Notes on the Reidemeister Torsion

Total Page:16

File Type:pdf, Size:1020Kb

Notes on the Reidemeister Torsion Notes on the Reidemeister Torsion Liviu I. Nicolaescu University of Notre Dame Notre Dame, IN 46556 http://www.nd.edu/˜lnicolae/ January 2002 To the memory of my father, Ion I. Nicolaescu, who shared with me his passion for books. Introduction The torsion of a cellular (simplicial) complex was introduced in the 30s by W. Franz [29] and K. Reidemeister [90] in their study of lens spaces. The lens spaces L(p, q) (p fixed) have the same fundamental groups and thus the same homology groups. However, they are not all homeomorphic. They are not even homotopically equivalent. This can be observed by detecting some below the radar interactions between the fundamental group and the simplicial structure. The torsion captures some of these interactions. In particular, it is able to distinguish lens spaces which are homotopically equivalent but not homeomorphic, and moreover completely classify these spaces up to a homeomorphism. This suggests that this invariant is reaching deep inside the topological structure. What is then this torsion? What does is compute? These are the kind of ques- tions we try to address in these notes, through many examples and various equivalent descriptions of this invariant. From an algebraic point of view, the torsion is a generalization of the notion of determinant. The most natural and general context to define the torsion would involve the Whitehead group and algebraic K-theory as in the very elegant and influential Milnor survey [72], but we did not adopt this more general point of view. Instead we look at what Milnor dubbed R-torsion. This invariant can be viewed as a higher Euler characteristic type invariant. Much like the Euler characteristic, the torsion satisfies an inclusion-exclusion (a.k.a. Mayer– Vietoris) principle which can be roughly stated as Tors(A ∪ B) = Tors(A) + Tors(B) − Tors(A ∩ B) which suggests that the torsion could be interpreted as counting something. The classical Poincaré–Hopf theorem states that the Euler–Poincaré characteristic of a smooth manifold counts the zeros of a generic vector field. If the Euler-Poincaré characteristic is zero then most vector fields have no zeroes but may have periodic orbits. The torsion counts these closed orbit, at least for some families of vector fields. As D. Fried put it in [34], “the Euler characteristic counts points while the torsion counts circles”. One of the oldest results in algebraic topology equates the Euler-Poincaré char- acteristic of simplicial complex, defined as the alternating sums of the numbers of simplices, with a manifestly combinatorial invariant, the alternating sum of the Betti numbers. Similarly, the R-torsion can be given a description in terms of chain com- plexes or, a plainly invariant description, in homological terms. Just like the Euler characteristic, the R-torsion of a smooth manifold can be given a Hodge theoretic description, albeit much more complicated. More recently, this invariant turned up in 3-dimensional Seiberg–Witten theory, in the work of Meng–Taubes ([68]). This result gave us the original impetus to understand Introduction vii the meaning of torsion. This is a semi-informal, computationally oriented little book which grew out of our efforts to understand the intricacies of the Meng–Taubes–Turaev results, [68, 115]. For this reason a lot of emphasis is placed on the Reidemeister torsion of 3-manifolds. These notes tried to address the author’s own struggle with the overwhelming amount of data involved and the conspicuously scanty supply of computational examples in the traditional literature on the subject. We considered that at an initial stage a good intuitive argument or example explaining why a certain result could be true is more helpful than a complete technical proof. The classical Milnor survey [72] and the recent introductory book [117] by V. Turaev are excellent sources to fill in many of our deliberate foundational omissions. When thinking of topological issues it is very important not to get distracted by the ugly looking but elementary formalism behind the torsion. For this reason we devoted the entire first chapter to the algebraic foundations of the concept of torsion. We give several equivalent definitions of the torsion of an acyclic complex and in particular, we spend a good amount of time constructing a setup which coherently deals with the torturous sign problem. We achieved this using a variation of some of the ideas in Deligne’s survey [18]. The general algebraic constructions are presented in the first half of this chapter, while in the second half we discuss Turaev’s construction of several arithmetically defined subrings of the field of fractions of the rational group algebra of an Abelian group. These subrings provide the optimal algebraic framework to discuss the torsion of a manifold. We conclude this chapter by presenting a dual picture of this Turaev subrings