Parallelogram & Kite & Triangle Midsegment Properties

Total Page:16

File Type:pdf, Size:1020Kb

Parallelogram & Kite & Triangle Midsegment Properties Parallelogram & Kite & Triangle Midsegment Properties http://www.mathsisfun.com/definitions/parallelogram.html Parallelogram Diagonals Theorem A diagonal of a parallelogram separates it into two congruent triangles. Parallelogram Definition: A Parallelogram is a flat shape with opposite sides parallel and equal in length. D C A B Given: ABCD is a parallelogram Prove: ABC CDA STATEMENTS REASONS Parallelogram Opposite Angles Corollary The opposite angles of a parallelogram are congruent. (Lesson 5.5) Parallelogram Consecutive Angles Corollary The consecutive angles of a parallelogram are supplementary. (Lesson 5.5) Parallelogram Opposite Sides Corollary The opposite sides of a parallelogram are congruent. B D, A C (Lesson 5.5) mB mC 180 Parallelogram Diagonals Corollary The diagonals of a parallelogram bisect each other. mA mD 180 (Lesson 5.5) AE CE, BE DE http://www.mathsisfun.com/definitions/kite.html Kite Definition - A quadrilateral (4-sided flat shape with straight sides) with two distinct pairs of congruent adjacent sides. Kite Angles Theorem The nonvertex angles of a kite are congruent. Kite Diagonals Corollary The diagonals of a kite are perpendicular. Kite Diagonal Bisector Corollary The diagonal connecting the vertex angles of a kite is the perpendicular bisector of the other diagonal. Kite Angle Bisector Corollary The vertex nonvertex angles of a kite are bisected by a diagonal. angles http://www.mathopenref.com/trianglemidsegment.html Midsegment of a Triangle Definition A line segment joining the midpoints of two sides of a triangle. A triangle has 3 possible midsegments. Three Midsegments Theorem A midsegment of a triangle is parallel to the third side and half the length of the third side. Three Midsegments Corollary: The three midsegments of a triangle divide it into four congruent triangles. k STATEMENTS REASONS .
Recommended publications
  • Build a Tetrahedral Kite
    Aeronautics Research Mission Directorate Build a Tetrahedral Kite Suggested Grades: 8-12 Activity Overview Time: 90-120 minutes In this activity, you will build a tetrahedral kite from Materials household supplies. • 24 straws (8 inches or less) - NOTE: The straws need to be Steps straight and the same length. If only flexible straws are available, 1. Cut a length of yarn/string 4 feet long. then cut off the flexible portion. • Two or three large spools of 2. Take six straws and place them on a flat surface. cotton string or yarn (approximately 100 feet total) 3. Use your piece of string to join three straws • Scissors together in a triangular shape. On the side where • Hot glue gun and hot glue sticks the two strings are extending from it, one end • Ruler or dowel rod for kite bridle should be approximately 20 inches long, and the • Four pieces of tissue paper (24 x other should be approximately 4 inches long. 18 inches or larger) See Figure 1. • All-purpose glue stick Figure 1 4. Tie these two ends of the string tightly together. Make sure there is no room for the triangle to wiggle. 5. The three straws should form a tight triangle. 6. Cut another 4-inch piece of string. 7. Take one end of the 4-inch string, and tie that end to a corner of the triangle that does not have the string ends extending from it. Figure 2. 8. Add two more straws onto the longest piece of string. 9. Next, take the string that holds the two additional straws and tie it to the end of one of the 4-inch strings to make another tight triangle.
    [Show full text]
  • Quadrilateral Theorems
    Quadrilateral Theorems Properties of Quadrilaterals: If a quadrilateral is a TRAPEZOID then, 1. at least one pair of opposite sides are parallel(bases) If a quadrilateral is an ISOSCELES TRAPEZOID then, 1. At least one pair of opposite sides are parallel (bases) 2. the non-parallel sides are congruent 3. both pairs of base angles are congruent 4. diagonals are congruent If a quadrilateral is a PARALLELOGRAM then, 1. opposite sides are congruent 2. opposite sides are parallel 3. opposite angles are congruent 4. consecutive angles are supplementary 5. the diagonals bisect each other If a quadrilateral is a RECTANGLE then, 1. All properties of Parallelogram PLUS 2. All the angles are right angles 3. The diagonals are congruent If a quadrilateral is a RHOMBUS then, 1. All properties of Parallelogram PLUS 2. the diagonals bisect the vertices 3. the diagonals are perpendicular to each other 4. all four sides are congruent If a quadrilateral is a SQUARE then, 1. All properties of Parallelogram PLUS 2. All properties of Rhombus PLUS 3. All properties of Rectangle Proving a Trapezoid: If a QUADRILATERAL has at least one pair of parallel sides, then it is a trapezoid. Proving an Isosceles Trapezoid: 1st prove it’s a TRAPEZOID If a TRAPEZOID has ____(insert choice from below) ______then it is an isosceles trapezoid. 1. congruent non-parallel sides 2. congruent diagonals 3. congruent base angles Proving a Parallelogram: If a quadrilateral has ____(insert choice from below) ______then it is a parallelogram. 1. both pairs of opposite sides parallel 2. both pairs of opposite sides ≅ 3.
