High-Accuracy Lagging-Strand DNA Replication Mediated by DNA Polymerase Dissociation

Total Page:16

File Type:pdf, Size:1020Kb

High-Accuracy Lagging-Strand DNA Replication Mediated by DNA Polymerase Dissociation High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation Katarzyna H. Maslowskaa,b, Karolina Makiela-Dzbenskab, Jin-Yao Moa, Iwona J. Fijalkowskab,1, and Roel M. Schaapera,1 aGenome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; and bInstitute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved March 2, 2018 (received for review November 27, 2017) The fidelity of DNA replication is a critical factor in the rate at Detailed mutational studies in E. coli have suggested that the − − which cells incur mutations. Due to the antiparallel orientation of in vivo polymerase misinsertion rate is approximately 10 4–10 5 the two chromosomal DNA strands, one strand (leading strand) is per base copied, and that proofreading by the e subunit reduces the replicated in a mostly processive manner, while the other (lagging error rate by approximately 102-fold, yielding an overall polymerase − − strand) is synthesized in short sections called Okazaki fragments. A error rate of 10 6–10 7 per replicated base (1). DNA mismatch fundamental question that remains to be answered is whether the repair (via the mutHLS system), which follows the replication fork, two strands are copied with the same intrinsic fidelity. In most then reduces the observed error rate by another 102-to103-fold, − experimental systems, this question is difficult to answer, as the accounting for the overall mutation rate of approximately 10 10 per replication complex contains a different DNA polymerase for each replicated base (1, 3). However, many aspects of the replisome and δ e strand, such as, for example, DNA polymerases and in eukary- its fidelity remain incompletely understood, including its precise otes. Here we have investigated this question in the bacterium composition (4, 5), the fidelity role of other HE subunits (6), the Escherichia coli , in which the replicase (DNA polymerase III holo- interference of the accessory DNA polymerases (7), and the effi- enzyme) contains two copies of the same polymerase (Pol III, the – dnaE ciency of exonucleolytic proofreading (8 10). gene product), and hence the two strands are copied by In the present work, we have addressed another fundamental the same polymerase. Our in vivo mutagenesis data indicate that question: whether the two DNA strands—leading and lagging— the two DNA strands are not copied with the same accuracy, and GENETICS are subject to the same fidelity rules. Insight into this matter may that, remarkably, the lagging strand has the highest fidelity. We also help understand the origin of DNA strand biases observed postulate that this effect results from the greater dissociative char- in studies of mutagenesis, evolution, and cancer (11–13). acter of the lagging-strand polymerase, which provides additional options for error removal. Our conclusion is strongly supported by Results and Discussion results with dnaE antimutator polymerases characterized by in- A System to Investigate in Vivo Chromosomal DNA Replication Fidelity. creased dissociation rates. To study any differential effects of leading and lagging-strand DNA replication fidelity | leading and lagging strands | DNA polymerase III replication on chromosomal replication fidelity, we developed holoenzyme | dnaE antimutators | DNA polymerase dissociation the system shown schematically in Fig. 1A. Mutations are scored in the 1,100-bp lacI gene, encoding the repressor of the lacZYA operon. Forward mutations occurring throughout the lacI gene, he accuracy by which organisms are able to duplicate their inactivating the repressor function, lead to constitutive expression Tchromosomal DNA is generally high, producing on average only one error for every 109–1011 copied bases. This high fidelity is not achieved in a single step, but instead is produced via the op- Significance eration of several sequential error-avoidance and editing steps. These steps include selection of the correct DNA base by the The accuracy (fidelity) by which cells are able to duplicate their DNA polymerase (i.e., nucleotide insertion step), the editing (i.e., chromosomal DNA before cell division is an important factor in removal) of polymerase misinsertion errors by exonucleolytic the frequency at which they accumulate mutations. Because proofreading, and finally postreplicative DNA mismatch repair, mutations are generally harmful, organisms have developed which detects and corrects DNA mismatches in newly repli- various mechanisms to minimize the frequency of errors during cated DNA (1). DNA replication. Replication is generally performed by large Chromosomal DNA replication is generally performed by multiple subunit complexes (replicases), which simultaneously multisubunit DNA polymerase complexes (replicases) that con- and in a coordinated fashion copy the two DNA strands. Due to duct the simultaneous, coordinated synthesis of the two new the antiparallel nature of the two DNA strands, the replication DNA strands at the replication fork. The replication speed can enzymology of the two individual strands is slightly different, be very high, up to 500–1,000 nucleotides per second for the and our study demonstrates that the two strands are copied bacterium Escherichia coli (2). In this organism, replication is with different accuracies. Specifically, the discontinuous lag- performed by the multisubunit DNA polymerase III holoenzyme ging strand is significantly more accurate than the more proc- essive leading strand. (HE) complex (2), which contains two copies of a DNA poly- merase core, one for each strand, with composition αeθ, in which α e Author contributions: I.J.F. and R.M.S. designed research; K.H.M., K.M.-D., and J.-Y.M. the subunit is the DNA polymerase and is the associated performed research; K.H.M., K.M.-D., I.J.F., and R.M.S. analyzed data; and R.M.S. wrote exonucleolytic proofreader. The two core polymerases are joined the paper. together through interactions with the τ subunit of the DnaX5 The authors declare no conflict of interest. complex. The latter also serves as a loader/unloader complex for This article is a PNAS Direct Submission. β two donut-shaped ( 2) processivity clamps that tether the two Published under the PNAS license. polymerases to the DNA. The speed of the fork is controlled 1To whom correspondence may be addressed. Email: [email protected] or schaaper@ through interactions with the DNA helicase (DnaB gene prod- niehs.nih.gov. uct) that unzips the DNA ahead of the moving fork (2). How This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. such high-speed replication machines can copy DNA with im- 1073/pnas.1720353115/-/DCSupplemental. pressive fidelity is an important question. www.pnas.org/cgi/doi/10.1073/pnas.1720353115 PNAS Latest Articles | 1of6 Downloaded by guest on September 28, 2021 A B the opposite direction in the form of short Okazaki fragments. 5' Fig. 1B illustrates the consequences of the inversion in the way that the operon is replicated. For the R orientation, the lacI 3' 5' coding sequence (indicated in blue) is copied by the lagging- Leading L-orientaon strand mechanism, while for the L orientation, it is copied by the 3' lacI leading strand replication. Our experimental system to determine possible differences in lacI replication fidelity between the leading and lagging strands is 5' R-orientaon based on a detailed analysis of the frequencies and types of lacI Lagging mutations occurring for the two gene orientations. For example, 3' 5' the most prominent replication error made by DNA polymerases is the misincorporation of dGTP opposite a template T, denoted · 3' here as T G (template strand underlined). This event will ulti- mately be observed as an A·T → G·C transition mutation. Using the lacI coding sequence as a reference, these mutations can be C A·T G·C scored at both T sites (read as T → C) and A sites (read as A → T A 5' T A R-orientaon G G G) within this sequence, but their genesis at the two sites is Lagging different. For example, in the L orientation (Fig. 1C), the mu- 3' 5' tations scored at T sites (T → C) result from T·G errors in the Leading → G G leading strand, while those scored at A sites (A G) result from 3' A T L-orientaon A T T·G errors in the lagging strand, and the reverse is true for the R orientation (Fig. 1C). Thus, insight into the relative frequency of T·G errors during leading strand and lagging-strand replication D G·C A·T can be obtained by simply comparing the ratio of these transi- G C 5' G C R-orientaon tions at coding strand T and A sites. T T · → · Lagging Likewise, for the case of the reciprocal G C A T transitions, 3' analysis in terms of the preferred G·T mispairings can be per- 5' formed simply by comparing events at reference strand G and Leading T T strand C. Referring to Fig. 1D, for the L orientation, G·C → A·T 3' C G L-orientaon C G observed at coding strand G sites (G → A) correspond to G·T errors in the leading strand, while those observed at C sites (C → Fig. 1. A system for assaying differential replication fidelity in leading and T) correspond to G·T in the lagging strand, and vice versa for the lagging strands. (A) E. coli chromosome with the lac operon inserted at the R orientation. A caveat for this overall approach is that A·T → attL locus in either the R or the L orientation. Also shown are the OriC origin, G·C mutations can alternatively result from A·C mispairings, while where bidirectional replication begins (the two arrowheads), and the TerC · → · · terminator region, where the two forks eventually meet.
