A Framework for Post-Phylogenetic Systematics

Total Page:16

File Type:pdf, Size:1020Kb

A Framework for Post-Phylogenetic Systematics A FRAMEWORK FOR POST-PHYLOGENETIC SYSTEMATICS Richard H. Zander Zetetic Publications, St. Louis Richard H. Zander Missouri Botanical Garden P.O. Box 299 St. Louis, MO 63166 [email protected] Zetetic Publications in St. Louis produces but does not sell this book. Any book dealer can obtain a copy for you through the usual channels. Resellers please contact CreateSpace Independent Publishing Platform of Amazon. ISBN-13: 978-1492220404 ISBN-10: 149222040X © Copyright 2013, all rights reserved. The image on the cover and title page is a stylized dendrogram of paraphyly (see Plate 1.1). This is, in macroevolutionary terms, an ancestral taxon of two (or more) species or of molecular strains of one taxon giving rise to a descendant taxon (unconnected comma) from one ancestral branch. The image on the back cover is a stylized dendrogram of two, genus-level speciational bursts or dis- silience. Here, the dissilient genus is the basic evolutionary unit (see Plate 13.1). This evolutionary model is evident in analysis of the moss Didymodon (Chapter 8) through superoptimization. A super- generative core species with a set of radiative, specialized descendant species in the stylized tree com- promises one genus. In this exemplary image; another genus of similar complexity is generated by the core supergenerative species of the first. TABLE OF CONTENTS Preface..................................................................................................................................................... 1 Acknowledgments................................................................................................................................... 3 Chapter 1. Introduction ......................................................................................................................... 5 Chapter 2. Pluralism versus Structuralism in Phylogenetic Systematics ............................................ 19 Chapter 3. A Framework ..................................................................................................................... 25 Chapter 4. Element 1 - Contributions of Classical Systematics ......................................................... 27 Chapter 5. Element 2 - Contributions of Morphological Cladistics .................................................... 35 Chapter 6. Element 3 - Contributions of Molecular Systematics ........................................................ 51 Chapter 7. Element 4 - Contributions from Cross-Tree Heterophyly .................................................. 67 Chapter 8. Element 5 - Superoptimization and Consolidation ............................................................. 75 Chapter 9. Element 6 - Linnaean Classification ............................................................................... 107 Chapter 10. Systematics Reviewed and Recast ................................................................................. 109 Chapter 11. Conservation and Biodiversity ....................................................................................... 117 Chapter 12. Scientific Intuition and the Hard Sciences ..................................................................... 125 Chapter 13. The Macroevolutionary Taxon Concept ........................................................................ 145 Chapter 14. Support Measures for Macroevolutionary Transformations ........................................... 159 Chapter 15. Multiple Tests and “Discovering” Morphological Support ........................................... 167 Chapter 16. Summary of Framework ................................................................................................ 173 Glossary ............................................................................................................................................. 179 Bibliography ..................................................................................................................................... 183 Index ................................................................................................................................................. 205 Preface PREFACE This book is an attempt to find common principles other, which is the nut of macroevolutionary theory. and intellectual continuity in addressing today’s This book rejects classification informing evolu- problems in systematics. Certain difficulties endemic tion rather than the other way around. “The map is in human thought, and often faced in the past in other not the territory.” Given that historical reconstruction fields, are now evident in systematics. This has been cannot be directly verified, and will remain forever perceived by many workers and science is self- notional not actual, mere precision will never make correcting, however tardily. This book suggests a up for natural limits on accuracy, particularly if pre- needed correction that deals with several problems at cision is obtained at the sacrifice of a total evidence once, and its particular solution will be accepted or approach involving discursive logic and macroevolu- fail as weighed in the marketplace of reason. tionary theory. Phylogenetic attempts at “reconstruc- A new paradigm should present an acceptable so- tion” try to reconstruct evolutionary nesting, not a lution to a problem by addressing it in a new way. process in nature. Yet, with application of a pluralist Phylogenetics has redefined the problem of devising approach involving classical techniques, morphologi- an evolution-based classification by presenting evolu- cal cladistics, and phylogenetic