    [Show full text]
  • Cyclic Quadrilateral: Cyclic Quadrilateral Theorem and Properties of Cyclic Quadrilateral Theorem (For CBSE, ICSE, IAS, NET, NRA 2022)
    9/22/2021 Cyclic Quadrilateral: Cyclic Quadrilateral Theorem and Properties of Cyclic Quadrilateral Theorem- FlexiPrep FlexiPrep Cyclic Quadrilateral: Cyclic Quadrilateral Theorem and Properties of Cyclic Quadrilateral Theorem (For CBSE, ICSE, IAS, NET, NRA 2022) Get unlimited access to the best preparation resource for competitive exams : get questions, notes, tests, video lectures and more- for all subjects of your exam. A quadrilateral is a 4-sided polygon bounded by 4 finite line segments. The word ‘quadrilateral’ is composed of two Latin words, Quadric meaning ‘four’ and latus meaning ‘side’ . It is a two-dimensional figure having four sides (or edges) and four vertices. A circle is the locus of all points in a plane which are equidistant from a fixed point. If all the four vertices of a quadrilateral ABCD lie on the circumference of the circle, then ABCD is a cyclic quadrilateral. In other words, if any four points on the circumference of a circle are joined, they form vertices of a cyclic quadrilateral. It can be visualized as a quadrilateral which is inscribed in a circle, i.e.. all four vertices of the quadrilateral lie on the circumference of the circle. What is a Cyclic Quadrilateral? In the figure given below, the quadrilateral ABCD is cyclic. ©FlexiPrep. Report ©violations @https://tips.fbi.gov/ 1 of 5 9/22/2021 Cyclic Quadrilateral: Cyclic Quadrilateral Theorem and Properties of Cyclic Quadrilateral Theorem- FlexiPrep Let us do an activity. Take a circle and choose any 4 points on the circumference of the circle. Join these points to form a quadrilateral. Now measure the angles formed at the vertices of the cyclic quadrilateral.
    [Show full text]
  • Performance Based Learning and Assessment Task Kite Project
    Performance Based Learning and Assessment Task Kite Project I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The students are instructed to: research the history, science, and design of kites; design a blueprint of their kite and find the measurements, scale factor, area, and perimeter of their blueprint; and construct and fly their kite. II. UNIT AUTHOR: Leslie Hindman, Washington-Lee High School, Arlington Public Schools III. COURSE: Geometry IV. CONTENT STRAND: Geometry, Measurement V. OBJECTIVES: Students will be able to • Design a scale model of a kite • Measure the dimensions and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model • Construct and fly a kite VI. REFERENCE/RESOURCE MATERIALS: For Research: computer access For Scale Model Drawing: ruler, protractor, graph paper, calculator, Geometry SOL formula sheet For Kites: tissue paper, plastic table cloths, small wooden dowels, straws, yarn, fishing wire, markers, scissors, tape, glue VII. PRIMARY ASSESSMENT STRATEGIES: The task includes an assessment component that performs two functions: (1) for the student it will be a checklist and provide a self-assessment and (2) for the teacher it will be used as a rubric. The attached assessment list will assess the research section, scale model drawing, and kite construction. VIII. EVALUATION CRITERIA: Assessment List, corresponding rubric. IX. INSTRUCTIONAL TIME: 2 ninety minute class periods for research, scale model drawings, and kite construction. 1/2 ninety minute class period for flying kites. Kite Project Strand Geometry, Measurement Mathematical Objective(s) Students will be able to: • Design a scale model of a kite • Find the measures of the sides and angles of the scale model • Determine the scale factor of the scale model • Compute the area and perimeter of the scale model Related SOL • G.12 The student will make a model of a three-dimensional figure from a two- dimensional drawing and make a two-dimensional representation of a three- dimensional object.
