Modulation of mechanical resonance by chemical potential oscillation in graphene The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen, Changyao, Vikram V. Deshpande, Mikito Koshino, Sunwoo Lee, Alexander Gondarenko, Allan H. MacDonald, Philip Kim, and James Hone. 2015. “Modulation of Mechanical Resonance by Chemical Potential Oscillation in Graphene.” Nature Physics 12 (3) (December 7): 240–244. doi:10.1038/nphys3576. Published Version doi:10.1038/nphys3576 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34309591 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Modulation of mechanical resonance by chemical poten- tial oscillation in graphene 1 2 3 4 1 Changyao Chen †, Vikram V.Deshpande , Mikito Koshino , Sunwoo Lee , Alexander Gondarenko , 5 6 1 Allan H. MacDonald , Philip Kim & James Hone ⇤ 1Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA 2Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, 84112, USA 3Department of Physics, Tohoku University, Sendai 980-8578, Japan 4Department of Electrical Engineering, Columbia University, New York, NY 10027, USA 5Department of Physics, University of Texas, Austin, TX 78712, USA 6Department of Physics, Harvard University, Cambridge, MA, 02138, USA † Current address: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA ⇤ Corresponding email:
[email protected] The classical picture of the force on a capacitor assumes a large density of electronic states, such that the electrochemical potential of charges added to the capacitor is given by the ex- ternal electrostatic potential and the capacitance is determined purely by geometry.