee Member Dean of the College Dr. Kevin A. Cavicchi Dr. Ali Dhinojwala _______________________________ ___________________________ Acting Dean, Graduate School Committee Member Dr. Marnie Saunders Dr. Weinan Xu ___________________________ Date ii ABSTRACT In this thesis, we study flexible supercapacitors. Recent progress in flexible supercapacitors is reviewed in chapter I. Ionic liquid gel electrolytes used for approaching high-energy density supercapacitors are investigated in chapter II. In chapter III, we study the double-network hydrogel with redox additives as the solid- state electrolytes for flexible supercapacitors In Chapter I, after a brief introduction to the current situation of flexible supercapacitors and the mechanisms of different supercapacitors, we summarize the recent progress in both electrode materials and electrolyte materials for flexible supercapacitors, which includes carbon materials, conducting polymers, transition metal oxides/chalcogenides/nitrides, MXenes, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs) for electrode materials and the polymer-based gel electrolytes with different supporting electrolytes. In the end, we give a brief discussion on current challenges and an outlook for the future directions. In Chapter II, a novel 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) : poly(vinyl alcohol) (PVA) : tetrabutylammonium tetrafluoroborate (TBABF4) (BMIMBF4:PVA:TBABF4) is developed for enhancing the energy density of supercapacitors. It is found that the BMIMBF4:PVA:TBABF4 gel electrolytes exhibit an ionic conductivity of 21.7 mS/cm, which is much higher than that of BMIMBF4:PVA gel electrolyte. The quasi-solid-state asymmetric supercapacitors assembled by using the BMIMBF4:PVA:TBABF4 gel as electrolyte, and MnO2 coated carbon cloth as the positive electrode and reduced graphene oxide coated on carbon cloth as the negative electrode, respectively, exhibit a wide operational window of 3V, iii an energy density of 61.2 Wh/kg at the power density of 1049 W/kg, an operational temperature ranging from 20 oC to 90 oC, and more than 80% capacitance retention after 3000 charge/discharge cycles. In Chapter III, we developed pHEAA-gelatin-chitosan Na2MoO4 DN hydrogel electrolytes for approaching high energy density and flexibility of supercapacitors. The pHEAA-gelatin-chitosan Na2MoO4 DN hydrogel electrolytes exhibit superior mechanical strength, good flexibility, and fast self-recovery performances. The symmetric supercapacitors (SSCs) constructed by using pHEAA-gelatin-chitosan Na2MoO4 DN hydrogel as the quasi-solid-state electrolytes and carbon cloth as electrodes show an energy density of 0.07 mWh/cm3 (~34 Wh/kg) at the power density of 3.8 mW/cm3 (~1800 W/kg), and more than 95% capacitance retention after 3000 charge/discharge cycles. iv ACKNOWLEDGEMENT First of all, I am grateful to my advisor Prof. Xiong Gong for his kindness and continuous support. His unselfish and wise suggestions teach me not only how to do research and study but also to be a good person. Then I would like to show my extreme gratitude to my beloved parents for their love, support, and enouncement all the time. Then I would like to give my appreciation to my group mates: Mr. Zhihao Ma, Mr. Luyao Zheng, Mr. Tao Zhu, Mr. Xiuyuan Zhang, Mr. Baosen Zhang, Mr. Suyuan Zhou Mr. Cheng Chi, and Mr. Sian Xiao, especially for Mr. Zhihao Ma, Mr. Luyao Zheng, and Mr. Tao Zhu for their selfless help and encouragement. Finally, I want to express my gratitude to all the faculty members and my classmates in the Department of Polymer Engineering for their sincere guidance and suggestions. v TABLE OF CONTENTS LIST OF TABLES…………………………………………………………………….ix LIST OF FIGURES……………………………………………………………………x LIST OF SCHEMES………………………………………………………………...xvi CHAPTER I. RECENT PROGRESS IN SOLID-STATE FLEXIBLE SUPERCAPACITORS 1.1 Introduction ......................................................................................................... 1 1.2 Mechanisms of supercapacitors ............................................................................ 3 1.2.1 Electric double-layer capacitors .................................................................... 3 1.2.2 Pseudocapacitors ........................................................................................... 4 1.2.3 Hybrid-capacitors .......................................................................................... 5 1.2.4 Device performance parameters used for evaluation of supercapacitors ......... 6 1.3 Materials for high-performance flexible electrodes .............................................. 9 1.3.1 Carbon materials ......................................................................................... 10 1.3.2 Conducting polymers................................................................................... 13 1.3.3 Metal oxides/chalcogenides/nitrides ............................................................ 17 1.3.4 MXenes ....................................................................................................... 24 1.3.5 Metal-organic frameworks (MOFs) ............................................................. 28 1.3.6 Covalent-organic frameworks (COFs) ......................................................... 30 vi 1.4 Polymer based solid-state electrolyte materials for flexible supercapacitors ....... 