Recommended publications
  • Mutations That Separate the Functions of the Proofreading Subunit of the Escherichia Coli Replicase
    G3: Genes|Genomes|Genetics Early Online, published on April 15, 2015 as doi:10.1534/g3.115.017285 Mutations that separate the functions of the proofreading subunit of the Escherichia coli replicase Zakiya Whatley*,1 and Kenneth N Kreuzer*§ *University Program in Genetics & Genomics, Duke University, Durham, NC 27705 §Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: E. coli dnaQ separation of function mutants Keywords: DNA polymerase, epsilon subunit, linker‐scanning mutagenesis, mutation rate, SOS response Corresponding author: Kenneth N Kreuzer, Department of Biochemistry, Box 3711, Nanaline Duke Building, Research Drive, Duke University Medical Center, Durham, NC 27710 Phone: 919 684 6466 FAX: 919 684 6525 Email: [email protected] 1 Present address: Department of Biology, 300 N Washington Street, McCreary Hall, Campus Box 392, Gettysburg College, Gettysburg, PA 17325 Phone: 717 337 6160 Fax: 7171 337 6157 Email: [email protected] 2 ABSTRACT The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3’ 5’ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our lab identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response following quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks.
    [Show full text]
  • DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine
    Annu. Rev. Biochem. 1995.64:171-200 Copyright Ii) 1995 byAnnual Reviews Inc. All rights reserved DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine Zvi Kelman and Mike O'Donnell} Microbiology Department and Hearst Research Foundation. Cornell University Medical College. 1300York Avenue. New York. NY }0021 KEY WORDS: DNA replication. multis ubuni t complexes. protein-DNA interaction. DNA-de penden t ATPase . DNA sliding clamps CONTENTS INTRODUCTION........................................................ 172 THE HOLO EN ZYM E PARTICL E. .......................................... 173 THE CORE POLYMERASE ............................................... 175 THE � DNA SLIDING CLAM P............... ... ......... .................. 176 THE yC OMPLEX MATCHMAKER......................................... 179 Role of ATP . .... .............. ...... ......... ..... ............ ... 179 Interaction of y Complex with SSB Protein .................. ............... 181 Meclwnism of the yComplex Clamp Loader ................................ 181 Access provided by Rockefeller University on 08/07/15. For personal use only. THE 't SUBUNIT . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 182 Annu. Rev. Biochem. 1995.64:171-200. Downloaded from www.annualreviews.org AS YMMETRIC STRUC TURE OF HOLO EN ZYM E . 182 DNA PO LYM ER AS E III HOLO ENZ YME AS A REPLIC ATING MACHINE ....... 186 Exclwnge of � from yComplex to Core .................................... 186 Cycling of Holoenzyme on the LaggingStrand
    [Show full text]
  • DNA Proofreading and Repair
    DNA proofreading and repair Mechanisms to correct errors during DNA replication and to repair DNA damage over the cell's lifetime. Key points: Cells have a variety of mechanisms to prevent mutations, or permanent changes in DNA sequence. During DNA synthesis, most DNA polymerases "check their work," fixing the majority of mispaired bases in a process called proofreading. Immediately after DNA synthesis, any remaining mispaired bases can be detected and replaced in a process called mismatch repair. If DNA gets damaged, it can be repaired by various mechanisms, including chemical reversal, excision repair, and double-stranded break repair. Introduction What does DNA have to do with cancer? Cancer occurs when cells divide in an uncontrolled way, ignoring normal "stop" signals and producing a tumor. This bad behavior is caused by accumulated mutations, or permanent sequence changes in the cells' DNA. Replication errors and DNA damage are actually happening in the cells of our bodies all the time. In most cases, however, they don’t cause cancer, or even mutations. That’s because they are usually detected and fixed by DNA proofreading and repair mechanisms. Or, if the damage cannot be fixed, the cell will undergo programmed cell death (apoptosis) to avoid passing on the faulty DNA. Mutations happen, and get passed on to daughter cells, only when these mechanisms fail. Cancer, in turn, develops only when multiple mutations in division-related genes accumulate in the same cell. In this article, we’ll take a closer look at the mechanisms used by cells to correct replication errors and fix DNA damage, including: Proofreading, which corrects errors during DNA replication Mismatch repair, which fixes mispaired bases right after DNA replication DNA damage repair pathways, which detect and correct damage throughout the cell cycle Proofreading DNA polymerases are the enzymes that build DNA in cells.
