Scaling Memcache at Facebook

Total Page:16

File Type:pdf, Size:1020Kb

Scaling Memcache at Facebook Scaling Memcache at Facebook Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, Venkateshwaran Venkataramani rajeshn,hans @fb.com, sgrimm, marc @facebook.com, herman, hcli, rm, mpal, dpeek, ps, dstaff, ttung, veeve @fb.com { } { } { } Facebook Inc. Abstract: Memcached is a well known, simple, in- however, web pages routinely fetch thousands of key- memory caching solution. This paper describes how value pairs from memcached servers. Facebook leverages memcached as a building block to One of our goals is to present the important themes construct and scale a distributed key-value store that that emerge at different scales of our deployment. While supports the world’s largest social network. Our system qualities like performance, efficiency, fault-tolerance, handles billions of requests per second and holds tril- and consistency are important at all scales, our experi- lions of items to deliver a rich experience for over a bil- ence indicates that at specific sizes some qualities re- lion users around the world. quire more effort to achieve than others. For exam- ple, maintaining data consistency can be easier at small 1 Introduction scales if replication is minimal compared to larger ones where replication is often necessary. Additionally, the Popular and engaging social networking sites present importance of finding an optimal communication sched- significant infrastructure challenges. Hundreds of mil- ule increases as the number of servers increase and net- lions of people use these networks every day and im- working becomes the bottleneck. pose computational, network, and I/O demands that tra- This paper includes four main contributions: (1) ditional web architectures struggle to satisfy. A social We describe the evolution of Facebook’s memcached- network’s infrastructure needs to (1) allow near real- based architecture. (2) We identify enhancements to time communication, (2) aggregate content on-the-fly memcached that improve performance and increase from multiple sources, (3) be able to access and update memory efficiency. (3) We highlight mechanisms that very popular shared content, and (4) scale to process improve our ability to operate our system at scale. (4) millions of user requests per second. We characterize the production workloads imposed on We describe how we improved the open source ver- our system. sion of memcached [14] and used it as a building block to construct a distributed key-value store for the largest so- 2 Overview cial network in the world. We discuss our journey scal- The following properties greatly influence our design. ing from a single cluster of servers to multiple geograph- First, users consume an order of magnitude more con- ically distributed clusters. To the best of our knowledge, tent than they create. This behavior results in a workload this system is the largest memcached installation in the dominated by fetching data and suggests that caching world, processing over a billion requests per second and can have significant advantages. Second, our read op- storing trillions of items. erations fetch data from a variety of sources such as This paper is the latest in a series of works that have MySQL databases, HDFS installations, and backend recognized the flexibility and utility of distributed key- services. This heterogeneity requires a flexible caching value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo- strategy able to store data from disparate sources. cuses on memcached—an open-source implementation Memcached provides a simple set of operations (set, of an in-memory hash table—as it provides low latency get, and delete) that makes it attractive as an elemen- access to a shared storage pool at low cost. These quali- tal component in a large-scale distributed system. The ties enable us to build data-intensive features that would open-source version we started with provides a single- otherwise be impractical. For example, a feature that machine in-memory hash table. In this paper, we discuss issues hundreds of database queries per page request how we took this basic building block, made it more ef- would likely never leave the prototype stage because it ficient, and used it to build a distributed key-value store would be too slow and expensive. In our application, that can process billions of requests per second. Hence- USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 385 web web server server 1. get k 2. SELECT ... 1. UPDATE ... 