via Fourier transform. These results seem to be new and simplify substantially many gluing formulæ for the torsion, to the point that they become quasi-tautological. The Reidemeister torsion of an arbitrary simplicial (or CW) complex is defined in the second chapter. This is simply the torsion of a simplicial complex with Abelian local coefficients, or equivalently the torsion of the simplicial complex of the maximal Abelian cover. We present the basic properties of this invariant: the Mayer–Vietoris principle, duality, arithmetic properties and an Euler–Poincaré type result. We com- pute the torsion of many mostly low dimensional manifolds and in particular we explain how to compute the torsion of any 3-manifold with b1 > 0 using the Mayer–Vietoris principle, the Fourier transform, and the knowledge of the Alexander polynomials of links in S3. Since the literature on Dehn surgery can be quite inconsistent on the various sign conventions, we have devoted quite a substantial appendix to this subject where we kept an watchful eye on these often troublesome sings. The approach based on Alexander polynomials has one major drawback, namely it requires a huge volume of computations. We spend the whole section §2.6 explaining how to simplify these computation for a special yet very large class of 3-manifolds, namely the graph manifolds. The links of isolated singularities of complex surfaces are included in this class and the recent work [75, 76] proves that the Reidemeister torsion captures rather subtle geometrical information about such manifolds. We conclude this chapter with some of the traditional applications of the torsion in topology. viii Introduction Chapter 3 focuses on Turaev’s ingenious idea of Euler structure and how it can be used to refine the concept of torsion by removing the ambiguities in choosing the bases needed for computing the torsion. Turaev later observed that for a 3-manifold a choice of an Euler structure is equivalent to a choice of spinc-structure. After we review a few fundamental properties of this refined torsion for 3-manifolds we then go on to present a result of Turaev which in essence says that the refined torsion of a 3-manifold with positive b1 is uniquely determined by the Alexander polynomials of links in S3 and the Mayer–Vietoris principle. This uniqueness result does not include rational homology spheres, and thus offers no indication on how to approach this class of manifolds. We spend the last part of this chapter analyzing this class of 3-manifolds. In §3.8 we describe a very powerful method for computing the torsion of such 3-manifolds, based on the complex Fourier transform results in Chapter 1, and an extremely versatile holomorphic regularization technique. These lead to explicit for- mulæ for the Fourier transform of the torsion of a rational homology sphere in terms of surgery data. These formulæ still have the two expected ambiguities: a sign ambiguity and a spinc ambiguity. In §3.9 we describe a very simple algorithm for removing the spinc ambiguity. This requires a quite long topological detour in the world of quadratic functions on finite Abelian groups, and surgery descriptions of spin and spinc struc- tures, but the payoff is worth the trouble. The sign ambiguity is finally removed in §3.10 in the case of plumbed rational homology spheres, relying on an idea in [75], based on the Fourier transform, and a relationship between the torsion and the linking form discovered by Turaev. Chapter 4 discusses more analytic descriptions of the Reidemeister torsion: in terms of gauge theory, in terms of Morse theory, and in terms of Hodge theory. We discuss Meng–Taubes theorem and the improvements due to Turaev. We also out- line our recent proof [83] of the extension of the Meng–Taubes–Turaev theorem to rational homology spheres. As an immediate consequence of this result, we give a new description of the Brumfiel–Morgan [7] correspondence for rational homology 3-spheres which associates to each spinc structure a refinement of the linking form. On the Morse theoretic side we describe Hutchinson–Pajitnov results which give a Morse theoretic interpretation of the Reidemeister torsion. We barely scratch the Hodge theoretic approach to torsion. We only provide some motivation for the ζ- function description of the analytic torsion and the Cheeger–Müller theorem which identifies this spectral quantity with the Reidemeister torsion. ∗∗∗ Acknowledgements1 I spent almost two years thinking about these issues and I was helped along the way by many people. I am greatly indebted to Frank Connolly who introduced me to this subject. His patience and expertise in answering my often half 1This work was partially supported by NSF grant DMS-0071820. Introduction ix baked questions have constantly kept me on the right track. I also want to thank my colleagues Bill Dwyer, Stephan Stolz, Larry Taylor and Bruce Williams for many illuminating discussions which made this scientific journey so much more enjoyable.
