JO 7900.5D, Surface Weather Observing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Characteristics of Clouds from Ceilometer Measurements and Radiosounding Methods
GEOMETRIC CHARACTERISTICS OF CLOUDS FROM CEILOMETER MEASUREMENTS AND RADIOSOUNDING METHODS Montserrat Costa Surós Dipòsit legal: Gi. 1888-2014 http://hdl.handle.net/10803/284084 http://creativecommons.org/licenses/by/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement Esta obra está bajo una licencia Creative Commons Reconocimiento This work is licensed under a Creative Commons Attribution licence GEOMETRIC CHARACTERISTICS OF CLOUDS FROM CEILOMETER MEASUREMENTS AND RADIOSOUNDING METHODS DOCTORAL THESIS Montserrat Costa Surós 2014 DOCTORAL THESIS GEOMETRIC CHARACTERISTICS OF CLOUDS FROM CEILOMETER MEASUREMENTS AND RADIOSOUNDING METHODS Montserrat Costa Surós 2014 Doctoral Programme in Experimental Sciences and Sustainability Supervisors: Josep Calbó Angrill José Abel González Gutiérrez Thesis submitted for the degree of Doctor of Philosophy by the University of Girona El Dr. Josep Calbó Angrill i el Dr. José Abel González Gutiérrez, professors titulars del Departament de Física de la Universitat de Girona, CERTIFIQUEN: Que aquest treball, titulat “Geometric characteristics of clouds from ceilometer measurements and radiosounding methods”, que presenta la Montserrat Costa Surós per a l’obtenció del títol de doctora, ha estat realitzat sota la seva direcció. I, perquè així consti i tingui els efectes oportuns, signen aquest document. Dr. Josep Calbó Angrill Dr. José Abel González Gutiérrez Girona, 29 de juliol de 2014. Un esforç total és una victòria completa M. Ghandi Acknowledgments First and the most important I would like to thank my supervisors Dr. Josep Calbó and Dr. Josep- Abel González for giving me the opportunity to begin my research career with them, which has led to this doctoral thesis, and for their guidance and support during these years. -
Central Region Technical Attachment 92-11 Using New Technology To
/Ou)%-c<v^A cU-i CRH SSD MAY 1992 CENTRAL REGION TECHNICAL ATTACHMENT 92-11 USING NEW TECHNOLOGY TO LOCATE AND FORECAST THE MOVEMENT OF A FRONT IN THE MESOSCALE MICHAEL K. HOLZINGER NATIONAL WEATHER SERVICE FORECAST OFFICE DENVER, COLORADO 1. INTRODUCTION The National Weather Service (NWS) is testing much of the future technology in an operational environment at the Weather Service Forecast Office (WSFO) in Denver, Colorado. The Denver AWIPS Risk Reduction and Requirements Evaluation (DARRRE II) workstat ion at the WSFO gives forecasters the ability to analyze mesosc- ale features in much more detail and make local forecasts with more precision than was possible a few years ago. WSFO Denver conducted an experimental project, called the En hanced Terminal Forecast (EFT) program, between January and November, 1991 (NWS 1990; NWS 1991). In place of standard avia tion terminal forecasts, EFT forecasts were issued for the three terminals in the Denver metropolitan area. These are Stapleton International Airport (DEN), Centennial Airport (APA), and Jefferson County Airport (BJC) (Fig. 1A). Compared to conven tional terminal forecasts, the EFT had a slightly different format, slightly different amendment criteria, disallowed the use of terms "chance" and "slight chance" during the first three hours, and attempted to nail down weather changes to the nearest 15 minutes during the first three hours. Perhaps, the best opportunity to attempt forecasts to the nearest 15 minutes along the Front Range is provided by warm season wind shifts, either gust fronts or frontal. Warm season wind shifts can often be spotted on Doppler radar an hour or more before they reach DEN. -
AMOFSG/10-Sod 19/6/13
AMOFSG/10-SoD 19/6/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 SUMMARY OF DISCUSSIONS 1. HISTORICAL 1.1 The tenth meeting of the Aerodrome Meteorological Observation and Forecast Study Group (AMOFSG) was held at the Headquarters of the International Civil Aviation Organization (ICAO) in Montréal, Canada, 17 to 19 June 2013. 1.2 The meeting was opened by Mr. Greg Brock, Chief of the Meteorology Section of the Air Navigation Bureau of ICAO, who extended a warm welcome to all the participants. Mr. Brock emphasized that this tenth meeting of the AMOFSG was likely to be the last of the group prior to the convening of an ICAO Meteorology (MET) Divisional Meeting in July 2014, to be held in part conjointly with the Fifteenth Session of the World Meteorological Organization (WMO) Commission for Aeronautical Meteorology (CAeM-XV). For this reason, Mr. Brock underlined the need for the group to work efficiently during its three days of deliberations, with a strong emphasis placed on determining whether proposals arising from each of the topics to be addressed were of sufficient maturity so as to reduce or eliminate entirely the need for significant further work and/or a meeting ahead of the MET Divisional Meeting. 