2. delete k 3. set (k,v) memcache database memcache database Figure 1: Memcache as a demand-filled look-aside cache. The left half illustrates the read path for a web server on a cache miss. The right half illustrates the write path. forth, we use ‘memcached’ to refer to the source code or a running binary and ‘memcache’ to describe the dis- tributed system. Figure 2: Overall architecture memcache Query cache: We rely on to lighten the read We structure our paper to emphasize the themes that memcache load on our databases. In particular, we use emerge at three different deployment scales. Our read- demand-filled look-aside as a cache as shown in Fig- heavy workload and wide fan-out is the primary con- ure 1. When a web server needs data, it first requests cern when we have one cluster of servers. As it becomes memcache the value from by providing a string key. If necessary to scale to multiple frontend clusters, we ad- the item addressed by that key is not cached, the web dress data replication between these clusters. Finally, we server retrieves the data from the database or other back- describe mechanisms to provide a consistent user ex- end service and populates the cache with the key-value perience as we spread clusters around the world. Op- pair. For write requests, the web server issues SQL state- erational complexity and fault tolerance is important at ments to the database and then sends a delete request to all scales. We present salient data that supports our de- memcache that invalidates any stale data. We choose to sign decisions and refer the reader to work by Atikoglu delete cached data instead of updating it because deletes et al. [8] for a more detailed analysis of our workload. At Memcache are idempotent. is not the authoritative source a high-level, Figure 2 illustrates this final architecture in of the data and is therefore allowed to evict cached data. which we organize co-located clusters into a region and While there are several ways to address excessive designate a master region that provides a data stream to read traffic on MySQL databases, we chose to use keep non-master regions up-to-date. memcache. It was the best choice given limited engi- While evolving our system we prioritize two ma- neering resources and time. Additionally, separating our jor design goals. (1) Any change must impact a user- caching layer from our persistence layer allows us to ad- facing or operational issue. Optimizations that have lim- just each layer independently as our workload changes. ited scope are rarely considered. (2) We treat the prob- Generic cache: We also leverage memcache as a more ability of reading transient stale data as a parameter to general key-value store. For example, engineers use be tuned, similar to responsiveness. We are willing to memcache to store pre-computed results from sophisti- expose slightly stale data in exchange for insulating a cated machine learning algorithms which can then be backend storage service from excessive load. used by a variety of other applications. It takes little ef- fort for new services to leverage the existing marcher 3 In a Cluster: Latency and Load infrastructure without the burden of tuning, optimizing, We now consider the challenges of scaling to thousands provisioning, and maintaining a large server fleet. of servers within a cluster. At this scale, most of our As is, memcached provides no server-to-server co- efforts focus on reducing either the latency of fetching ordination; it is an in-memory hash table running on cached data or the load imposed due to a cache miss. a single server. In the remainder of this paper we de- scribe how we built a distributed key-value store based 3.1 Reducing Latency on memcached capable of operating under Facebook’s Whether a request for data results in a cache hit or miss, workload. Our system provides a suite of configu- the latency of memcache’s response is a critical factor ration, aggregation, and routing services to organize in the response time of a user’s request. A single user memcached instances into a distributed system. web request can often result in hundreds of individual 386 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association memcache get requests. For example, loading one of our popular pages results in an average of 521 distinct items UDP direct fetched from memcache.1 by mcrouter (TCP) We provision hundreds of memcached servers in a cluster to reduce load on databases and other services. Items are distributed across the memcached servers through consistent hashing [22]. Thus web servers have to routinely communicate with many memcached servers microseconds to satisfy a user request. As a result, all web servers communicate with every memcached server in a short period of time. This all-to-all communication pattern can cause incast congestion [30] or allow a single server 0 200 600 1000 1400 to become the bottleneck for many web servers. Data Average of Medians Average of 95th Percentiles replication often alleviates the single-server bottleneck but leads to significant memory inefficiencies in the Figure 3: Get latency for UDP, TCP via mcrouter common case.