    [Show full text]
  • Gene Disruption of a G4-DNA-Dependent Nuclease In
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6002-6006, June 1995 Genetics Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening (guanine-quartet/KEMI/SEPI/checkpoint/meiosis) ZHIPING Liu, ARNOLD LEE, AND WALTER GILBERT Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138-2092 Contributed by Walter Gilbert, April 3, 1995 ABSTRACT The yeast gene KEMI (also named (11). A highly conserved feature is that one of the strands is SEPI/DST2/XRNI/RAR5) produces a G4-DNA-dependent very G-rich and always exists as a 3' overhang at the end of the nuclease that binds to G4 tetraplex DNA structure and cuts in chromosome. Telomeres carry out two essential functions. a single-stranded region 5' to the G4 structure. G4-DNA They protect, or stabilize, the ends of linear chromosomes, generated from yeast telomeric oligonucleotides competitively since artificially generated ends (by means of mechanical inhibits the cleavage reaction, suggesting that this enzyme sheering, x-ray irradiation, or enzymatic cleavage) are very may interact with yeast telomeres in vivo. Homozygous dele- unstable (12-14). Furthermore, they serve to circumvent the tions ofthe KEMI gene in yeast block meiosis at the pachytene incomplete DNA replication at the ends of linear chromo- stage, which is consistent with the hypothesis that G4 tetra- somes (15) by extending the G-rich strand through a de novo plex DNA may be involved in homologous chromosome pairing synthesis catalyzed by telomerase to counterbalance the se- during meiosis. We conjectured that the mitotic defects of quence loss at an end in lagging-strand replication (16, 17).
    [Show full text]
  • Two Proofreading Steps Amplify the Accuracy of Genetic Code Translation
    Two proofreading steps amplify the accuracy of genetic code translation Ka-Weng Ieonga, Ülkü Uzuna,1, Maria Selmera, and Måns Ehrenberga,2 aDepartment of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden Edited by Ada Yonath, Weizmann Institute of Science, Rehovot, Israel, and approved October 12, 2016 (received for review July 4, 2016) Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA kinetic efficiency to substrate-selective, enzyme-catalyzed reactions programmed ribosome in ternary complex with elongation factor than single-step proofreading (5, 14, 15), it has been taken for Tu (EF-Tu) and GTP and then, again, in a proofreading step after granted that there is but a single proofreading step in tRNA se- GTP hydrolysis on EF-Tu. We use tRNA mutants with different lection by the translating ribosome (16). Here, we present data affinities for EF-Tu to demonstrate that proofreading of aa- showing that the proofreading factor (F), by which the accuracy (A) tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary is amplified from its initial selection value (I) by aa-tRNA in ternary complex with EF-Tu·GDP are selected in a step where the accu- complex with EF-Tu and GTP, increases linearly with increasing racy increases linearly with increasing aa-tRNA affinity to EF-Tu. association equilibrium constant, KA, for aa-tRNA binding to EF- Then, following dissociation of EF-Tu·GDP from the ribosome, the Tu. We suggest the cause of this linear increase to be the activity of accuracy is further increased in a second and apparently EF- a first proofreading step, in which aa-tRNA is discarded in complex Tu−independent step.