1.3 The names and contact details of the participants are listed in Appendix A . Mr. Bill Maynard was elected Chairman of the meeting. The meeting was served by the Acting Secretary of the AMOFSG, Mr. Greg Brock, Chief, Meteorology Section. 1.4 The meeting considered the following agenda items: Agenda Item 1: Opening of the meeting; Agenda Item 2: Election of Chairman; Agenda Item 3: Adoption of working arrangements; Agenda Item 4: Adoption of the agenda; (41 pages) AMOFSG.10.SoD.en.docx AMOFSG/10-SoD - 2 - Agenda Item 5: Aerodrome observations; Agenda Item 6: Forecasting at the aerodrome and in the terminal area and ATIS requirements; Agenda Item 7: Deliverables; Agenda Item 8: Any other business; and Agenda Item 9: Closure of the meeting. -
Clouds, Precipitation and Their Remote Sensing Intergovernmental
25.09.12 Clouds, Precipitation and their Remote Sensing Prof. Susanne Crewell AG Integrated Remote Sensing Institute for Geophysics and Meteorology University of Cologne Susanne Crewell, Kompaktkurs, Jülich24. 25 September September 2012 2012 Intergovernmental Panel on Climate Change (IPCC) www.ipcc.ch Nobel price 2007 IPCC Fourth Assessment Report (FAR), 2007: "Warming of the climate system is unequivocal", and "Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations". Aerosols, clouds and their interaction with climate is still the most uncertain area of climate change and require multidisciplinary coordinated research efforts. SusanneSusS sanna ne Crewell,Crewewellelll,K, Kompaktkurs,Kompakta kurs, JülichJülJüü ichchc 252 SeptemberSSeeptetetembembber 201220121 1 25.09.12 Why are clouds so complex? Cloud microphysical processes occur on small spatial scales and need to be parametrized in atmospheric models Cloud microphysics is strongly connected to other sub-grid scale processes (turbulence, radiation) Cloud droplets 0.01 mm diameter 100-1000 per cm3 Condensation nuclei Drizzle droplets 0.001 mm diameter 0.1 mm diameter 1000 per cm3 1 per cm3 Rain drops ca. 1 mm diameter, 1 drops per liter Susannesa Crewell, Kompaktkurs, Jülich 25 September 2012 Why are clouds so complex? From hydrometeors to single clouds to Einzelwolken to the global and cloud fields system Susanne Crewell, Kompaktkurs, Jülich 25 September -
Operating Instructions Present Weather Sensor Parsivel
Operating instructions Present Weather Sensor Parsivel English We reserve the right to make technical changes! Table of contents 1 Scope of delivery 5 2 Part numbers 5 3 Parsivel Factory Settings 6 4 Safety instructions 7 5 Introduction 8 5.1 Functional principle 8 5.2 Connection Options for the Parsivel 9 6 Installing the Parsivel 10 6.1 Cable Selection 10 6.2 Wiring the Parsivel 11 6.3 Grounding the Parsivel 13 6.4 Installing the Parsivel 14 7 Connecting the Parsivel to a data logger 15 7.1 Connecting the Parsivel to the LogoSens Station Manager via RS-485 interface 15 7.2 Connecting the Parsivel to a Data logger via the SDI-12 Interface 17 7.3 Connecting the Parsivel to a Data Logger with Impulse/Status Input 21 8 Connecting the Parsivel to a PC 23 8.1 Connecting the Parsivel to Interface Converter RS-485/RS-232 (Accessories) 23 8.2 Connecting the Parsivel to the ADAM-4520 Converter RS-485/RS-232 (Accessories) 25 8.3 Connecting the Parsivel to Interface Converter RS-485/USB (Accessories) 26 8.4 Connecting the Parsivel to any RS-485 Interface Converter 27 8.5 Connecting the Parsivel for configuration via the Service-Tool to a PC 27 9 Connecting the Parsivel to a Power Supply (Accessory) 29 10 Heating the Parsivel sensor heads 30 11 Operating Parsivel with a Terminal software 31 11.1 Set up communications between the Parsivel and the terminal program 31 11.2 Measured value numbers 32 11.3 Defining the formatting string 33 11.4 OTT telegram 33 11.5 Updating Parsivel Firmware 34 12 Maintenance 36 12.1 Cleaning the laser’s protective glass -
The Effect of Ownship Information and Nexrad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display