Recommended publications
  • On Abelian Subgroups of Finitely Generated Metabelian
    J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/.
    [Show full text]
  • Nearly Isomorphic Torsion Free Abelian Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 35, 235-238 (1975) Nearly Isomorphic Torsion Free Abelian Groups E. L. LADY University of Kansas, Lawrence, Kansas 66044* Communicated by D. Buchsbaum Received December 7, 1973 Let K be the Krull-Schmidt-Grothendieck group for the category of finite rank torsion free abelian groups. The torsion subgroup T of K is determined and it is proved that K/T is free. The investigation of T leads to the concept of near isomorphism, a new equivalence relation for finite rank torsion free abelian groups which is stronger than quasiisomorphism. If & is an additive category, then the Krull-Schmidt-Grothendieck group K(d) is defined by generators [A], , where A E &, and relations [A]& = m-2 + [af? Pwhenever A w B @ C. It is well-known that every element in K(&‘) can be written in the form [A],cJ - [Bls/ , and that [A],, = [B], ifandonlyifA @L = B @LforsomeLE.&. We let ,F denote the category of finite rank torsion free abelian groups, and we write K = K(3). We will write [G] rather than [G],7 for the class of [G] in K. If G, H ~9, then Hom(G, H) and End(G) will have the usual significance. For any other category ~9’, &(G, H) and d(G) will denote the corresponding group of $Z-homomorphisms and ring of cpJ-endomorphisms. We now proceed to define categories M and NP, where p is a prime number or 0.
    [Show full text]
  • Whitehead Torsion, Part II (Lecture 4)
    Whitehead Torsion, Part II (Lecture 4) September 9, 2014 In this lecture, we will continue our discussion of the Whitehead torsion of a homotopy equivalence f : X ! Y between finite CW complexes. In the previous lecture, we gave a definition in the special case where f is cellular. To remove this hypothesis, we need the following: Proposition 1. Let X and Y be connected finite CW complexes and suppose we are given cellular homotopy equivalences f; g : X ! Y . If f and g are homotopic, then τ(f) = τ(g) 2 Wh(π1X). Lemma 2. Suppose we are given quasi-isomorphisms f :(X∗; d) ! (Y∗; d) and g :(Y∗; d) ! (Z∗; d) between finite based complexes with χ(X∗; d) = χ(Y∗; d) = χ(Z∗; d). Then τ(g ◦ f) = τ(g)τ(f) in Ke1(R). Proof. We define a based chain complex (W∗; d) by the formula W∗ = X∗−1 ⊕ Y∗ ⊕ Y∗−1 ⊕ Z∗ d(x; y; y0; z) = (−dx; f(x) + dy + y0; −dy0; g(y0) + dz): Then (W∗; d) contains (C(f)∗; d) as a based subcomplex with quotient (C(g)∗; d), so an Exercise from the previous lecture gives τ(W∗; d) = τ(g)τ(f). We now choose a new basis for each W∗ by replacing each basis element of y 2 Y∗ by (0; y; 0; g(y)); this is an upper triangular change of coordinates and therefore does not 0 0 affect the torsion τ(W∗; d). Now the construction (y ; y) 7! (0; y; y ; g(y)) identifies C(idY )∗ with a based subcomplex of W∗ having quotient C(−g ◦ f)∗.