analyses, satisfying tionary relationships not as descent with modification advances can be made within such natural limits. of taxa but as descent with modification of traits. Ac- The proposed Framework will probably not cording to the Web home page of the phylogeneti- change the methods of career phylogeneticists who cally oriented Society for Systematic Botany (De- may feel loyal or responsible to sunk-cost profes- cember 2012): “Systematics is the study of biological sional investments. The story goes that the Buddha, diversity and its origins. It focuses on understanding after enlightenment, went into the world to teach. The evolutionary relationships among organisms, species, first person he came upon was a holy man, a fellow higher taxa, or other biological entities, such as seeker of enlightenment. The Buddha cried, “Wait! genes, and the evolution of the properties of taxa in- Listen! I have found enlightenment!” The holy man cluding intrinsic traits, ecological interactions, and paused and looked at the Buddha a moment. He said geographic distributions. An important part of sys- “Maybe so...,” and walked on. If I can obtain a tematics is the development of methods for various “maybe so” from the phylogenetic establishment, I aspects of phylogenetic inference and biological no- will be well satisfied. menclature/classification.” [Italics mine.] This book is largely intended for students and un- Phylogenetics eliminates any hint of progenitor- committed professionals in systematics and evolu- descendant relationships in evolutionary analysis, and tion, and for those in other fields, such as philosophy, relies on algorithmic clustering data from descrip- physics and psychology, that deal with scientific and tions or specimens to provide a “hard science,” decision theory. The basic ideas and methods pre- mathematically non-trivial, statistically based, inte- sented here are a pluralistic means to correct the dif- grable (fully calculable) solution that has the appear- ficulties in which modern systematics has found it- ance of an evolutionary tree but lacks identification self. The reader will find the same basic concepts of the nodes of the tree as being any extant taxon be- presented often in this book, but this is defensible yond the name of that taxon including all specimens because the concepts are sometimes difficult, relate or descriptions used as data distal to that node. That to other fields, and require a familiarity with both all nodes are treated as pseudoextinction events never classical and modern methods in systematics. In addi- budding evolution totally vitiates any responsible tion, judging from reviewers’ comments of previous macroevolutionary inferences in sister-group analy- manuscripts, I have decided it is necessary to present sis. certain novel concepts each in several ways and in Phylogenetics imposes a classification on the re- different contexts to (1) clarify what is meant, (2) sults of cladistic analysis without a process-based hammer past intransigent preconceptions, and (3) explanation of those results. The sister-group struc- dispel through reasoned discourse and perhaps a little ture is taken to be a classification itself. Evolution is humor the fog now shrouding classical systematics. not clustering, classification is. Evolution is not nest- Repetition of logical argument is often the only way ing, classification is. Phylogenetics leaps from the to break through or reprogram hard-set mental view- clustering and nesting of cladistic analysis straight to points. classification without explanation of the analysis in Practitioners of evolutionary systematics are terms of serial transformations of one taxon into an- methodologically diverse, and this book does not try – 1 – A Framework for Post-Phylogenetic Systematics to represent the field. Instead, presented here are my remonstrated over my occasional reference to matters ideas on how systematics as a whole
Recommended publications
  • Flora of North America, Volume 27, 2007
    Anoectangium · POTTIACEAE 521 apex broadly obtuse to sharply acute or occasionally acuminate; costa sometimes short-excurrent as a mucro or rarely ending a few cells below apex, adaxial outgrowths absent, adaxial cells elongate, occasionally short-rectangular to quadrate near apex, in 2–3 rows, abaxial cells elongate; transverse section oval to reniform, adaxial epidermis absent to weakly developed, adaxial stereid band absent, guide cells 2–4 in 1 layer, hydroid strand absent, abaxial stereid band strong, semicircular to ovate in section, abaxial epidermis usually distinct; basal cells differentiated in a small group at base of costa, short-rectangular, little wider than distal cells, 2–4:1, usually thick-walled; distal medial cells subquadrate, occasionally elongate transversely or longitudinally, (5–)7–9(–15) µm wide, 1(–2):1(–2), papillae either massive, multifurcating and centered over lumens or simple to 2-fid, cell walls thin to greatly thickened, superficially flat to bulging. Specialized asexual reproduction rare, by gemmae in axils of leaves. Sexual condition dioicous; perigonia and perichaetia terminal on short lateral branches, interior perichaetial leaves convolute-sheathing, ovate-acuminate, 1–1.5 mm, laminal cells shortly rhomboidal to near apex. Seta yellow-brown, 0.3–0.8 cm, twisted clockwise proximally, occasionally counterclockwise distally. Capsule yellow-brown to brown, ovoid to elliptic, 0.5–1(–1.5) mm, exothecial cells rectangular, walls thin, annulus of two rows of weakly vesiculose cells; operculum long-rostrate, 0.4–0.6(–1.8) mm, cells in straight rows; peristome teeth absent. Calyptra cucullate, 1.2–1.5 (–2) mm, smooth. Spores 9–12(–19) µm, weakly to strongly papillose, light brown.
