Download Date 07/10/2021 01:29:27

Total Page:16

File Type:pdf, Size:1020Kb

Download Date 07/10/2021 01:29:27 Instructions to the Marine Meteorological Observers, 7th Edition. Item Type Book Publisher Government Printing Office Download date 07/10/2021 01:29:27 Item License http://www.oceandocs.org/license Link to Item http://hdl.handle.net/1834/5239 B. No. Issued June W. 1221 1941 / U. S.�EPARTMENT. OF COMMERC� ' (I WEATHER BUREAU . + Instructions to Marine Meteorological Observers + Ve 933 CIRCULAR M J Seventh Edition (51- no, M 7�1{1 F�-J lCJUJ; .' . UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1941 For oale by the Superintendent of Document., Wuhln�n, D. • • • • • • • Price 2� C. canto. Blank page retained for pagination CONTENTS Palrl! n appreciation ___________________________________________ _ A VI I. The ocean weather service ____ ------_______________ ------_____ 1 II. General Information for the marine observer_____ _______________ 2 Arrangements for reporting ________________________________ _ 2 Instruments---------------------------------------------­ 3 Forwarding reports by maiL-------------------------------- 3 3 Pilot charts______________________________________________ _ "Weather on the Oceans" _____- _______ -____ -- _____ -- _____ -- 4 4 Location of Weather Bureau offices_________________________ _ Condensed instructions for taking and recording observations 4 (French, German, Italian, Dutch, and Japanese)_ __________ _ Ill. Instruments and instrumental observations---------------------- 9 9 Mercurial barometers _____ ------- _____________ -----_______ _ 9 Mercurial barometers of marine type___ _________________ _ Explanation of scale of marine barometer_ _______________ _ 11 Errors of mercurial barometers_________________________ _ 11 Location of the mercurial barometer ____________________ _ 12 The principle of the vernier and the method of reading it_._ 13 15 Correction and reduction of barometer readings __________ _ 16 Aneroid barometers__________________ ------ _______________ . 17 Effectsof temperature ________________________________ _ Aneroid barographs------------------------------------ 17 Reading of aneroid barometers __________ --_______ ---- ___ 18 Defects in aneroids ______------ _______________________ _ 18 19 Compensation for temperature _________________________ _ 20 Measures for remedying defects ___---- __________------_- Testing of aneroids ______________ ---- ________ __ -______ _ 20 ______________________ 21 Replacement of defective aneroids _ 2 Barometer comparisons____ _________________________ --____ -_ 2 _ 23 Lack of agreement in the observations___ _______-- _____ - 23 Frequency of comparisons _________ --- _________________ - Change in barometers____________ ---- __ ---____ ------_-- 24 Thermometers ___________ ------__________________________ _ 24 24 Use of thermometers in meteorological observations___ ____ _ 25 Exposure of thermometers ____________________________ -_ 26 The aspiration thermometer _____________ -____________ -- Psychrometers-------------------------------------------- 26 27 The sling psychrometer______ -_________________________- Bucket and intake methods of obtaining ocean surface tempera- tures----------------------·---------------------------- 29 30 IV. Instructions for takingand recording weather observations_______ _ 31 Notes on instruments used__ ______ ---____ -----_--------- Tim d o 32 lD�� � ���th��====================�================== 32 32 Local ship's time ______ -------- ________________ -------- 32 Day of week ______________ ---___-- ---- ---------------- 33 Octant of globe____ ________ ----------_-_--------------- 33 Latitude and longitude___________ -- _____ --- ---------- -- 34 Greenwich civil time________ ___________ - ---------- ---- VVind--------------------------------------------------" -- 34 34 Wind direction______ ------ ______ -----__ -- - - -- - -------- _ _ 35 Wind force _________________________________________ The apparent and the true direction and force of the wind-- 37 38 Weather__ _______ ·-------------· -------------------------- Explanatory remarks on the code table for "present weather" 41 and instructions for its use______ -· ---- -- -------------- 111 IV CONTENTS IV. Instructions for taking and recording weather observations-Con. l'age 44 Barometric pressure_____ __________________ ________________ _ Attached thermometer ________ _____________ __________ __ 45 Barometer corrected___ ______ _____________ ____________ _ 45 Barometer as coded ________ ____________ __ _____________ _ 45 Visibility _______________________ __________ .. _______ ________ 47 48 Temperatures__________________________ __ ________________ _ 48 Temperature of the air__________________ . __ ___________ _ Temperature of the ocean surface______ __ __ _ ____________ _ 49 50 Temperature of the wet bulb____ ___________ _ ___________ _ 52 Clouds__________ _________________________ _______________ _ 52 Amount of clouds____ ___ - __ _________ - __ __ _____________ _ 52 Kind of clouds __ - ____________ - _____ -_______ ______- ___ _ 52 Direction of cloud movement _________________ _________ _ 53 Cloud notes in Daily JournaL___ ______ _________ _ _____ ___ 53 Sea and swelL ___________________________________ ________ _ 54 State of sea_____ - _____________________________ .. __ ____ _ 54 Character and direction of swelL ____________ ___ .. ___ . ____ li5 Period of swells___ _____________ - ____________ . _____ . ___ _ 55 Gale, storm, and fog reports __________________ _____ _ _____ _ .. _ 55 Supplemental data for radio messages____ ---- _____________ ___ 56 Barometric tendency___________________ _______________ _ Characteristic of changes of the barometer in the last 3 hour1L 57 58· Barometer change ____________________________________ _ Form of predominating cloud___ ___________________ _____ .'>8 59 Form of lower clouds_____ _______________ _______________ .')9 Form of middle clouds__ ________________ . ________ ____ .. 59 Form of upper clouds________________________ _____ __ . __ 60 Total amount of all clouds__ ________________ _______ .. ____ 69 Amount of lower clouds _____________________________ . __ 60 Temperature differencebetween air and water___ _________ _ 61 Past weather__________________ -____________ . _________ _ 61 State of sea ______________________________________ _ - .. __ 61 Character of swelL _________________________ .. ________ _ . 62 Direction from which swell is moving _______ _________ ___ _ Ship's course__ _______________ .. __ ------- __ ---__ -------- 62 62 Ship's speed _____________________________ _____________ 62 Height of base of cloud__ _______________ ________________ 62 Miscellaneous phenomena _____________ _ ____________________ 62 Observation of meteors__ ___________ __ ______________ -__ _ V. Clouds------------------------------------- ---------------- 63 64 Classificationof clouds ____________________________________ _ - __ _ 64 Definitionsand descriptions of the forms of clouds_________ 64 Cirrus___ _____________________________________________ 65 Cirrocumulus ____________________ _______________ ______ 65 Cirrostratus____ ________________________________ ______ _ Altocumulus___ _______________________________ ________ 65 ____ 67 Altostratus____ __________________________________ _ Stratocumulus-------------------�-------- ------------ 70 Stratus___ ___________________________________________ _ 70 73 Nimbostratus___________ ___ _______________ _____ ______ _ 75 Cumulus____ _________________________________________· 75 Cumulonimbus________________________ ________________ 78 Definitionsof important hydrometeors__ ______ _________ ______ 80 VI. Optical phenomena_____ _____________________________________ _ 80 Perspective phenomena____ ________________________________ _ ______________ 80 Apparent stair-step ascent of clouds_____ ___ 80 Apparent arching of cloud bands _______________________ _ 80 Apparent divergence and convergence of crepuscular rays __ 81 Refraction phenomena _______________ _____________________ _ 81 Shadow bands___ ____________________ _________ ________ _ 81 Terrestrial scintillation _______ __________________________ Shimmering__________________________ _______ __________ 81 81 Opticalhaze ________________________________________ _ 82 Greenfiash__ ________________________________________ _ 82 Terrestrial refraction ___________ ________________________ 82 Lootning--------------------------------------------- CONTENTS V VI. Optical phenomena-Continued. Refraction phenomena--Continued. Page 82 Towering _______ ____________________ ____ _____________ _ 82 Sinking _____________________________ __________________ 82 Stooping ____________________________________________ _ 82 Refraction by water drops_- ___ --_________ --_- ---______ -·- __ _ 82 Rainbow__ _______________________ ____________ ________ 83 Refraction by ice crystals__ -_---- __ ----_--- ------ __________ _ 84 Parhelia of 22° _______________________________________ _ 84 Halo of 22° __________- __- ---- ----_ ----__ -- -_____ -___ - _ 85 Arcs of Lowitz ___ __ -- __--- _-----_----_- ---_____ - .. __ -- 85 Parhelia of 46°- ___________________________ ________ _ 85 Halo of 46 ° and 90° _______________________________ _ Circumzenithal and circumhorizontal arcs _____ .. ______ 86 86 Tangent arcs ______________________________ _____ ___ 86 Unusual halos____ -____ - ___ -_-_-_ --___-- ___ -_-____ _ 87 Diffractionphenomena ____________ ____________ _________ 87 Coronas________________________ _____ ___ _________ _ 87 Iridescent clouds _________________ .. _____ .. __________ Mirage___ - ___ --___ -- --- -·--- --------- --- -------- --- 87 Au o a s
Recommended publications
  • Kompletní Seznam Halových Jevů a Odkazy Na Příslušné Internetov
    List of halo links (by Patrik Trncak) Halos: 6° halo http://www.somerikko.net/old/i_halo/SPF12_32a.jpg 9° halo (Van Buijsen halo) http://www.astro.helsinki.fi/~kahanpaa/halot/ around Moon: http://www.meteoros.de/ee31ee38/ee31_3.htm 12° halo http://www.somerikko.net/old/i_halo/SPF12_32a.jpg 18° halo (Rankin halo) http://www.astro.helsinki.fi/~kahanpaa/halot/ around Moon: http://halo.astronomie.cz/galerie/pyramid/002.jpg 20° halo (Burney halo) http://www.astro.helsinki.fi/~kahanpaa/halot/ around Moon: (in book Atmospheric halos only) 22° halo (small halo) http://www.polarimage.fi/phenom/ha03521a.jpg around Moon: http://www.photoastronomique.net/grand/halo_lune02.jpg 23° halo (Barkow halo) http://www.astro.helsinki.fi/~kahanpaa/halot/ around Moon: (photo not available) 24° halo (Dutheil halo) http://www.meteoros.de/halres/schnee.htm around Moon: http://www.ursa.fi/ursa/jaostot/halot/umi/1999/199page06.gif 28° halo (Scheiner halo) http://www.iki.fi/mika.sillanpaa/ichalos 35° halo (Feuillee halo) http://www.teknofokus.fi/Foto/Haloja/Halo10huhti.htm around Moon: (photo not available) 46° halo (big halo) http://www.somerikko.net/halos/images/sp419.jpg Circumstcribed halo http://www.sundog.clara.co.uk/halo/circim2.htm around Moon: http://www.rfleet.clara.net/gbh/haloes/hal07m.jpg Elliptical halos http://epod.usra.edu/archive/images/ellipse_7.jpg around Moon: http://www.kolumbus.fi/jukka.ruoskanen/Valoilmiot/slides/Elliptical%20halo.jpg Hevel halo http://projekty.astro.cz/ukazy/obr/hevelius_c.jpg Bouguer halo http://www.ursa.fi/ursa/jaostot/halot/havaitseminen/opas/xi_hist.pdf
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Hungarian Archaeology E-Journal • 2015 Spring
    HUNGARIAN ARCHAEOLOGY E-JOURNAL • 2015 SPRING www.magyarregeszet.hu HUNGARIAN ARCHAEOASTRONOMICAL RESEARCH II. Symbols of Atmospheric Phenomena in Bronze Age Depictions EMÍLIA PÁSZTOR Archaeoastronomical research rarely touches on the role of solar/astral symbols in archeological cultures even though numerous abstract depictions from the Bronze Age indicate a particular celestial phenomenon. The various round symbols are essentially without exception considered to be solar representations by archaeologists, without raising the question of the reason for their variety or why the Sun was not simply depicted in the simplest manner possible on the various objects, with a circle and rays. The comparison of the celestial phenomena and the abstract Bronze Age symbols offers answers to numerous questions. In connection with the various decorative motifs containing round symbols some researchers have long hypothesized that the beliefs of Bronze Age Europe were characterized by a general cult of the Sun.1 However, they have not yet examined the background behind the abundant formal diversity of these presumed solar symbols. The symbols are classified by comprehensive typological analyses without searching for the reasons for their variety.2 No study has yet appeared that focuses on the details of these representations, which would raise the issue of the basis upon which they are considered symbols of the Sun or why the idea has been dismissed that they could be a star or the Moon. Another interesting question is what the reason for their formal diversity is and why we can find the same symbols in nearly every human culture despite significant differences in time and location.