    [Show full text]
  • Braids in Pau -- an Introduction
    ANNALES MATHÉMATIQUES BLAISE PASCAL Enrique Artal Bartolo and Vincent Florens Braids in Pau – An Introduction Volume 18, no 1 (2011), p. 1-14. <http://ambp.cedram.org/item?id=AMBP_2011__18_1_1_0> © Annales mathématiques Blaise Pascal, 2011, tous droits réservés. L’accès aux articles de la revue « Annales mathématiques Blaise Pas- cal » (http://ambp.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS Clermont-Ferrand — France cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales mathématiques Blaise Pascal 18, 1-14 (2011) Braids in Pau – An Introduction Enrique Artal Bartolo Vincent Florens Abstract In this work, we describe the historic links between the study of 3-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example. Tresses à Pau – une introduction Résumé Dans ce travail, nous décrivons les liaisons historiques entre l’étude de variétés de dimension 3 (notamment, la théorie de nœuds) et l’étude de la topologie des courbes planes complexes, dont l’accent est posé sur le rôle des groupes de tresses et des invariantes du type Alexander (torsions, différents incarnations des polynômes d’Alexander).
    [Show full text]
  • A Conjecture on the Equivariant Analytic Torsion Forms
    A conjecture on the equivariant analytic torsion forms Vincent Maillot & Damian R¨ossler ∗ September 21, 2005 Let G be a finite group and let M be a complex manifold on which G acts by holomorphic automorphisms. Let f : M → B be a proper holomorphic map of complex manifolds and suppose that G preserves the fibers of f (i.e. f ◦ g = f for all g ∈ G). Let η be a G-equivariant holomorphic vector bundle on M and • η suppose that the direct images R f∗η are locally free on B. Let h be a G- invariant hermitian metric on η and let ωM be a G-invariant K¨ahlermetric on M. For each g ∈ G, we shall write Mg for the set of fixed points of g on M. This set is endowed with a natural structure of complex K¨ahlermanifold. We suppose that there is an open dense set U of B such that the restricted map −1 −1 f (U) → U is a submersion. We shall write V for f (U) and fV for the map −1 V η U fV : f (U) → U. Denote by Tg(ω , h ) ∈ P the equivariant analytic torsion V M form of η|V relatively to fV and ω := ω |V , in the sense of [4, Par. d)]. Here the space P U (resp. P U,0) is the direct sum of the space of complex differential forms of type p, p (resp. the direct sum of the space of complex differential forms V η of type p, p of the form ∂α + ∂β) on U.
    [Show full text]
  • THE TORSION in SYMMETRIC POWERS on CONGRUENCE SUBGROUPS of BIANCHI GROUPS Jonathan Pfaff, Jean Raimbault
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication THE TORSION IN SYMMETRIC POWERS ON CONGRUENCE SUBGROUPS OF BIANCHI GROUPS Jonathan Pfaff, Jean Raimbault To cite this version: Jonathan Pfaff, Jean Raimbault. THE TORSION IN SYMMETRIC POWERS ON CONGRUENCE SUBGROUPS OF BIANCHI GROUPS. Transactions of the American Mathematical Society, Ameri- can Mathematical Society, 2020, 373 (1), pp.109-148. 10.1090/tran/7875. hal-02358132 HAL Id: hal-02358132 https://hal.archives-ouvertes.fr/hal-02358132 Submitted on 11 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE TORSION IN SYMMETRIC POWERS ON CONGRUENCE SUBGROUPS OF BIANCHI GROUPS JONATHAN PFAFF AND JEAN RAIMBAULT Abstract. In this paper we prove that for a fixed neat principal congruence subgroup of a Bianchi group the order of the torsion part of its second cohomology group with coefficients in an integral lattice associated to the m-th symmetric power of the standard 2 representation of SL2(C) grows exponentially in m . We give upper and lower bounds for the growth rate.
