The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction, Distribution Or Commercial Use
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Comprehensive Biophysics, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From D.N. Robinson, Y.-S. Kee, T. Luo and A. Surcel, Understanding How Dividing Cells Change Shape. In: Edward H. Egelman, editor: Comprehensive Biophysics, Vol 7, Cell Biophysics, Denis Wirtz. Oxford: Academic Press, 2012. pp. 48-72. ISBN: 978-0-12-374920-8 © Copyright 2012 Elsevier B.V. Academic Press. Author's personal copy 7.5 Understanding How Dividing Cells Change Shape DN Robinson, Y-S Kee, T Luo, and A Surcel, Johns Hopkins University, Baltimore, MD, USA r 2012 Elsevier B.V. All rights reserved. 7.5.1 Introduction 49 7.5.2 Physical Parameters 49 7.5.2.1 Membrane Surface Area and Membrane Remodeling 50 7.5.2.2 Cortical Tension and Cell Surface Curvature 50 7.5.3 The Mechanical Parts List 51 7.5.4 Mechanical Features of the Cortical Cytoskeletal Network 54 7.5.5 Dissecting Mechanics Across Variable Timescales and Length Scales 55 7.5.6 Mechanical Properties of Cytokinesis: Active vs. -
Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation
Please cite this article in press as: Lancaster et al., Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation, Developmental Cell (2013), http://dx.doi.org/10.1016/j.devcel.2013.03.014 Developmental Cell Article Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation Oscar M. Lancaster,1,6 Mae¨ l Le Berre,5,6 Andrea Dimitracopoulos,1,4 Daria Bonazzi,5 Ewa Zlotek-Zlotkiewicz,5 Remigio Picone,1,4 Thomas Duke,2,3 Matthieu Piel,5,* and Buzz Baum1,* 1MRC Laboratory for Molecular Cell Biology 2London Centre for Nanotechnology 3Department of Physics and Astronomy 4CoMPLEX University College London, Gower Street, London WC1E 6BT, UK 5Systems Biology of Cell Division and Cell Polarity, UMR 144 Institut Curie/CNRS, 26 rue d’Ulm, 75248 Paris Cedex 05, France 6These two authors contributed equally to this work *Correspondence: [email protected] (M.P.), [email protected] (B.B.) http://dx.doi.org/10.1016/j.devcel.2013.03.014 SUMMARY chromatid cohesion and the movement of sister chromatids to opposite cell poles. Accurate animal cell division requires precise coordi- Mitotic progression is also accompanied by profound changes nation of changes in the structure of the microtubule- in actin filament organization (Kunda and Baum, 2009) that are based spindle and the actin-based cell cortex. Here, triggered by the activation of Ect2, RhoA, and Myosin II (Cramer we use a series of perturbation experiments to and Mitchison, 1997; Maddox and Burridge, 2003; Matthews dissect the relative roles of actin, cortical mechanics, et al., 2012). In combination with osmotic swelling (Stewart and cell shape in spindle formation. -
Epithelial Cell Death Analysis of Cell Cycle by Flow Cytometry White Paper
Epithelial Cell Death Analysis of Cell Cycle by Flow Cytometry White Paper Authors: Savithri Balasubramanian, John Tigges, Vasilis Toxavidis, Heidi Mariani. Affiliation: Beth Israel Deaconess Medical Center Harvard Stem Cell Institute a Beckman Coulter Life Sciences: Epithelial Cell Death Analysis of Cell Cycle by Flow Cytometry PRINCIPAL OF TECHNIQUE Background: Cell cycle, or cell-division cycle, is the series of events that takes place in a cell leading to its division and duplication (replication). In cells without a nucleus (prokaryotic), cell cycle occurs via a process termed binary fission. In cells with a nucleus (eukaryotes), cell cycle can be divided in two brief periods: interphase—during which the cell grows, accumulating nutrients needed for mitosis and duplicating its DNA—and the mitosis (M) phase, during which the cell splits itself into two distinct cells, often called «daughter cells». Cell-division cycle is a vital process by which a single-celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells, and some internal organs are renewed. Cell cycle consists of four distinct phases: G1 phase, S phase (synthesis), G2 phase (collectively known as interphase) and M phase (mitosis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell’s chromosomes are divided between the two daughter cells, and cytokinesis, in which the cell’s cytoplasm divides in half forming distinct cells. Activation of each phase is dependent on the proper progression and completion of the previous one. Cells that have temporarily or reversibly stopped dividing are said to have entered a state of quiescence called G0 phase. -
Assessment of Combined Toxicity of Heavy Metals from Industrial Wastewaters on Photobacterium Phosphoreum T3S