    [Show full text]
  • INTRODUCTION to QUADRILATERALS Square Rectangle Rhombus Parallelogram
    INTRODUCTION TO QUADRILATERALS square rectangle rhombus parallelogram trapezoid kite Mathematicians define regular quadrilaterals according to their attributes. a) Quadrilaterals are two-dimensional closed figures that have four sides and four angles. b) The sum of their four angles is 360 degrees. c) When we trace diagonals from one opposite corner to another in a quadrilateral, these lines always intersect (pass it through) and in some cases they bisect (cut the other line in half). d) Regular quadrilaterals are named square, rectangle, parallelogram, rhombus, trapezoid, and kite. e) VERY IMPORTANT TO REMEMBER THIS! : Although these are the names of the quadrilaterals, these words are also the names of groups of quadrilaterals. Each group has its own characteristics or attributes that distinguish them from the others. For instance, the figure square belongs obviously to the group of squares, but also belongs to the groups of trapezoids, parallelograms, rectangles, rhombuses, and kites, because it shares similar attributes with them. However, the group of squares has only one figure: square. This is because no other quadrilateral shares the attributes of the squares, which are having four equal sides and four right angles. TRAPEZOIDS a) Trapezoids form the largest group of quadrilaterals. They include the figures of square, rectangle, parallelogram, rhombus, and of course, trapezoid. (the figure kite does not belong to the group of trapezoids) b) Trapezoids have only one attribute: they have at least one parallel line. Also, a. They may or may not have two or even four equal in length sides. b. They may or may not have opposite sides of the same length c.
    [Show full text]
  • Cyclic Quadrilaterals — the Big Picture Yufei Zhao [email protected]
    Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao Cyclic Quadrilaterals | The Big Picture Yufei Zhao [email protected] An important skill of an olympiad geometer is being able to recognize known configurations. Indeed, many geometry problems are built on a few common themes. In this lecture, we will explore one such configuration. 1 What Do These Problems Have in Common? 1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC and intersects segments AB and BC again at distinct points K and N, respectively. The circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M. ◦ Prove that \OMB = 90 . B M N K O A C 2. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center O, and let C and D be two points on this circle. The line CD meets the line AB at a point M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from ◦ O) of the circumcircles of triangles AOC and DOB. Show that \MKO = 90 . C D K M A O B 3. (USA TST 2007) Triangle ABC is inscribed in circle !. The tangent lines to ! at B and C meet at T . Point S lies on ray BC such that AS ? AT . Points B1 and C1 lies on ray ST (with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar to each other. 1 Winter Camp 2009 Cyclic Quadrilaterals Yufei Zhao A B S C C1 B1 T Although these geometric configurations may seem very different at first sight, they are actually very related.
    [Show full text]
  • When Is a Tangential Quadrilateral a Kite?
    Forum Geometricorum b Volume 11 (2011) 165–174. b b FORUM GEOM ISSN 1534-1178 When is a Tangential Quadrilateral a Kite? Martin Josefsson Abstract. We prove 13 necessary and sufficient conditions for a tangential quadri- lateral to be a kite. 1. Introduction A tangential quadrilateral is a quadrilateral that has an incircle. A convex quadrilateral with the sides a, b, c, d is tangential if and only if a + c = b + d (1) according to the Pitot theorem [1, pp.65–67]. A kite is a quadrilateral that has two pairs of congruent adjacent sides. Thus all kites has an incircle since its sides satisfy (1). The question we will answer here concerns the converse, that is, what additional property a tangential quadrilateral must have to be a kite? We shall prove 13 such conditions. To prove two of them we will use a formula for the area of a tangential quadrilateral that is not so well known, so we prove it here first. It is given as a problem in [4, p.29]. Theorem 1. A tangential quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 K = 2 (pq) − (ac − bd) . p Proof. A convex quadrilateral with sides a, b, c, d and diagonals p,q has the area 1 2 2 2 2 2 2 2 K = 4 4p q − (a − b + c − d ) (2) p according to [6] and [14]. Squaring the Pitot theorem (1) yields 2 2 2 2 a + c + 2ac = b + d + 2bd. (3) Using this in (2), we get 1 2 2 K = 4 4(pq) − (2bd − 2ac) p and the formula follows.