    [Show full text]
  • Lecture 15. De Rham Cohomology
    Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • Some Notes About Simplicial Complexes and Homology II
    Some notes about simplicial complexes and homology II J´onathanHeras J. Heras Some notes about simplicial homology II 1/19 Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 2/19 Simplicial Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 3/19 Simplicial Complexes Simplicial Complexes Definition Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V . Definition Let α and β be simplices over V , we say α is a face of β if α is a subset of β. Definition An ordered (abstract) simplicial complex over V is a set of simplices K over V satisfying the property: 8α 2 K; if β ⊆ α ) β 2 K Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made of the simplices of cardinality n + 1. J. Heras Some notes about simplicial homology II 4/19 Simplicial Complexes Simplicial Complexes 2 5 3 4 0 6 1 V = (0; 1; 2; 3; 4; 5; 6) K = f;; (0); (1); (2); (3); (4); (5); (6); (0; 1); (0; 2); (0; 3); (1; 2); (1; 3); (2; 3); (3; 4); (4; 5); (4; 6); (5; 6); (0; 1; 2); (4; 5; 6)g J. Heras Some notes about simplicial homology II 5/19 Chain Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J.
    [Show full text]
  • Math 521 – Homework 5 Due Thursday, September 26, 2019 at 10:15Am
    Math 521 { Homework 5 Due Thursday, September 26, 2019 at 10:15am Problem 1 (DF 5.1.12). Let I be any nonempty index set and let Gi be a group for each i 2 I. The restricted direct product or direct sum of the groups Gi is the set of elements of the direct product which are the identity in all but finitely many components, that is, the Q set of elements (ai)i2I 2 i2I Gi such that ai = 1i for all but a finite number of i 2 I, where 1i is the identity of Gi. (a) Prove that the restricted direct product is a subgroup of the direct product. (b) Prove that the restricted direct produce is normal in the direct product. (c) Let I = Z+, let pi denote the ith prime integer, and let Gi = Z=piZ for all i 2 Z+. Show that every element of the restricted direct product of the Gi's has finite order but the direct product Q G has elements of infinite order. Show that in this i2Z+ i example, the restricted direct product is the torsion subgroup of Q G . i2Z+ i Problem 2 (≈DF 5.5.8). (a) Show that (up to isomorphism), there are exactly two abelian groups of order 75. (b) Show that the automorphism group of Z=5Z×Z=5Z is isomorphic to GL2(F5), where F5 is the field Z=5Z. What is the size of this group? (c) Show that there exists a non-abelian group of order 75. (d) Show that there is no non-abelian group of order 75 with an element of order 25.
    [Show full text]
  • The Cobordism Group of Homology Cylinders
    THE COBORDISM GROUP OF HOMOLOGY CYLINDERS JAE CHOON CHA, STEFAN FRIEDL, AND TAEHEE KIM Abstract. Garoufalidis and Levine introduced the homology cobordism group of homology cylinders over a surface. This group can be regarded as an enlargement of the mapping class group. Using torsion invariants, we show that the abelianization of this group is infinitely generated provided that the first Betti number of the surface is positive. In particular, this shows that the group is not perfect. This answers questions of Garoufalidis-Levine and Goda- Sakasai. Furthermore we show that the abelianization of the group has infinite rank for the case that the surface has more than one boundary component. These results hold for the homology cylinder analogue of the Torelli group as well. 1. Introduction Given g ≥ 0 and n ≥ 0, let Σg;n be a fixed oriented, connected and compact + surface of genus g with n boundary components. We denote by Hom (Σg;n;@Σg;n) the group of orientation preserving diffeomorphisms of Σg;n which restrict to the identity on the boundary. The mapping class group Mg;n is defined to be the + set of isotopy classes of elements in Hom (Σg;n;@Σg;n), where the isotopies are understood to restrict to the identity on the boundary as well. We refer to [FM09, Section 2.1] for details. It is well known that the mapping class group is perfect provided that g ≥ 3 [Po78] (e.g., see [FM09, Theorem 5.1]) and that mapping class groups are finitely presented [BH71, Mc75] (e.g., see [FM09, Section 5.2]).
    [Show full text]
  • Homology Groups of Homeomorphic Topological Spaces
    An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K.
    [Show full text]