Appl Water Sci DOI 10.1007/s13201-016-0385-4 ORIGINAL ARTICLE Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S 1,2 1 2 1 2 BibiSaima Zeb • Zheng Ping • Qaisar Mahmood • Qiu Lin • Arshid Pervez • 2 2 2 Muhammad Irshad • Muhammad Bilal • Zulfiqar Ahmad Bhatti • Shahida Shaheen2 Received: 19 May 2015 / Accepted: 19 January 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This research work is focusing on the toxicities Introduction of heavy metals of industrial origin to anaerobic digestion of the industrial wastewater. Photobacterium phospho- The presence of heavy metals in excess amounts inter- reum T3S was used as an indicator organism. The acute feres with the beneficial uses of water because of the toxicities of heavy metals on P. phosphoreum T3S were toxicity of heavy metals and the biomagnification effect assessed during 15-min half inhibitory concentration brought on by its accumulation on ecology (Chang et al. (IC50) as indicator at pH 5.5–6. Toxicity assays involved 2006; Altas 2009). During recent times, heavy metals the assessment of multicomponent mixtures using TU and were focus of attention owing to their hazardous nature MTI approaches. The results of individual toxicity indi- and subsequent toxicity studies. Various workers have cated that the toxicity of Cd, Cu and Pb on P. phospho- assessed the combined toxicity of heavy metals (Su reum increased with increasing concentrations and there et al. 2012;Quetal.2013; Mochida et al. 2006). It has was a linear correlation. The 15-min IC50 values of Cd, Cu been argued that the effects caused by combinations of and Pb were 0.537, 1.905 and 1.231 mg/L, respectively, various heavy metals may be more threatening and and their toxic order was Cd [ Pb [ Cu. -
Anisotropic Cellular Mechanoresponse for Radial Size Maintenance Of
bioRxiv preprint doi: https://doi.org/10.1101/172916; this version posted November 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Anisotropic Cellular Mechanoresponse for 2 Radial Size Maintenance of Developing Epithelial Tubes 3 4 Tsuyoshi Hirashima*1 and Taiji Adachi2 5 1. Department of Pathology and Biology of Diseases, Graduate School of Medicine, 6 Kyoto University 7 2. Institute for Frontier Life and Medical Sciences, Kyoto University 8 9 10 Correspondence to: 11 Tsuyoshi Hirashima, Ph.D. 12 Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto 13 University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan. 14 Tel/Fax: +81-75-753-9450 15 E-mail: [email protected] 16 1 bioRxiv preprint doi: https://doi.org/10.1101/172916; this version posted November 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 Abstract 18 Cellular behaviors responding to mechanical forces control the size of multicellular tissues as 19 demonstrated in isotropic size maintenance of developing tissues. However, how 20 mechanoresponse systems work to maintain anisotropic tissue size including tube radial size 21 remains unknown. Here we reveal the system underlying radial size maintenance of the 22 murine epididymal tubule by combining quantitative imaging, mathematical modeling, and 23 mechanical perturbations. -
Introduction
Guidance for Assay Development & HTS March 2007 Version 5 Section I: Introduction Introduction Copyright © 2005, Eli Lilly and Company and the National Institutes of Health Chemical Genomics Center. All Rights Reserved. For more information, please review the Privacy Policy and Site Usage and Agreement. Table of Contents A. INTRODUCTION This document is written to provide guidance to investigators that are interested in developing assays useful for the evaluation of compound collections to identify chemical probes that modulate the activity of biological targets. Originally written as a guide for therapeutic projects teams within a major pharmaceutical company, this manual has been adapted to provide guidelines for: a. Identifying potential assay formats compatible with High Throughput Screen (HTS), and Structure Activity Relationship (SAR) b. Developing optimal assay reagents c. Optimizing assay protocol with respect to sensitivity, dynamic range, signal intensity and stability d. Adopting screening assays to automation and scale up in microtiter plate formats e. Statistical validation of the assay performance parameters f. Secondary follow up assays for chemical probe validation and SAR refinement g. Data standards to be followed in reporting screening and SAR assay results. General definition of biological assays This manual is intended to provide guidance in the area of biological assay development, screening and compound evaluation. In this regard an assay is defined by a set of reagents that produce a detectable signal allowing a biological process to be quantified. In general, the quality of an assay is defined by the robustness and reproducibility of this signal in the absence of any test compounds or in the presence of inactive compounds. -
Recruitment of Leukemic Cells from G 0 Phase of the Cell Cycle By