    [Show full text]
  • 2 Dimensional Figures
    Study Island Copyright © 2021 Edmentum - All rights reserved. Generation Date: 07/26/2021 Generated By: Jennifer Fleming 1. An equilateral triangle is always an example of a/an: I. isosceles triangle II. scalene triangle III. right triangle A. I only B. II and III C. I and II D. II only 2. Which of the following is true about a parallelogram? Parallelograms always have four congruent sides. A. The diagonals of a parallelogram always bisect each other. B. Only two sides of a parallelogram are parallel. C. Opposite angles of a parallelogram are not congruent. D. 3. What is the difference between a rectangle and a rhombus? A rectangle has opposite sides parallel and a rhombus has no sides parallel. A. A rectangle has four right angles and a rhombus has opposite angles of equal measure. B. A rhombus has four right angles and a rectangle has opposite angles of equal measure. C. A rectangle has opposite sides of equal measure and a rhombus has no sides of equal measure. D. 4. What is a property of all rectangles? The four sides of a rectangle have equal length. A. The opposite sides of a rectangle are parallel. B. The diagonals of a rectangle do not have equal length. C. A rectangle only has two right angles. D. 5. An obtuse triangle is sometimes an example of a/an: I. scalene triangle II. isosceles triangle III. equilateral triangle IV. right triangle A. I or II B. I, II, or III C. III or IV D. II or III 6. What is the main difference between squares and rhombuses? Squares always have four interior angles which each measure 90°; rhombuses do not.
    [Show full text]
  • Cyclic and Bicentric Quadrilaterals G
    Cyclic and Bicentric Quadrilaterals G. T. Springer Email: [email protected] Hewlett-Packard Calculators and Educational Software Abstract. In this hands-on workshop, participants will use the HP Prime graphing calculator and its dynamic geometry app to explore some of the many properties of cyclic and bicentric quadrilaterals. The workshop will start with a brief introduction to the HP Prime and an overview of its features to get novice participants oriented. Participants will then use ready-to-hand constructions of cyclic and bicentric quadrilaterals to explore. Part 1: Cyclic Quadrilaterals The instructor will send you an HP Prime app called CyclicQuad for this part of the activity. A cyclic quadrilateral is a convex quadrilateral that has a circumscribed circle. 1. Press ! to open the App Library and select the CyclicQuad app. The construction consists DEGH, a cyclic quadrilateral circumscribed by circle A. 2. Tap and drag any of the points D, E, G, or H to change the quadrilateral. Which of the following can DEGH never be? • Square • Rhombus (non-square) • Rectangle (non-square) • Parallelogram (non-rhombus) • Isosceles trapezoid • Kite Just move the points of the quadrilateral around enough to convince yourself for each one. Notice HDE and HE are both inscribed angles that subtend the entirety of the circle; ≮ ≮ likewise with DHG and DEG. This leads us to a defining characteristic of cyclic ≮ ≮ quadrilaterals. Make a conjecture. A quadrilateral is cyclic if and only if… 3. Make DEGH into a kite, similar to that shown to the right. Tap segment HE and press E to select it. Now use U and D to move the diagonal vertically.
    [Show full text]
  • Angle Bisectors in a Quadrilateral Are Concurrent
    Angle Bisectors in a Quadrilateral in the classroom A Ramachandran he bisectors of the interior angles of a quadrilateral are either all concurrent or meet pairwise at 4, 5 or 6 points, in any case forming a cyclic quadrilateral. The situation of exactly three bisectors being concurrent is not possible. See Figure 1 for a possible situation. The reader is invited to prove these as well as observations regarding some of the special cases mentioned below. Start with the last observation. Assume that three angle bisectors in a quadrilateral are concurrent. Join the point of T D E H A F G B C Figure 1. A typical configuration, showing how a cyclic quadrilateral is formed Keywords: Quadrilateral, diagonal, angular bisector, tangential quadrilateral, kite, rhombus, square, isosceles trapezium, non-isosceles trapezium, cyclic, incircle 33 At Right Angles | Vol. 4, No. 1, March 2015 Vol. 4, No. 1, March 2015 | At Right Angles 33 D A D A D D E G A A F H G I H F F G E H B C E Figure 3. If is a parallelogram, then is a B C B C rectangle B C Figure 2. A tangential quadrilateral Figure 6. The case when is a non-isosceles trapezium: the result is that is a cyclic Figure 7. The case when has but A D quadrilateral in which : the result is that is an isosceles ∘ trapezium ( and ∠ ) E ∠ ∠ ∠ ∠ concurrence to the fourth vertex. Prove that this line indeed bisects the angle at the fourth vertex. F H Tangential quadrilateral A quadrilateral in which all the four angle bisectors G meet at a pointincircle is a — one which has an circle touching all the four sides.