    [Show full text]
  • Halo About the Shadow of the Observer's Head
    https://3loom.net Aurora light 1- An aurora is a natural light display in the sky. 2- Auroras are caused by charged particles, mainly electrons and protons. 3- Incident protons can also produce emissions as hydrogen atoms after gaining an electron from the atmosphere. Images of the aurora Australia and aurora borealis from around the world, including those with rarer red and blue lights Glory 1- A glory is an optical phenomenon that resembles an iconic saint's halo about the shadow of the observer's head. 2- The glory can only be seen when the observer is directly between the sun and cloud of refracting water droplets. Glory with aircraft shadow in( Solar glory and Spectre of the( )A bright, multi-ring glory.( ).the center )Brocken https://3loom.net Corona 1- A corona is an aura of plasma that surrounds the Sun and other celestial bodies. 2- The Sun's corona extends millions of kilometers into space and is most easily seen during a total solar eclipse. During a total solar eclipse, the solar A drawing demonstrating the configuration of corona can be seen by the naked eye. solar magnetic flux during the solar cycle Light pillar 1- A light pillar is a visual phenomenon created by the reflection of light from ice crystals with near horizontal parallel planar surfaces. 2- The light can come from the Sun (usually at or low to the horizon) in which case the phenomenon is called a sun pillar or solar pillar. 3- It can also come from the Moon or from terrestrial sources such as streetlights.
    [Show full text]
  • The Prairie Post Quarterly Newsletter of the High Plains Regional Climate Center- January 2018
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln HPRCC Newsletter High Plains Regional Climate Center 1-2018 The Prairie Post Quarterly Newsletter of the High Plains Regional Climate Center- January 2018 Natalie Umphlett Crystal J. Stiles Follow this and additional works at: https://digitalcommons.unl.edu/hprccnews Part of the Climate Commons, Earth Sciences Commons, Environmental Education Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, and the Sustainability Commons This Article is brought to you for free and open access by the High Plains Regional Climate Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in HPRCC Newsletter by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. January 2018 The Prairie Post Quarterly Newsletter of the High Plains Regional Climate Center Inside this issue: Message From The Interim Director Message from the interim By Ms. Natalie Umphlett director .......................................1 It’s hard to believe that another year has come to a close. 2017 was highly productive and each one of our staff members has reasons to Weather photo of the quar- be proud of their accomplishments over the past year. Crystal Stiles, ter .................................................1 our stakeholder engagement specialist, was part of a team that re- 2017 - year in review .............2 ceived an Honorable Mention Climate Adaptation Leadership Award for their work reducing climate-related threats and promoting adap- 2017 climate in the High tation of the nation’s natural resources. Bill Sorensen, our lead pro- Plains ...........................................3 grammer, took a more active role on the development of grant-fund- ed projects, particularly in regards to enhancements of climate tools.
    [Show full text]
  • Doppler Lidar Measurements of Oriented Planar Ice Crystals Falling from Supercooled and Glaciated Layer Clouds
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 00:1–19 (2009) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.000 Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds C. D. Westbrook∗, A. J. Illingworth, E. J. O’Connor and R. J. Hogan Deptartment of Meteorology, University of Reading, UK Abstract: The properties of planar ice crystals settling horizontally have been investigated using a vertically-pointing Doppler lidar. Strong specular reflections were observed from their oriented basal facets, identified by comparison with a second lidar pointing 4◦ from zenith. Analysis of 17 months of continuous high-resolution observations reveal that these pristine crystals are frequently observed in ice falling from mid-level mixed-phase layer clouds (85% of the time for layers at −15◦C). Detailed analysis of a case study indicates that the crystals are nucleated and grow rapidly within the supercooled layer, then fall out, forming well-defined layers of specular reflection. From the lidar alone the fraction of oriented crystals cannot be quantified, but polarimetric radar measurements confirmed that a substantial fraction of the crystal population was well oriented. As the crystals fall into subsaturated air, specular reflection is observed to switch off as the crystal faces become rounded and lose their faceted structure. Specular reflection in ice falling from supercooled layers colder than −22◦C was also observed, but was much less pronounced than at warmer temperatures: we suggest that in cold clouds it is the small droplets in the distribution that freeze into plates and produce specular reflection, whilst larger droplets freeze into complex polycrystals.