Recommended publications
  • Redis and Memcached
    Redis and Memcached Speaker: Vladimir Zivkovic, Manager, IT June, 2019 Problem Scenario • Web Site users wanting to access data extremely quickly (< 200ms) • Data being shared between different layers of the stack • Cache a web page sessions • Research and test feasibility of using Redis as a solution for storing and retrieving data quickly • Load data into Redis to test ETL feasibility and Performance • Goal - get sub-second response for API calls for retrieving data !2 Why Redis • In-memory key-value store, with persistence • Open source • Written in C • It can handle up to 2^32 keys, and was tested in practice to handle at least 250 million of keys per instance.” - http://redis.io/topics/faq • Most popular key-value store - http://db-engines.com/en/ranking !3 History • REmote DIctionary Server • Released in 2009 • Built in order to scale a website: http://lloogg.com/ • The web application of lloogg was an ajax app to show the site traffic in real time. Needed a DB handling fast writes, and fast ”get latest N items” operation. !4 Redis Data types • Strings • Bitmaps • Lists • Hyperlogs • Sets • Geospatial Indexes • Sorted Sets • Hashes !5 Redis protocol • redis[“key”] = “value” • Values can be strings, lists or sets • Push and pop elements (atomic) • Fetch arbitrary set and array elements • Sorting • Data is written to disk asynchronously !6 Memory Footprint • An empty instance uses ~ 3MB of memory. • For 1 Million small Keys => String Value pairs use ~ 85MB of memory. • 1 Million Keys => Hash value, representing an object with 5 fields,
    [Show full text]
  • Modeling and Analyzing Latency in the Memcached System
    Modeling and Analyzing Latency in the Memcached system Wenxue Cheng1, Fengyuan Ren1, Wanchun Jiang2, Tong Zhang1 1Tsinghua National Laboratory for Information Science and Technology, Beijing, China 1Department of Computer Science and Technology, Tsinghua University, Beijing, China 2School of Information Science and Engineering, Central South University, Changsha, China March 27, 2017 abstract Memcached is a widely used in-memory caching solution in large-scale searching scenarios. The most pivotal performance metric in Memcached is latency, which is affected by various factors including the workload pattern, the service rate, the unbalanced load distribution and the cache miss ratio. To quantitate the impact of each factor on latency, we establish a theoretical model for the Memcached system. Specially, we formulate the unbalanced load distribution among Memcached servers by a set of probabilities, capture the burst and concurrent key arrivals at Memcached servers in form of batching blocks, and add a cache miss processing stage. Based on this model, algebraic derivations are conducted to estimate latency in Memcached. The latency estimation is validated by intensive experiments. Moreover, we obtain a quantitative understanding of how much improvement of latency performance can be achieved by optimizing each factor and provide several useful recommendations to optimal latency in Memcached. Keywords Memcached, Latency, Modeling, Quantitative Analysis 1 Introduction Memcached [1] has been adopted in many large-scale websites, including Facebook, LiveJournal, Wikipedia, Flickr, Twitter and Youtube. In Memcached, a web request will generate hundreds of Memcached keys that will be further processed in the memory of parallel Memcached servers. With this parallel in-memory processing method, Memcached can extensively speed up and scale up searching applications [2].
    [Show full text]
  • Release 2.5.5 Ask Solem Contributors
    Celery Documentation Release 2.5.5 Ask Solem Contributors February 04, 2014 Contents i ii Celery Documentation, Release 2.5.5 Contents: Contents 1 Celery Documentation, Release 2.5.5 2 Contents CHAPTER 1 Getting Started Release 2.5 Date February 04, 2014 1.1 Introduction Version 2.5.5 Web http://celeryproject.org/ Download http://pypi.python.org/pypi/celery/ Source http://github.com/celery/celery/ Keywords task queue, job queue, asynchronous, rabbitmq, amqp, redis, python, webhooks, queue, dis- tributed – • Synopsis • Overview • Example • Features • Documentation • Installation – Bundles – Downloading and installing from source – Using the development version 1.1.1 Synopsis Celery is an open source asynchronous task queue/job queue based on distributed message passing. Focused on real- time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently on one or more worker nodes using multiprocessing, Eventlet or gevent. Tasks can execute asynchronously (in the background) or synchronously (wait until ready). Celery is used in production systems to process millions of tasks every hour. 3 Celery Documentation, Release 2.5.5 Celery is written in Python, but the protocol can be implemented in any language. It can also operate with other languages using webhooks. There’s also RCelery for the Ruby programming language, and a PHP client. The recommended message broker is RabbitMQ, but support for Redis, MongoDB, Beanstalk, Amazon SQS, CouchDB and databases (using SQLAlchemy or the Django ORM) is also available. Celery is easy to integrate with web frameworks, some of which even have integration packages: Django django-celery Pyramid pyramid_celery Pylons celery-pylons Flask flask-celery web2py web2py-celery 1.1.2 Overview This is a high level overview of the architecture.