    [Show full text]
  • Quadrilateral Geometry
    Quadrilateral Geometry MA 341 – Topics in Geometry Lecture 19 Varignon’s Theorem I The quadrilateral formed by joining the midpoints of consecutive sides of any quadrilateral is a parallelogram. PQRS is a parallelogram. 12-Oct-2011 MA 341 2 Proof Q B PQ || BD RS || BD A PQ || RS. PR D S C 12-Oct-2011 MA 341 3 Proof Q B QR || AC PS || AC A QR || PS. PR D S C 12-Oct-2011 MA 341 4 Proof Q B PQRS is a parallelogram. A PR D S C 12-Oct-2011 MA 341 5 Starting with any quadrilateral gives us a parallelogram What type of quadrilateral will give us a square? a rhombus? a rectangle? 12-Oct-2011 MA 341 6 Varignon’s Corollary: Rectangle The quadrilateral formed by joining the midpoints of consecutive sides of a quadrilateral whose diagonals are perpendicular is a rectangle. PQRS is a parallelogram Each side is parallel to one of the diagonals Diagonals perpendicular sides of paralle logram are perpendicular prlllparallelog rmram is a rrctectan gl e. 12-Oct-2011 MA 341 7 Varignon’s Corollary: Rhombus The quadrilateral formed by joining the midpoints of consecutive sides of a quadrilateral whose diagonals are congruent is a rhombus. PQRS is a parallelogram Each side is half of one of the diagonals Diagonals congruent sides of parallelogram are congruent 12-Oct-2011 MA 341 8 Varignon’s Corollary: Square The quadrilateral formed by joining the midpoints of consecutive sides of a quadrilateral whose diagonals are congruent and perpendicular is a square. 12-Oct-2011 MA 341 9 Quadrilateral Centers Each quadrilateral gives rise to 4 triangles using the diagonals.
    [Show full text]
  • Geometry – Chapter 6 – Notes and Examples Section 6 – Properties of Kites and Trapezoids Properties of Kites a Kite Has
    Geometry – Chapter 6 – Notes and Examples Section 6 – Properties of Kites and Trapezoids King Properties of kites A kite has: Exactly two pairs of __________________ ___________________ sides. Exactly one pair of _________________ ________________ angles. (see diagram) A kite has two diagonals: The diagonals are _________________________ . Exactly one diagonal ___________ one pair of opposite angles. (see diagram) Exactly one diagonal forms two different _________________ triangles. Problem 1 Problem 2 In kite ABCD, mDAB = In kite PQRS, mPQR = 78°, 54°, and mCDF = 52°. and mTRS = 59°. Find mBCD. Find mQRT. ̅̅̅ ̅ ̅̅̅ ̅ so ∆BCD is______________ and ̅̅̅ ̅ ̅̅̅ ̅ so ∆PQR is______________ and CBF CDF (__________________ ) mQPT = mQRT (__________________ ) mBCD + mCBF + mCDF = _______° mPQR + mQRP + mQPR = _______° mBCD + ____° + ____° = _______° 78° + mQRT + mQPT = _______° mBCD = _______° 78° + mQRT + _______= _______° Find mFDA. ____° + 2mQRT = _______° ̅̅̅ ̅ ̅̅̅ ̅ so ∆DAB is ______________ and 2mQRT = _______° ABF ADF (__________________ ) mQRT = _______° mABF + mADF + mDAB = _______° Find mQPS. _________ + _________ + mDAB = _______° mQPR + mTPS = mQPS (______________ ) mADF + mADF + ____° = _______° ____° + ____° = mQPS 2mADF + ____° = _______° _______°= mQPS mADF = ____° Find mQPT. In kite ABCD, Problem 4 Find m∠A. AB = 8, BC = 20, m∠B = 131°, and m∠C = 38°. Problem 3 Find AD and DC . Problem 5 Find the perimeter of kite ABCD. A ___________________ is a quadrilateral with exactly one pair of parallel sides. Each of the parallel sides is called a __________. The nonparallel sides are called ________. ________ _____________ of a trapezoid are two consecutive angles whose common side is a base. If the legs of a trapezoid are congruent, the trapezoid is an _______________ ________________.
    [Show full text]