    [Show full text]
  • Distinct Co-Evolution Patterns of Genes Associated to DNA Polymerase III Dnae and Polc Stefan Engelen1,2, David Vallenet2, Claudine Médigue2 and Antoine Danchin1,3*
    Engelen et al. BMC Genomics 2012, 13:69 http://www.biomedcentral.com/1471-2164/13/69 RESEARCHARTICLE Open Access Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC Stefan Engelen1,2, David Vallenet2, Claudine Médigue2 and Antoine Danchin1,3* Abstract Background: Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results: Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co- evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion: DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.
    [Show full text]
  • Conversion of OX174 and Fd Single-Stranded DNA to Replicative Forms in Extracts of Escherichia Coli (Dnac, Dnad, and Dnag Gene Products/DNA Polymerase III) REED B
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 11, pp. 3233-3237, November 1972 Conversion of OX174 and fd Single-Stranded DNA to Replicative Forms in Extracts of Escherichia coli (dnaC, dnaD, and dnaG gene products/DNA polymerase III) REED B. WICKNER, MICHEL WRIGHT, SUE WICKNER, AND JERARD HURWITZ Department of Developmental Biology and Cancer, Division of Biological Sciences, Albert Einstein College of Medicine, Bronx, New York 10461 Communicated by Harry Eagle, August 28, 1972 ABSTRACT 4X174 and M13 (fd) single-stranded cir- MATERIALS AND METHODS cular DNAs are converted to their replicative forms by ex- tracts of E. coli pol Al cells. We find that the qX174 DNA- [a-32P]dTTP was obtained from New England Nuclear Corp. dependent reaction requires Mg++, ATP, and all four de- OX174 DNA was prepared by the method of Sinsheimer (7) oxynucleoside triphosphates, but not CTP, UTP, or GTP. or Franke and Ray (8), while fd viral DNA was prepared as This reaction also involves the products of the dnaC, dnaD, dnaE (DNA polymerase III), and dnaG genes, described (9). Pancreatic RNase was the highest grade ob- but not that of dnaF (ribonucleotide reductase). The in tainable from Worthington Biochemical Corp. It was further vitro conversion of fd single-stranded DNA to the replica- freed of possible contaminating DNase by heating a solution tive form requires all four ribonucleoside triphosphates, (2 mg/ml in 15 mM sodium citrate, pH 5) at 800 for 10 min. Mg++, and all four deoxynucleoside triphosphates. The E. protein was purified from E. coli strain reaction involves the product of gene dnaE but not those coli unwinding of genes dnaC, dnaD, dnaF, or dnaG.
    [Show full text]
  • Proofreading-Defective DNA Polymerase II Increases Adaptive
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7951-7955, August 1995 Biochemistry Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli (polB gene/3' exonuclease/mismatch repair/DNA polymerase III/antimutator) PATRICIA L. FOSTER*, GUDMUNDUR GUDMUNDSSONt, JEFFREY M. TRIMARCHI*, HONG CAIt, AND MYRON F. GOODMANtt *Department of EnvironmentalHealth, Boston University School of Public Health, Boston, MA 02118-2394; and tDepartment of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340 Communicated by Evelyn M. Witkin, Rutgers, The State University of New Jersey, Piscataway, NJ, June 5, 1995 ABSTRACT The role ofEscherichia coli DNA polymerase strain, FC40, its F- parent, FC36, the scavenger F' AlaclZ (Pol) II in producing or avoiding mutations was investigated strain, FC29, and thepolBAl derivative of FC40, FCB60, have by replacing the chromosomal Pol II gene (polB+) by a gene been described (10, 12, 13). ApolBexl derivative of FC40 was encoding an exonuclease-deficient mutant Pol II (polBexi). made from HC203 by transduction to arabinose utilization. The polBexi allele increased adaptive mutations on an epi- The dnaE915 or control dnaE+ strains were made from some in nondividing cells under lactose selection. The pres- NR9915 or NR9918 by transducing to tetracycline resistance ence of a Pol III antimutator allele (dnaE915) reduced adap- and then screening for chloramphenicol resistance. In all cases tive mutations in both polB+ cells and cells deleted for polB the F' 1ac133::1acZ was mated into the strain last, and then the (polBAl) to below the wild-type level, suggesting that both Pol phenotypes of several independent isolates were tested.