32 1.4.1 Aqueous gel electrolytes .............................................................................. 32 1.4.2 Organic gel electrolytes ............................................................................... 36 1.4.3 Ionic liquid gel electrolytes.......................................................................... 39 1.5 Summary and Outlook ....................................................................................... 43 II. QUASI-SOLID-STATE ASYMMETRIC SUPERCAPACITORS WITH NOVEL IONIC LIQUID GEL ELECTROLYTES 2.1 Introduction ....................................................................................................... 45 2.2 Experimental section .......................................................................................... 46 2.2.1 Materials ..................................................................................................... 46 2.2.2 Synthesis of GO .......................................................................................... 47 2.2.3 Synthesis of TBABF4:PVA:BMIMBF4 gels ............................................... 47 2.2.4 Preparation of the electrodes ........................................................................ 48 2.2.5 Fabrication of ASCs .................................................................................... 48 2.2.6 Characterization of ASCs ............................................................................ 48 2.3 Results and discussion ....................................................................................... 49 2.4 Conclusions ....................................................................................................... 55 III. FLEXIBLE SUPERCAPACITORS WITH DOUBLE-NETWORK HYDROGEL REDOX-ELECTROLYTES vii 3.1 Introduction ....................................................................................................... 57 3.2 Experimental section .......................................................................................... 59 3.2.1 Materials ..................................................................................................... 59 3.2.2 Preparation of the pHEAA-gelatin-chitosan Na2MoO4 DN hydrogel electrolytes ........................................................................................................... 59 3.2.3 Tensile measurement ................................................................................... 60 3.2.4 Hysteresis measurement .............................................................................. 60 3.2.5 SEM-EDX measurement ............................................................................. 60 3.2.6 FTIR-ATR Spectroscopy ............................................................................. 60 3.2.7 Preparation and electrochemical characterization of SSCs ........................... 60 3.3 Results and Discussion ...................................................................................... 62 3.4 Conclusion ......................................................................................................... 74 REFERENCES ........................................................................................................ 76 APPENDICES ......................................................................................................... 81 viii LIST OF TABLES Table 1.1 Recent progress in CPs based supercapacitors…….……………………….17 Table 1.2 Recent progress in supercapacitors with metal oxides/chalcogenides/nitrides electrodes……………………………………………………………………………..23 Table 1.3 Recent progress in supercapacitors with MXene electrodes……………..…27
Recommended publications
  • Preparation, Structure and Properties of New Ternary Chalcogenides and Germanides of the Metals from the First Transition Series, Cr, Mn, Fe and Ni
    Preparation, Structure and Properties of New Ternary Chalcogenides and Germanides of the Metals from the First Transition Series, Cr, Mn, Fe and Ni DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften vorgelegt von Dipl. Ing. – Chem. Krasimir Aleksandrov geb. am 03.12.1975 in Vratsa eingereicht beim Fachbereich 8 der Universität Siegen Siegen 2005 Berichterstatter: Prof. Dr. H. -J. Deiseroth Prof. Dr. H. Haeuseler Tag der mündlichen Prüfung: 30.06.2005 urn:nbn:de:hbz:467-1058 Acknowledgements This work was completed during the time from June 2001 to May 2005 in the Inorganic Chemistry Department, University of Siegen under the guidance of Prof. Dr. H. J. Deiseroth. I would like to express my heartfelt gratitude to my supervisor Prof. Dr. H. J. Deiseroth for his elaborate guidance and unlimited enthusiasm. I would like to thank Dr. C. Reiner for our many fruitful discussions and SEM investigations and Dr. M. Schlosser for the single crystal measurements. I am also very gratefully to both Dipl. Chem. J. Schlirf and Dr. M. Aleksandrova for their assistance in carrying out the DTA and IR measurements. I would like to thank my colleagues Dipl. Chem. Michael Wagener, Dipl. Chem. Kledi Xhaxhiu and all the other members of the Inorganic Chemistry group of the University of Siegen, with whom I had the pleasure of working. I am especially pleased to acknowledge the assistance of Dipl. Ing. W. Büdenbender in the technical problems. I would like to thank Dr. R. K. Kremer from the Max – Planck – Institute for Solid State Research, Stuttgart for carrying out the magnetic measurements.