    [Show full text]
  • Twin Falls School District 411 Voucher Detail Listing
    Twin Falls School District 411 Voucher Detail Listing Voucher Batch Number: 1068 02/04/2020 Fiscal Year: 2019-2020 Vendor Remit Name QTY PO No. Invoice Account Amount Description Vendor # Invoice Date DESERT SUN TRAVEL SERVICE, INC 001422 Check Group: Travel expense for Kim Smith, Larry Morris and Crystal to 3 98451 0000072730 254.621.380.491.870.000 $3,176.70 The National Youth-At-Risk Conference 2/4/2020 Desert Sun Travel Fee 3 98451 0000072730 254.621.380.491.870.000 $105.00 2/4/2020 Check #: 79618 PO/InvoiceTotal: $3,281.70 Vendor Total: $3,281.70 U.S. POSTAL SERVICE 006038 Check Group: PURCHASED SERVICES 1 0 JAN 2020 100.621.300.301.699.000 $25.40 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 191.621.300.491.699.000 $51.00 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.202.699.000 $491.85 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.201.699.000 $97.00 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 191.621.300.492.699.000 $9.20 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.109.699.000 $36.85 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.101.699.000 $118.50 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.102.699.000 $49.05 2/4/2020 PURCHASED SERVICES 1 0 JAN 2020 100.621.300.103.699.000 $18.10 2/4/2020 Printed: 02/26/2020 9:00:19 AM Report: rptAPVoucherDetail 2019.4.13 Page: 1 Twin Falls School District 411 Voucher Detail Listing Voucher Batch Number: 1068 02/04/2020 Fiscal Year: 2019-2020 Vendor Remit Name QTY PO No.
    [Show full text]
  • Midlatitude Cirrus Clouds Derived from Hurricane Nora: a Case Study with Implications for Ice Crystal Nucleation and Shape
    VOL. 60, NO.7 JOURNAL OF THE ATMOSPHERIC SCIENCES 1APRIL 2003 Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape KENNETH SASSEN,* W. PATRICK ARNOTT,1 DAVID O'C. STARR,# GERALD G. MACE,@ ZHIEN WANG,& AND MICHAEL R. POELLOT** *Geophysical Institute, University of Alaska, Fairbanks, Fairbanks, Alaska 1Desert Research Institute, Reno, Nevada #NASA Goddard Space Flight Center, Greenbelt, Maryland @Department of Meteorology, University of Utah, Salt Lake City, Utah &University of Maryland, Baltimore County, Baltimore, Maryland **Atmospheric Sciences Department, University of North Dakota, Grand Forks, North Dakota (Manuscript received 18 March 2002, in ®nal form 27 August 2002) ABSTRACT Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El NinÄo waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the ®nal surge of tropical convection became embedded in subtropical ¯ow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the mi- crophysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals.
    [Show full text]
  • Free Winter Halo Pdf
    FREE WINTER HALO PDF Keri Arthur | 360 pages | 06 Dec 2016 | Signet Book | 9780451473516 | English | United States Halo (optical phenomenon) - Wikipedia I tried but this one just did not work for me, which is very sad because Winter Halo first book was so great My friends Sarah and Melissa's Winter Halo state perfectly all that was wrong with this book. Goodreads helps you keep track of books you want to read. Want to Read saving…. Want to Read Currently Winter Halo Read. Other editions. Enlarge cover. Error rating book. Refresh and Winter Halo again. Open Preview See a Problem? Details if other :. Thanks for telling us about the problem. Return to Book Page. Preview — Winter Halo by Keri Arthur. From the New York Times bestselling author of Winter Halo Souls of Fire novels comes the second in the futuristic fantasy series that will make you want to Winter Halo the lights on When the bombs that stopped the Winter Halo war tore holes in the veil between worlds, they allowed entry to the Others. Now, a hundred years later, humans and shifters alike live in artificially Winter Halo cities de From the New York Times bestselling author of the Souls of Fire novels comes the second in the futuristic fantasy series that will make you want to keep the lights on Now, a hundred years later, humans and shifters alike live in artificially lit cities designed to keep the darkness at bay Ever since, Tiger has tried to live her life in Winter Halo in hiding. The key to saving them lies within the walls of a pharmaceutical company called Winter Halo.