NASA/CR-2001-210845 The Effect of Ownship Information and NexRad Resolution on Pilot Decision Making in the Use of a Cockpit Weather Information Display Paul F. Novacek, Malcolm A. Burgess, Michael L. Heck, and Alan F. Stokes RTI International, Hampton, Virginia December 2001 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. The NASA Scientific and Technical papers from scientific and technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co sponsored by part in helping NASA maintain this important NASA. role. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA's scientific and technical information. The NASA programs, projects, and missions, often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional TECHNICAL TRANSLATION. English language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to NASA's research and development activities. These mission. results are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office's diverse offerings include TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results .. -
Rightsizing Project Nextgen IOC Sensor Assessment Summary AJP
RightSizing Project NextGen IOC Sensor Assessment Summary AJP-6830 1 of 64 December 1, 2009 RightSizing Project NextGen IOC Sensor Assessment Summary TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 3 1 INTRODUCTION ................................................................................................................ 4 1.1 Context and Motivation .....................................................................................................4 1.1.1 NextGen ......................................................................................................................4 1.1.2 4D weather cube ........................................................................................................4 1.1.3 Weather observation and forecast requirements to meet NextGen goals .................5 1.2 RightSizing Project Goals ....................................................................................................6 1.2.1 Assessment of Sensor Network ..................................................................................7 1.2.2 Identification of gaps based on functional and performance requirements ..............8 1.2.3 Development of master plan to meet NextGen weather observation requirements .8 1.3 Scope of this Report (FY 2009) ...........................................................................................8 2 PROGRAM MANAGEMENT AND SCHEDULE ...................................................................... -
Delta Pilots' Scheduling Reference Handbook
Delta Pilots’ Scheduling Reference Handbook Prepared by the Delta MEC Scheduling Committee Revision 8 | October 2020 UPDATES Updated October 2020: • New contact information for the MEC Scheduling Committee • Reorganized entire document into sequential subject matter chapters • Added Table of Contents to each chapter • Added examples of common scenarios to When Have You Been Contacted? • Clarified references to eight-hour uninterrupted sleep opportunity • Deleted references to Special Incentive Lines (SIL) • Clarified references to ACARS notification of reroutes • Added references to ARCOS • Added references to ACARS notification of FDP extension • Updated information on fatigue calls and the Fitness Review Board • Incorporated information from recent Flight Time Duty Time Updates and Scheduling Alerts • Moved iCrew User Guide from Appendix to separate file in AeroDocs Contents Introduction 1 Can They Do That to Me? 2 When Have You Been Contacted? 4 You Have to Tell Someone 7 Timeline of Scheduling Events 9 Monthly Bidding Process 11 Regular Line Adjustment Process 18 Pilot Change Schedule (PCS), Slip Requests and Pay 19 Reserve 45 Reroute and Recovery Obligations 65 Flight and Duty Time Limits and Rest Requirements 73 Fatigue and the Fitness Review Board 103 Vacation 105 Training 115 Sick Leave 118 Staffing, Vacancies, and Surpluses 124 Odds and Ends 139 Airport Longitude Table 153 Appendix I: FAR 117 & IROPS Information 160 Appendix II: FAR 117 Quick Reference Guide (QRG) 169 Appendix III: FAR Part 117 – An In-Depth Discussion 177 Introduction The Scheduling Reference Handbook has been developed by the MEC Scheduling Committee to provide the line pilot with a quick and easy reference to various scheduling, FAR, and Pilot Working Agreement (PWA) rules and processes. -
Weather Observations
Operational Weather Analysis … www.wxonline.info Chapter 2 Weather Observations Weather observations are the basic ingredients of weather analysis. These observations define the current state of the atmosphere, serve as the basis for isoline patterns, and provide a means for determining the physical processes that occur in the atmosphere. A working knowledge of the observation process is an important part of weather analysis. Source-Based Observation Classification Weather parameters are determined directly by human observation, by instruments, or by a combination of both. Human-based Parameters : Traditionally the human eye has been the source of various weather parameters. For example, the amount of cloud that covers the sky, the type of