    [Show full text]
  • Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia Desiderabilis and Senecio Macrotis: Distribution Extensions and First Records for Bahia, Brazil
    Check List 4(1): 62–64, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Plantae, Magnoliophyta, Asterales, Asteraceae, Senecioneae, Pentacalia desiderabilis and Senecio macrotis: Distribution extensions and first records for Bahia, Brazil. Aristônio M. Teles João R. Stehmann Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica. Caixa Postal 486, CEP 31270-091, Belo Horizonte, MG, Brazil. E-mail: [email protected] Senecioneae is the biggest Tribe of the Asteraceae state of Minas Gerais (Cabrera 1957; Hind (Nordestam 1996), comprising 150 genera (more 1993a). Senecio macrotis is a robust herb or than 9 % of all genera) and 3,500 species (about shrub, with lyrate-pinnatisect leaves, discoid 15 % of all species of the Family) (Nordenstam heads, and paniculate capitulescences (Cabrera 2007). The circumscription of many Senecioneae 1957). It is found typically in the Campos genera has changed, especially Senecio L., with Rupestres of the Espinhaço range, growing in about 1,250 species (Bremer 1994; Frodin 2004; altitudes ranging from 900 to 1,000 m (Vitta 2002). Nordenstam 2007). To Brazilian Senecioneae, Hind (1993a) estimated the occurrence of 97 The genus Pentacalia Cass., formerly included in species belonging to eight genera, and the more the synonymy of Senecio (lato sensu) (Barkley useful works to identify them are Cabrera (1950, 1985) and resurrected by Robinson and 1957), Cabrera and Klein (1975), Robinson Cuatrecasas (1978), comprises about 205 species (1980), Hind (1993a; 1993b; 1994; 1999), and distributed along Tropical America (Jeffrey 1992). Teles et al. (2006). Hind (1993a) cited the occurrence of two Brazilian species, P. desiderabilis (Vell.) Cuatrec. Senecio (stricto sensu) is characterized by annual and P.
    [Show full text]
  • Chromosome Numbers of the East African Giant Senecios and Giant Lobelias and Their Evolutionary Significancei
    American Journal of Botany 80(7): 847-853. 1993. CHROMOSOME NUMBERS OF THE EAST AFRICAN GIANT SENECIOS AND GIANT LOBELIAS AND THEIR EVOLUTIONARY SIGNIFICANCEI ERIC B. KNox2 AND ROBERT R, KOWAL Herbarium and Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1981 The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalumi it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of2n = 20 and ca. 80, the bases for claims ofintraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first garnetophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the II species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence ofmonophyly and simplifying interpretations ofcladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form. Since their discovery last century, the giant senecios MATERIALS AND METHODS (Dendrosenecio; Nordenstam, 1978) and giant lobelias (Lobelia subgenus Tupa section Rhynchopetalum; Mab­ Excised anthers or very young flower buds of Lobelia berley, 1974b) of eastern Africa have attracted consid­ and immature heads of Dendrosenecio were fixed in the erable attention from taxonomists and evolutionary bi­ field in Carnoy's solution (3 chloroform: 2 absolute eth­ ologists (cf.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Flora of New Zealand Mosses
    FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1
    [Show full text]
  • Online Supplemental Material: Tables S1-S3, Figures S1-S5, References to Online Material
    Infraspecific diversity in a spore-dispersed species with limited distribution range Systematics and Biodiversity Lars Hedenäs (corresponding author) Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden; ph. +46-8-51954214; email: [email protected] Irene Bisang Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden; ph. +46-8-51954130; email: [email protected] ONLINE SUPPLEMENTAL MATERIAL: TABLES S1-S3, FIGURES S1-S5, REFERENCES TO ONLINE MATERIAL Supplementary Online Table S1 Geographical location of the 33 study plots of the Baltic study, all in Sweden. Öland. 1: Räpplinge, Alvaret E of Strandtorp, 56° 49.776’ N, 16° 37.688’ E, Periodically wet depression, 3 May 2011. 2: Räpplinge, Alvaret E of Strandtorp, 56° 49.878’ N, 16° 37.793’ E, Periodically wet depression, 3 May 2011. 