Leukemia (2003) 17, 2049–2059 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu CORRESPONDENCE Recruitment of leukemic cells from G0 phase of the cell cycle by interferons results in conversion of resistance to daunorubicin Leukemia (2003) 17, 2049–2051. doi:10.1038/sj.leu.2403085 were not affected by daunorubicin-induced cell death. To analyze whether a similar cell cycle-specific sensitivity to Ara-C TO THE EDITOR and daunorubicin was observed in other leukemic cell lines, we analyzed four acute lymphoblastic leukemia cell lines and one Although the majority of patients with acute myeloid leukemia CML blast crisis cell line, which were generated in our (AML) responds to initial treatment, relapse of the disease occurs laboratory by culturing of leukemic blasts from five different in a significant percentage of these patients.1 The cell cycle patients in serum-free medium at high cell concentrations until status of leukemic cells may play an important role in the spontaneous sustained proliferation of the leukemic cells response to treatment of leukemic cells. Especially, the broadly occurred. These cell lines cytogenetically and phenotypically used cytotoxic agent Cytarabine (Ara-C) has been demonstrated resembled the primary leukemia. Figure 1b shows the median to exert its action via intercalation into the DNA of cells cell cycle distribution within these cell lines after incubation for À6 specifically in the S phase of the cell cycle, and sensitivity to this 48 h in medium alone, or in medium containing 1 Â 10 M Ara- agent is therefore described to be specific for cells in active cell C or daunorubicin. -
P53 Phosphorylation and Association with Murine Double Minute 2, C-Jun
[CANCER RESEARCH 60, 896–900, February 15, 2000] Advances in Brief p53 Phosphorylation and Association with Murine Double Minute 2, c-Jun ARF NH2-Terminal Kinase, p14 , and p300/CBP during the Cell Cycle and after Exposure to Ultraviolet Irradiation1 Thomas Buschmann, Victor Adler, Ekaterina Matusevich, Serge Y. Fuchs, and Ze’ev Ronai2 Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029 Abstract though the mechanisms underlying the ability of p53 to elicit such opposing effects are yet to be identified, independent studies point to p53 phosphorylation and association with proteins is implicated in its a different set of p53 regulators and effectors that are affected by p53 stability and activity. We have compared the association of DNA-bound in each of these scenarios. and overall pools of p53 with murine double minute 2 (Mdm2), c-Jun NH -terminal kinase (JNK), p300/CBP, and p14ARF during cell cycle In studying the regulation of p53 stability, we demonstrated previ- 2 ously that, in Swiss 3T3 cells, JNK and Mdm2 target p53 degradation progression. Whereas DNA-bound p53 associates with JNK at G0-G1 and in different phases of the cell cycle (7). In this study, we have with Mdm2 and p300 during S and G2-M phases, the general pool of p53 was found in complex with JNK and Mdm2 almost throughout the cell compared the association of subpopulations of p53 with proteins cycle. Phosphorylation of p53 at serines 9, 15, and 20 is at the highest levels implicated in stability and activity of p53 and monitored the pattern of at G1 and at serines 37 and 392 during G2-M phase. -
An Online Tool for Calculating and Mining Dose–Response Data Nicholas A
Clark et al. BMC Cancer (2017) 17:698 DOI 10.1186/s12885-017-3689-3 SOFTWARE Open Access GRcalculator: an online tool for calculating and mining dose–response data Nicholas A. Clark1†, Marc Hafner2†, Michal Kouril3, Elizabeth H. Williams2, Jeremy L. Muhlich2, Marcin Pilarczyk1, Mario Niepel2, Peter K. Sorger2 and Mario Medvedovic1* Abstract Background: Quantifying the response of cell lines to drugs or other perturbagens is the cornerstone of pre-clinical drug development and pharmacogenomics as well as a means to study factors that contribute to sensitivity and resistance. In dividing cells, traditional metrics derived from dose–response curves such as IC50, AUC, and Emax, are confounded by the number of cell divisions taking place during the assay, which varies widely for biological and experimental reasons. Hafner et al. (Nat Meth 13:521–627, 2016) recently proposed an alternative way to quantify drug response, normalized growth rate (GR) inhibition, that is robust to such confounders. Adoption of the GR method is expected to improve the reproducibility of dose–response assays and the reliability of pharmacogenomic associations (Hafner et al. 500–502, 2017). Results: We describe here an interactive website (www.grcalculator.org) for calculation, analysis, and visualization of dose–response data using the GR approach and for comparison of GR and traditional metrics. Data can be user-supplied or derived from published datasets. The web tools are implemented in the form of three integrated Shiny applications (grcalculator, grbrowser, and grtutorial) deployed through a Shiny server. Intuitive graphical user interfaces (GUIs) allow for interactive analysis and visualization of data. The Shiny applications make use of two R packages (shinyLi and GRmetrics) specifically developed for this purpose. -