    [Show full text]
  • Remote Sensing of Planar Ice Crystal Fall Attitudes by Kenneth Sassen Department of Meteorology, University O F Utah, Salt Lake
    422 Journal of the Meteorological Society of Japan Vol. 58, No. 5 Remote Sensing of Planar Ice Crystal Fall Attitudes By Kenneth Sassen Department of Meteorology, Universityo f Utah, Salt Lake City, Utah 84112 (Manuscript received 6 October 1979, in revised form 18 June 1980) Abstract The ability of planar ice crystals to assume horizontal orientations during fall is examined as a function of crystal diameter. After reviewing fall velocity measurements for the various planar crystal types, the fall attitude predictions from model experiments are compared to the results of photographic analyses of light pillar displays, an atmospheric optical phenomenon generated by near-horizontally aligned ice crystals. It is concluded that the prediction for stable fall in terms of Reynolds number (Re) through the range 1.0<Re< 100 is generally valid in the atmosphere. It is further shown that planar crystals with Re * 10 display the most stable fall attitudes, and that crystal diameters >0.1-0.2 mm are required to generate the optical displays. It also appears that the distribution of ice crystal orientations from the horizontal plane is Gaussian in character owing to the effects of turbulence. The implications of these findings for other optical phenomena and the active remote sensing of cloud composition are discussed. case through theory derived from fluid mechanics. 1. Introduction The second method relies on photographic ob- Understanding the manner in which ice crystals servations of the falling behavior of particles fall through the atmosphere is of considerable grown in the laboratory or sampled within natural importance to several areas of cloud physics clouds from mountain-based observatories.
    [Show full text]
  • An Empirical Comparison of First-Person Shooter Information
    Entertainment Computing 26 (2018) 41–58 Contents lists available at ScienceDirect Entertainment Computing journal homepage: www.elsevier.com/locate/entcom An empirical comparison of first-person shooter information displays: HUDs, T diegetic displays, and spatial representations ⁎ Margaree Peacocke1, Robert J. Teather ,2, Jacques Carette3, I. Scott MacKenzie4, Victoria McArthur5 G-ScalE Lab, Dept. of Computing & Software, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada ARTICLE INFO ABSTRACT Keywords: We present four experiments comparing player performance between several information displays used in first- First-person shooter person shooter (FPS) games. Broadly, these information displays included heads-up displays (HUDs), and al- Video games ternatives such as spatial representations, and diegetic (in-game) indicators. Each experiment isolated a specific Information displays task common to FPS games: (1) monitoring ammunition, (2) monitoring health, (3) matching the weapon to the Diegetic situation, and (4) navigating the environment. Correspondingly, each experiment studied a different information Head-up displays type, specifically ammunition (ammo) levels, health levels, current weapon, and navigation aids, while com- User interfaces paring HUDs to alternatives. The goal was to expose player performance differences between different classes of displays, and types of information displays (e.g., numeric, iconic, etc.). Results suggest that no one display type – HUDs or alternatives – are universally best; each performed well, depending on the type of information. For ammo, player performance was best with diegetic/spatial displays; for health information, players performed significantly better with a HUD. For weapon displays, results were best when showing a redundant HUD icon and a diegetic/spatial display (the actual weapon).
    [Show full text]
  • Atmospheric Phenomena in Physics Teaching
    Physics Competitions Vol 12 No 2 2010 Atmospheric Phenomena in Physics Teaching Ibolya Ságodi Dömény Garay János Grammar School Szekszárd, Hungary Abstract According to International researches, physics teaching has difficulties all over the world. The majority of students do not like physics. It is an important object to find those topics that stir enough the curiosity of the students. In our opinion, some interesting topics chosen from the field of atmospheric physics could be an appropriate tool of that. More precisely atmospheric optics would be perhaps one of the possibly best choices. The topic used by us is the phenomenon of halos, which has certainly been proved to be an interesting subject for high school teenagers. Several tens of individual halo forms are known because the various shapes and orientations of tiny hexagonal ice prisms allow light to take numerous different paths in an encounter with a crystal, ranging from simple refraction paths through a wedge to complex ray paths with several internal reflections. In this article the physics of halos and the results of a project made by Hungarian students will be shown. 1. Motivation The Earth’s atmosphere and processes occurring in it are very interesting and our everyday life is highly influenced by them. Clouds, thunderstorms, lightning and rainbows are beautiful, sometimes frightening and exciting phenomena. There are numerous people fanatically observing, taking photos and videos of them almost on daily basis. In spite of that, mainly due to the complexity of the processes mentioned above, curriculums deal with this field of physics only very modestly. However, it is not difficult to excite the curiosity of the students by these admirable spectacles.
    [Show full text]