    [Show full text]
  • Chemsherpa 管理対象物質 Ver2.03.10 説明書
    chemSHERPA 管理対象物質 Ver2.03.10 説明書 chemSHERPA 事務局 内容 1. はじめに ..................................................................................................................................... 2 2. 管理対象物質リストに関わる用語の定義 .................................................................................. 3 3. 管理対象物質 Ver2.03.10 について ........................................................................................... 4 3.1 管理対象基準 ........................................................................................................................ 4 3.1.1 LR01: 日本 化審法 第一種特定化学物質 .................................................................... 5 3.1.2 LR02:米国 有害物質規制法(Toxic Substances Control Act:TSCA)使用禁止又は 制限の対象物質(第 6 条) .......................................................................................... 5 3.1.3 LR03:EU ELV 指令 2000/53/EC ............................................................................... 6 3.1.4 LR04:EU RoHS 指令 2011/65/EU ANNEX II ....................................................... 6 3.1.5 LR05:EU POPs 規則 (EU) 2019/1021 ANNEX I .................................................. 7 3.1.6 LR06 :EU REACH 規則 (EC) No 1907/2006 Candidate List of SVHC for Authorisation(認可対象候補物質)及び ANNEX XIV(認可対象物質)................ 7 3.1.7 LR07:EU REACH 規則 (EC) No 1907/2006 ANNEX XVII(制限対象物質) .. 10 3.1.8 LR08: 欧州 医療機器規則 Annex I 10.4 化学物質 ................................................... 11 3.1.9 IC01:Global Automotive Declarable Substance List (GADSL) ............................ 12 3.1.10 IC02:IEC 62474 DB Declarable
    [Show full text]
  • Transition Metal Solar Absorbers
    AN ABSTRACT OF THE THESIS OF Emmeline Beth Altschul for the degree of Master of Science in Chemistry presented on July 2, 2012 Title: Transition Metal Solar Absorbers Abstract approved: Douglas A. Keszler A new approach to the discovery of high absorbing semiconductors for solar cells was taken by working under a set of design principles and taking a systemic methodology. Three transition metal chalcogenides at varying states of development were evaluated within this framework. Iron pyrite (FeS2) is well known to demonstrate excellent absorption, but the coexistence with metallic iron sulfides was found to disrupt its semiconducting properties. Manganese diselenide (MnSe2), a material heavily researched for its magnetic properties, is proposed as a high absorbing alternative to iron pyrite that lacks destructive impurity phases. For the first time, a MnSe2 thin film was synthesized and the optical properties were characterized. Finally, CuTaS3, a known but never characterized material, is also proposed as a high absorbing semiconductor based on the design principles and experimental results. © Copyright by Emmeline Beth Altschul July 2, 2012 All Rights Reserved Transition Metal Solar Absorbers by Emmeline Beth Altschul A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented July 2, 2012 Commencement June 2013 Masters of Science thesis of Emmeline Beth Altschul presented on July 2, 2012. APPROVED: Major Professor, representing Chemistry Chair of the Department of Chemistry Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.
    [Show full text]