    [Show full text]
  • A Dinb Variant Reveals Diverse Physiological Consequences of Incomplete TLS Extension by a Y-Family DNA Polymerase
    A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Jarosz, D. F. et al. “A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase.” Proceedings of the National Academy of Sciences 106.50 (2009): 21137-21142. Copyright ©2011 by the National Academy of Sciences As Published http://dx.doi.org/10.1073/pnas.0907257106 Publisher National Academy of Sciences (U.S.) Version Final published version Citable link http://hdl.handle.net/1721.1/61367 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase Daniel F. Jarosza,1, Susan E. Cohenb, James C. Delaneyc, John M. Essigmanna,c, and Graham C. Walkerb,2 Departments of aChemistry, bBiology, and cBiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved October 20, 2009 (received for review June 30, 2009) The only Y-family DNA polymerase conserved among all domains however. The active sites of both pol ␬ (41) and DinB (22) are of life, DinB and its mammalian ortholog pol ␬, catalyzes proficient somewhat closed under many conditions. This may occur at least in bypass of damaged DNA in translesion synthesis (TLS).
    [Show full text]
  • Microevolution of Candida Albicans Isolate from a Patient with Mucocutaneous Candidiasis and HIV Infection
    Open Journal of Medical Microbiology, 2017, 7, 41-49 http://www.scirp.org/journal/ojmm ISSN Online: 2165-3380 ISSN Print: 2165-3372 Microevolution of Candida albicans Isolate from a Patient with Mucocutaneous Candidiasis and HIV Infection Gabriel Palma Cortés1, Carlos Cabello Gutierrez1, Misael González Ibarra2, Magdalena Aguirre García3, Fernando Hernández Sánchez1, Haydee Torres Guerrero3* 1Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratoria “Ismael Cosío Villegas”, Ciudad de México, México 2Laboratorio de Inmuno Alergología y Micología Médica, División de Investigación, Hospital Juárez de México, Ciudad de México, México 3Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, México How to cite this paper: Palma Cortés, G., Abstract Gutierrez, C.C., Ibarra, M.G., García, M.A., Sánchez, F.H. and Guerrero, H.T. (2017) Candidiasis is the most common opportunistic fungal infection in HIV pa- Microevolution of Candida albicans Isolate tients, and its presence is ascribed mainly to the persistence of the original in- from a Patient with Mucocutaneous Can- fecting strain. The latter might acquire genetic variations during interaction didiasis and HIV Infection. Open Journal of Medical Microbiology, 7, 41-49. with the host, reflecting the adaptation of the strain. Here, we report the case https://doi.org/10.4236/ojmm.2017.72004 of a 32-year-old man complaining of asthenia, irregular hyperpyrexia, and dry cough, who was admitted to the emergency unit. Laboratory examination Received: March 7, 2017 Accepted: June 17, 2017 showed positivity for HIV. Dark violet macular lesions and ulcerated lesions Published: June 20, 2017 with verrucous erosion were observed at the tip of the nose, whereas an ulcer without exudates was noted in the pubic region.