    [Show full text]
  • An End-To-End Application Performance Monitoring Tool
    Applications Manager - an end-to-end application performance monitoring tool For enterprises to stay ahead of the technology curve in today's competitive IT environment, it is important for their business critical applications to perform smoothly. Applications Manager - ManageEngine's on-premise application performance monitoring solution offers real-time application monitoring capabilities that offer deep visibility into not only the performance of various server and infrastructure components but also other technologies used in the IT ecosystem such as databases, cloud services, virtual systems, application servers, web server/services, ERP systems, big data, middleware and messaging components, etc. Highlights of Applications Manager Wide range of supported apps Monitor 150+ application types and get deep visibility into all the components of your application environment. Ensure optimal performance of all your applications by visualizing real-time data via comprehensive dashboards and reports. Easy installation and setup Get Applications Manager running in under two minutes. Applications Manager is an agentless monitoring tool and it requires no complex installation procedures. Automatic discovery and dependency mapping Automatically discover all applications and servers in your network and easily categorize them based on their type (apps, servers, databases, VMs, etc.). Get comprehensive insight into your business infrastructure, drill down to IT application relationships, map them effortlessly and understand how applications interact with each other with the help of these dependency maps. Deep dive performance metrics Track key performance metrics of your applications like response times, requests per minute, lock details, session details, CPU and disk utilization, error states, etc. Measure the efficiency of your applications by visualizing the data at regular periodic intervals.
    [Show full text]
  • WEB2PY Enterprise Web Framework (2Nd Edition)
    WEB2PY Enterprise Web Framework / 2nd Ed. Massimo Di Pierro Copyright ©2009 by Massimo Di Pierro. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Copyright owner for permission should be addressed to: Massimo Di Pierro School of Computing DePaul University 243 S Wabash Ave Chicago, IL 60604 (USA) Email: [email protected] Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Library of Congress Cataloging-in-Publication Data: WEB2PY: Enterprise Web Framework Printed in the United States of America.
    [Show full text]
  • Performance at Scale with Amazon Elasticache
    Performance at Scale with Amazon ElastiCache July 2019 Notices Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. © 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved. Contents Introduction .......................................................................................................................... 1 ElastiCache Overview ......................................................................................................... 2 Alternatives to ElastiCache ................................................................................................. 2 Memcached vs. Redis ......................................................................................................... 3 ElastiCache for Memcached ............................................................................................... 5 Architecture with ElastiCache for Memcached ...............................................................
    [Show full text]
  • High Performance with Distributed Caching
    High Performance with Distributed Caching Key Requirements For Choosing The Right Solution High Performance with Distributed Caching: Key Requirements for Choosing the Right Solution Table of Contents Executive summary 3 Companies are choosing Couchbase for their caching layer, and much more 3 Memory-first 4 Persistence 4 Elastic scalability 4 Replication 5 More than caching 5 About this guide 5 Memcached and Oracle Coherence – two popular caching solutions 6 Oracle Coherence 6 Memcached 6 Why cache? Better performance, lower costs 6 Common caching use cases 7 Key requirements for an effective distributed caching solution 8 Problems with Oracle Coherence: cost, complexity, capabilities 8 Memcached: A simple, powerful open source cache 10 Lack of enterprise support, built-in management, and advanced features 10 Couchbase Server as a high-performance distributed cache 10 General-purpose NoSQL database with Memcached roots 10 Meets key requirements for distributed caching 11 Develop with agility 11 Perform at any scale 11 Manage with ease 12 Benchmarks: Couchbase performance under caching workloads 12 Simple migration from Oracle Coherence or Memcached to Couchbase 13 Drop-in replacement for Memcached: No code changes required 14 Migrating from Oracle Coherence to Couchbase Server 14 Beyond caching: Simplify IT infrastructure, reduce costs with Couchbase 14 About Couchbase 14 Caching has become Executive Summary a de facto technology to boost application For many web, mobile, and Internet of Things (IoT) applications that run in clustered performance as well or cloud environments, distributed caching is a key requirement, for reasons of both as reduce costs. performance and cost. By caching frequently accessed data in memory – rather than making round trips to the backend database – applications can deliver highly responsive experiences that today’s users expect.