Lack of Correlation Between in Vitro and in Vivo Studies on the Inhibitory Effects Of
pharmaceutics Article Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (-)-Sophoranone on CYP2C9 Is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of (-)-Sophoranone 1, 2,3, 3 3 3 Yu Fen Zheng y, Soo Hyeon Bae y , Zhouchi Huang , Soon Uk Chae , Seong Jun Jo , Hyung Joon Shim 3, Chae Bin Lee 3, Doyun Kim 3,4, Hunseung Yoo 4 and Soo Kyung Bae 3,* 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 211198, China; [email protected] 2 Q-fitter, Inc., Seoul 06578, Korea; sh.bae@qfitter.com 3 College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University, Korea, Bucheon 14662, Korea; [email protected] (Z.H.); [email protected] (S.U.C.); [email protected] (S.J.J.); [email protected] (H.J.S.); [email protected] (C.B.L.); [email protected] (D.K.) 4 Life Science R&D Center, SK Chemicals, 310 Pangyo-ro, Sungnam 13494, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2164-4054 These authors contributed equally to this work. y Received: 8 March 2020; Accepted: 5 April 2020; Published: 7 April 2020 Abstract: (-)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966 0.149 µM (0.503 0.0383 µM), in a competitive manner. -
Mitotic Cell Rounding Accelerates Epithelial Invagination
LETTER doi:10.1038/nature11792 Mitotic cell rounding accelerates epithelial invagination Takefumi Kondo1 & Shigeo Hayashi1,2 Mitotic cells assume a spherical shape by increasing their surface with apical depression ‘internalized cell rounding’, to distinguish itfrom tension and osmotic pressure by extensively reorganizing their canonical surface mitosis (surface cell rounding). interphase actin cytoskeleton into a cortical meshwork and their To determine whether cell rounding is required for invagination, we microtubules into the mitotic spindle1,2. Mitotic entry is known to analysed zygotic mutants of the cell-cycle gene Cyclin A (CycA), which interfere with tissue morphogenetic events that require cell-shape fail to enter mitosis 16 (ref. 17), and double parkeda3 (dupa3), which changes controlled by the interphase cytoskeleton, such as apical show a prolonged S phase 16 and delayed entry into mitosis 16 constriction3–5. However, here we show that mitosis plays an active (ref. 18). Tracheal invagination was initiated normally in the CycA role in the epithelial invagination of the Drosophila melanogaster and dupa3 mutants, but proceeded more slowly than in controls tracheal placode. Invagination begins with a slow phase under the (Fig. 2a, d, Supplementary Fig. 2 and Supplementary Video 3), indi- control of epidermal growth factor receptor (EGFR) signalling; in cating that entry into mitosis 16 is required for proper timing of the fast this process, the central apically constricted cells, which are sur- phase. rounded by intercalating cells6,7, form a shallow pit. This slow Although delayed, the accelerated invagination in the CycA or dupa3 phase is followed by a fast phase, in which the pit is rapidly mutants eventually occurred, allowing the formation of tube struc- depressed, accompanied by mitotic entry, which leads to the inter- tures (Fig. -
(2R,6R)-Hydroxynorketamine Do Not Block NMDA Receptor Function
Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function Eric W. Lumsdena,1, Timothy A. Troppolib,1, Scott J. Myersc, Panos Zanosd, Yasco Aracavaa, Jan Kehre,f, Jacqueline Lovettg, Sukhan Kimc, Fu-Hua Wange,f, Staffan Schmidte,f, Carleigh E. Jenned, Peixiong Yuanh, Patrick J. Morrisi, Craig J. Thomasi, Carlos A. Zarate Jr.h, Ruin Moaddelg, Stephen F. Traynelisc,2, Edna F. R. Pereiraa,j,2, Scott M. Thompsonb,d,2, Edson X. Albuquerquea,j,k,2, and Todd D. Gouldd,j,l,m,2,3 aDepartment of Epidemiology and Public Health, Division of Translational Toxicology, University of Maryland School of Medicine, Baltimore, MD 21201; bDepartment of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201; cDepartment of Pharmacology, Emory University, Atlanta, GA 30329; dDepartment of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201; eDepartment of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden; fPronexus Analytical AB, SE-167 33 Bromma, Sweden; gBiomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; hSection on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; iDivision of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892; jDepartment of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201; kDepartment of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; lDepartment of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201; and mVeterans Affairs Maryland Health Care System, Baltimore, MD 21201 Edited by Solomon H.