    [Show full text]
  • Analysis of DNA Polymerases II and III in Mutants of Escherichia Coli Thermosensitive for DNA Synthesis (Polal Mutants/Phosphocellulose Chromatography/Dnae Locus)
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 12, pp. 3150-3153, December 1971 Analysis of DNA Polymerases II and III in Mutants of Escherichia coli Thermosensitive for DNA Synthesis (polAl mutants/phosphocellulose chromatography/dnaE locus) MALCOLM L. GEFTER, YUKINORI HIROTA*, THOMAS KORNBERG, JAMES A. WECHSLER, AND C. BARNOUX* Department of Biological Sciences, Columbia University, New York, N.Y. 10027; and * Service de G6n6tique Cellulaire de l'Institut Pasteur, Paris Communicated by Cyrus Levinthal, October 18, 1971 ABSTRACT A series of double mutants carrying one of (5) PC79: F- his- strr malA xyl- mtlh thi- polAl sup- the thermosensitive mutations for DNA synthesis (dnaA, dnaD7 B, C, D, E, F, and G) and the polAl mutation of DeLucia and Cairns, were constructed. Enzyme activities of DNA (6) E5111: F- his- strr malA xylh mtlh arg- thi- sup- Polymerases II and III were measured in each mutant. polAl dnaE511 DNA Polymerase II activity was normal in all strains (7) E4860: F- his- str' malA xylh mtlh arg- thi- sup- tested. DNA Polymerase III activity is thermosensitive dnaE486 specifically in those strains having thermosensitive muta- tions at the dnaE locus. From these results we conclude (8) E4868: F- his- strr malA xyl- mtlh arg thi- sup- that DNA Polymerases II and III are independent en- polAl dnaE486 zymes and that DNA Polymerase III is an enzyme required (9) BT1026: H560thy-endoI- polAl dnaE for DNA replication in Escherichia coli. (10) BT1040: H560 thy endoI polAl dnaE (11) E1011: F- his- strr malA xyl- mtl- arg- thi- sup- The isolation by DeLucia and Cairns (1) of an Escherichia polAl dnaFI01 coli mutant that lacks DNA Polymerase I activity (polA1) (12) JW207: thy-rha-strrpolAl dnaF101 has prompted many investigations into the nature of the (13) NY73: leu- thy- metE rifr strr polAl dnaG3 DNA synthetic capacity of such strains.
    [Show full text]
  • The Escherichia Coli Polb Gene, Which Encodes DNA Polymerase II, Is Regulated by the SOS System HIROSHI IWASAKI,' ATSUO NAKATA,1 GRAHAM C
    JOURNAL OF BACTERIOLOGY, Nov. 1990, p. 6268-6273 Vol. 172, No. 11 0021-9193/90/116268-06$02.00/0 Copyright © 1990, American Society for Microbiology The Escherichia coli polB Gene, Which Encodes DNA Polymerase II, Is Regulated by the SOS System HIROSHI IWASAKI,' ATSUO NAKATA,1 GRAHAM C. WALKER,2 AND HIDEO SHINAGAWA1* Department ofExperimental Chemotherapy, Research Institute for Microbial Disease, Osaka University, Suita, Osaka 565, Japan,1 and Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 021392 Received 7 June 1990/Accepted 13 August 1990 The dinA (damage inducible) gene was previously identified as one of the SOS genes with no known function; it was mapped near the leuB gene, where the poiB gene encoding DNA polymerase H was also mapped. We cloned the chromosomal fragment carrying the dinA region from the ordered Escherichia coli genomic library and mapped the dinA promoter precisely on the physical map of the chromosome. The cells that harbored multicopy plasmids with the dimA region expressed very high levels of DNA polymerase activity, which was sensitive to N-ethylmaleimide, an inhibitor of DNA polymerase II. Expression of the polymerase activity encoded by the dinA locus was regulated by SOS system, and the dinA promoter was the promoter of the gene encoding the DNA polymerase. From these data we conclude that the polB gene is identical to the dinA gene and is regulated by the SOS system. The product of the polB (dinA) gene was identified as an 80-kDa protein by the maxicell method. In Escherichia coli, three DNA polymerases have been pSY343 (27), pSCH18 (10), and pRS528 (22) were used for identified (15).
    [Show full text]