    [Show full text]
  • Opinnäytetyön Malli Vanhoille Word-Versioille
    Bachelor’s Thesis Information Technology 2011 Kenneth Emeka Odoh DESIGN AND IMPLEMENTATION OF A WEB- BASED AUCTION SYSTEM ii BACHELOR’S THESIS (UAS) │ABSTRACT TURKU UNIVERSITY OF APPLIED SCIENCES Information Technology | Networking Date of completion of the thesis | 12th January 2012 Instructor: Ferm Tiina Kenneth Emeka Odoh DESIGN AND IMPLEMENTATION OF A WEB- BASED AUCTION SYSTEM Electronic auction has been a popular means of goods distribution. The number of items sold through the internet auction sites have grown in the past few years. Evidently, this has become the medium of choice for customers. This project entails the design and implementation of a web-based auction system for users to trade in goods. The system was implemented in the Django framework. On account that the trade over the Internet lacks any means of ascertaining the quality of goods, there is a need to implement a feedback system to rate the seller’s credibility in order to increase customer confidence in a given business. The feedback system is based on the history of the customer’s rating of the previous seller’s transactions. As a result, the auction system has a built-in feedback system to enhance the credibility of the auction system. The project was designed by using a modular approach to ensure maintainability. There is a number of engines that were implemented in order to enhance the functionality of the auction system. They include the following: commenting engine, search engine, business intelligence (user analytic and statistics), graph engine, advertisement engine and recommendation engine. As a result of this thesis undertaking, a full-fledged system robust enough to handle small or medium-sized traffic has been developed to specification.
    [Show full text]
  • VSI's Open Source Strategy
    VSI's Open Source Strategy Plans and schemes for Open Source so9ware on OpenVMS Bre% Cameron / Camiel Vanderhoeven April 2016 AGENDA • Programming languages • Cloud • Integraon technologies • UNIX compability • Databases • Analy;cs • Web • Add-ons • Libraries/u;li;es • Other consideraons • SoDware development • Summary/conclusions tools • Quesons Programming languages • Scrip;ng languages – Lua – Perl (probably in reasonable shape) – Tcl – Python – Ruby – PHP – JavaScript (Node.js and friends) – Also need to consider tools and packages commonly used with these languages • Interpreted languages – Scala (JVM) – Clojure (JVM) – Erlang (poten;ally a good fit with OpenVMS; can get good support from ESL) – All the above are seeing increased adop;on 3 Programming languages • Compiled languages – Go (seeing rapid adop;on) – Rust (relavely new) – Apple Swi • Prerequisites (not all are required in all cases) – LLVM backend – Tweaks to OpenVMS C and C++ compilers – Support for latest language standards (C++) – Support for some GNU C/C++ extensions – Updates to OpenVMS C RTL and threads library 4 Programming languages 1. JavaScript 2. Java 3. PHP 4. Python 5. C# 6. C++ 7. Ruby 8. CSS 9. C 10. Objective-C 11. Perl 12. Shell 13. R 14. Scala 15. Go 16. Haskell 17. Matlab 18. Swift 19. Clojure 20. Groovy 21. Visual Basic 5 See h%p://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/ Programming languages Growing programming languages, June 2015 Steve O’Grady published another edi;on of his great popularity study on programming languages: RedMonk Programming Language Rankings: June 2015. As usual, it is a very valuable piece. There are many take-away from this research.