3: Räpplinge, Alvaret E of Strandtorp, 56° 49.867’ N, 16° 37.797’ E, Periodically wet depression, 3 May 2011. 4: Vickleby, 500 m E of Lilla Vickleby, 56° 34.064’ N, 16° 28.087’ E, Periodically wet depression, 4 May 2011. 6: Resmo, 2 km NNE of Resmo, 56° 33.366’ N, 16° 27.986’ E, Periodically wet depression, 4 May 2011. 7: Resmo, 1.5 km N of Resmo, 56° 33.311’ N, 16° 27.396’ E, Periodically wet depression, 4 May 2011. 8: Torslunda, S of Gamla Skogsby, 56° 36.878’ N, 16° 29.715’ E, Periodically wet depression, 5 May 2011. 9: Torslunda, S of Gamla Skogsby, 56° 36.789’ N, 16° 29.685’ E, Periodically wet depression, 5 May 2011.
    [Show full text]
  • Moss Occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia
    Biodiversity Data Journal 7: e32307 doi: 10.3897/BDJ.7.e32307 Data Paper Moss occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia Galina Zheleznova‡, Tatyana Shubina‡, Svetlana Degteva‡‡, Ivan Chadin , Mikhail Rubtsov‡ ‡ Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia Corresponding author: Tatyana Shubina ([email protected]) Academic editor: Yasen Mutafchiev Received: 10 Dec 2018 | Accepted: 25 Mar 2019 | Published: 01 Apr 2019 Citation: Zheleznova G, Shubina T, Degteva S, Chadin I, Rubtsov M (2019) Moss occurrences in Yugyd Va National Park, Subpolar and Northern Urals, European North-East Russia. Biodiversity Data Journal 7: e32307. https://doi.org/10.3897/BDJ.7.e32307 Abstract Background This study produced a dataset containing information on moss occurrences in the territory of Yugyd Va National Park, located in the Subpolar and Northern Urals, European North- East Russia. The dataset summarises occurrences noted by long-term bryological explorations in remote areas of the Subpolar and Northern Urals from 1943 to 2015 and from studies published since 1915. The dataset consists of 4,120 occurrence records. The occurrence data were extracted from herbarium specimen labels (3,833 records) and data from published literature (287 records). Most of the records (4,104) are georeferenced. A total of 302 moss taxa belonging to 112 genera and 36 families are reported herein to occur in Yugyd Va National Park. The diversity of bryophytes in this National Park has not yet been fully explored and further exploration will lead to more taxa.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Plant Biosystems
    This article was downloaded by: [Ros, R. M.] On: 10 February 2010 Access details: Access Details: [subscription number 919179156] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713737104 Molecular and morphological studies on the Didymodon tophaceus complex O. Werner a; H. Köckinger b; J. A. Jiménez a; R. M. Ros a Departamento de Biología Vegetal, Universidad de Murcia, Spain b Roseggergasse 12, AT-8741 Weisskirchen, Austria Online publication date: 09 February 2010 To cite this Article Werner, O., Köckinger, H., Jiménez, J. A. and Ros, R. M.(2009) 'Molecular and morphological studies on the Didymodon tophaceus complex', Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 143: 3, S136 — S145 To link to this Article: DOI: 10.1080/11263500903226965 URL: http://dx.doi.org/10.1080/11263500903226965 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • South Cameroon)
    Plant Ecology and Evolution 152 (1): 8–29, 2019 https://doi.org/10.5091/plecevo.2019.1547 CHECKLIST Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon) Vincent Droissart1,2,3,8,*, Olivier Lachenaud3,4, Gilles Dauby1,5, Steven Dessein4, Gyslène Kamdem6, Charlemagne Nguembou K.6, Murielle Simo-Droissart6, Tariq Stévart2,3,4, Hermann Taedoumg6,7 & Bonaventure Sonké2,3,6,8 1AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France 2Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. 3Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium 4Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium 5Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium 6Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon 7Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon 8International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon *Author for correspondence: [email protected] Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land- use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae.