    [Show full text]
  • Amazon Elasticache Deep Dive Powering Modern Applications with Low Latency and High Throughput
    Amazon ElastiCache Deep Dive Powering modern applications with low latency and high throughput Michael Labib Sr. Manager, Non-Relational Databases © 2020, Amazon Web Services, Inc. or its Affiliates. Agenda • Introduction to Amazon ElastiCache • Redis Topologies & Features • ElastiCache Use Cases • Monitoring, Sizing & Best Practices © 2020, Amazon Web Services, Inc. or its Affiliates. Introduction to Amazon ElastiCache © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Purpose-built databases © 2020, Amazon Web Services, Inc. or its Affiliates. Modern real-time applications require Performance, Scale & Availability Users 1M+ Data volume Terabytes—petabytes Locality Global Performance Microsecond latency Request rate Millions per second Access Mobile, IoT, devices Scale Up-out-in E-Commerce Media Social Online Shared economy Economics Pay-as-you-go streaming media gaming Developer access Open API © 2020, Amazon Web Services, Inc. or its Affiliates. Amazon ElastiCache – Fully Managed Service Redis & Extreme Secure Easily scales to Memcached compatible performance and reliable massive workloads Fully compatible with In-memory data store Network isolation, encryption Scale writes and open source Redis and cache for microsecond at rest/transit, HIPAA, PCI, reads with sharding and Memcached response times FedRAMP, multi AZ, and and replicas automatic failover © 2020, Amazon Web Services, Inc. or its Affiliates. What is Redis? Initially released in 2009, Redis provides: • Complex data structures: Strings, Lists, Sets, Sorted Sets, Hash Maps, HyperLogLog, Geospatial, and Streams • High-availability through replication • Scalability through online sharding • Persistence via snapshot / restore • Multi-key atomic operations A high-speed, in-memory, non-Relational data store. • LUA scripting Customers love that Redis is easy to use.
    [Show full text]
  • Developing Replication Plugins for Drizzle
    Developing Replication Plugins for Drizzle Jay Pipes [email protected] http://joinfu.com Padraig O'Sullivan [email protected] http://posulliv.com These slides released under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License what we'll cover today Contributing to Drizzle Overview of Drizzle's architecture Code walkthrough of Drizzle plugin basics Overview of Drizzle's replication system Understanding Google Protobuffers The Transaction message In depth walkthrough of the filtered replicator In-depth walkthrough of the transaction log The future, your ideas, making an impact Drizzle is a Community Being a Drizzler Some things to remember... No blame No shame Be open and transparent Learn something from someone? Pass it on... − By adding to the wiki (http://drizzle.org/wiki/) − By sharing it with another contributor − By blogging about it − By posting what you learn to the mailing list There is no such thing as a silly question NO TROLLS. Managing Your Code Launchpad and BZR Launchpad.net The Drizzle community focal-point − http://launchpad.net/drizzle Join the drizzle-developers team: − http://launchpad.net/~drizzle-developers − Once on the team, you'll be able to push BZR branches to the main Drizzle code repository Launchpad.net Code management Task (blueprint) management Bug reporting Translations (Rosetta) FAQ functionality − http://www.joinfu.com/2008/08/a-contributors-guide- to-launchpadnet-part-1-getting-started/ − http://www.joinfu.com/2008/08/a-contributors-guide- to-launchpadnet-part-2-code-management/
    [Show full text]
  • Designing and Implementing Scalable Applications with Memcached and Mysql
    Designing and Implementing Scalable Applications with Memcached and MySQL A MySQL ® White Paper June, 2008 Copyright © 2008, MySQL AB Table of Contents Designing and Implementing ........................................................................................................... 1 Scalable Applications with Memcached and MySQL ................................................................ 1 Table of Contents ................................................................................................................................... 2 Introduction ............................................................................................................................................. 3 Memcached Overview .......................................................................................................................... 3 How Memcached Works ...................................................................................................................... 4 Memcached Server ................................................................................................................................ 5 Memcached Clients ............................................................................................................................... 8 Example Architectures ......................................................................................................................... 9 Solutions: Memcached for MySQL ................................................................................................
    [Show full text]