    [Show full text]
  • Bryophytes from the Cape Verde Islands
    123 Tropical Bryology 12: 123-153, 1996 Bryophytes from the Cape Verde Islands Jan-Peter Frahm1, Anja Lindlar1, Philip Sollman2, Eberhard Fischer1 1 Botanisches Institut der Rheinischen Friedrich-Wilhelms-Universität, Meckenheimer Allee 170, 53115 Bonn, Germany 2 Von Weberstraat 32, 6904 KD Zevenaar, The Netherlands Abstract: Almost 450 specimens of bryophytes, so far the largest collection of bryophytes ever made on the Cape Verde Islands, were collected in 1995 by the second author on the major islands of the archipelago. Twenty seven species (3 hepatics, 24 mosses) are reported as new to the Cape Verde Islands: Lejeunea ulicina (Tayl.) Gottsche et al., Riccia cavernosa Hoffm. emend. Raddi, Targionia hypophylla L., Barbula cf. consanguinea (Thwait. & Mitt.) Jaeg., Barbula unguiculata Hedw., Brachymenium exile (Dozy & Molk.) Bosch. & Lac., Bryoerythrophyllum ferruginascens (Stirt.) Giac., Bryoerythrophyllum inaequalifolium (Tayl.) Zander, Bryum cellulare Hook., Chenia leptophylla (C. Müll.) Zander, Desmatodon bogosicus C. Müll., Didymodon australasiae (Hook. & Grev.) Zander, Didymodon maschalogena (Ren. & Card.) Broth. (Didymodon michiganensis [Steere] K. Saito), Didymodon vinealis (Brid.) Zander var. flaccidus (B.S.G.) Zander, Eurhynchium meridionale (B.S.G.) De Not., Eurhynchium speciosum (Brid.) Jur., Fissidens sciophyllus Mitt., F. bogosicus C. Müll., F. flaccidus Mitt., F. helictocaulos C. Müll., Gymnostomiella cf. vernicosa (Hook.) Fleisch., Gymnostomum calcareum Nees & Hornsch., Hyophila involuta (Hook.) Jaeg., Orthotrichum diaphanum Brid., Tortula cuneifolia (With.) Turn., Tortula laevipila (Brid.) Schwaegr. and Weissia microstoma (Hedw.) C. Müll. The doubtful record of Marchantia paleacea Bertol. could be confirmed. Numerous species are recorded as new to single islands. Tortula pierrotii Biz. described from Tanzania has proved to be synyomous with Bryoerythrophyllum inaequalifolium. Didymodon maschalogena (Ren.
    [Show full text]
  • Campylotropy in the Circumscription of the Morindeae Descriptions in Early
    BLUMEA 35 (1991) 307-345 The genera Mitchellaand Damnacanthus. Evidence for their close alliance; comments on the campylotropy in the Rubiaceae and the circumscription of the Morindeae E. RobbrechtC. Puff & A. Igersheim Summary The two species of Mitchella (Southeast Asian and North American) and several species of the character Southeast Asian genus Damnacanthus are investigated. Vegetative states (growth form, described and branching pattern, leaves) of the two genera are compared. Damnacanthusalways ex- hibits heterophylly and some species have paired thorns. The latter are interpreted as paired lateral of branch and it is that the thorns shoots in the proximal part a sympodial unit, speculated paired be modified inflorescence shoots. may Detailed information is also given on inflorescence structure and floral morphological and ana- tomical details of Damnacanthus and Mitchella. Particular emphasis is placed on the ovaries, the structure of which is remarkably similar in the two genera. The uniovulate locules are characterized ovules which inserted the of extensive by having campylotropous are near top the septum; obturator tissue covers part of the horizontally arranged curved ovule in cap-like manner.The micropyle of the ovule, obscured by the obturator,points upwards and to some degree also inwards, while the embryo sac is found in a ± horizontal position. The seeds, however, contain minute embryos, of which the radicles are pointing ± downwards. This apparently contradicting micropyle and radicle position finds its in the unusual ovule and orientation and in the explanation structure subsequent strong growth of the endosperm, through which the embryo is pushed to the position where it is found in mature seeds.
    [Show full text]