precipitation, or horizontal visibility, has been based on human observation. Instrument-based Parameters : Numerous instruments have been developed over the years to sense a variety of weather parameters. Some of these instruments directly observe a particular weather parameter at the location of the instrument. The measurement of air temperature by a thermometer is an excellent example of a direct measurement. Other instruments observe data remotely. These instruments either passively sense radiation coming from a location or actively send radiation into an area and interpret the radiation returned to the instrument. Satellite data for visible and infrared imagery are examples of the former while weather radar is an example of the latter. Hybrid Parameters : Hybrid observations refer to weather parameters that are read by a human observer from an instrument. This approach to collecting weather data has been a big part of the weather observing process for many years. Proper sensing of atmospheric data requires proper siting of the sensors. -
ACARS Aeronautical Radio, Inc
Introducing ACARS Aeronautical Radio, Inc. (commonly known as: "ARINC") maintains a huge VHF and HF voice network throughout the United States and overseas to provide operational radio communications for the aircraft industry. In the early eighties they developed an addressable, digital data link for commercial and business jets and their respective companies known as ACARS. ACARS stands for Aircraft Communications Addressing and Reporting System. It was produced to reduce the flight crew's work-load by using modern computer technology to exchange many routine reports and messages. This improves the safety and efficiency of modern air travel. ACARS uses the AM mode because the same airborne VHF radio is often also used for voice communications. Burst transmissions are used with a limit of 220 ■ ACARS FREQUENCIES characters per message. Transmissions often last less than one second! MHz Function Therefore when monitoring ACARS it is important to leave your receiver's 131.550 Primary USA/Canada squelch off. To monitor ACARS transmissions you will need a VHF scanner or 130.025 Secondary USA receiver capable of tuning the VHF (AM) aircraft band 118 to 136 MHz. 129.125 Tertiary USA 131.725 Primary Europe ACARS messages are very structured. Each position in the message has a 131.450 Primary Japan specific function. The very common Q0 Link Test is shown as an example below. 131.475 Private Air Canada Address Field Message Label Downlink Block Identifier ■ ACARS DECODERS .N9009U Q01 5400UA1750 Message Sequence Number Carrier & Flight Number There are nearly one hundred "standard" ACARS message formats plus a virtually unlimited number of airline specific company formatted message types. -
Lecture Notes on Marine Meteorology
Lecture notes on Marine Meteorology By Shri S. P. Joshi Assistant. Meteorologist Office of DDGM (WF) India Meteorological Department Pune-5 Preface The aim of these lecture notes is to provide training to the marine observers in handling and maintenance of meteorological instruments and collect meteorological observations in the form of logbooks. The chapters included in these lecture notes are from the Basic and Intermediate training courses of the department. The present lecture notes are merely a collection of information available on Internet and are compiled from various WMO sites, freely available, keeping in view the up-and-coming trends and new technological advancements. This collection is for private circulation for trainees of Basic and Intermediate training courses of the department and the author do not intend to violate copyrights of anybody what so ever. Port Meteorological Officers in the immediate future have to deal with the modernization of the marine equipments and automation of Marine Data collection, its transmission and archival by observing minimum quality control through the in-built software like TURBOWIN. These lecture notes will also be useful to Port Meteorological Officers in understanding the nature of work of PMOs and will provide them the useful guidelines. A separate chapter on installation of Turbowin is also included in these notes. S. P. Joshi. 9th April 2005. Gudhi Padva Table of contents Chapter no Contents Page no. 1 WMO Voluntary Observing Ships’ Scheme 1 2 Meteorological Instrumentation on board ships 8 3 Port Meteorological Office ( PMO ) 15 4 The Ship Weather Code 19 5 Broadcast of weather bulletins for Merchant shipping 24 6 Broadcast of weather bulletins for Indian navy 28 7 Warnings to Ports and Storm Warning Signals 30 8 Broadcast of weather warnings for fishermen through 34 All India Radio. -
Aerodrome Actual Weather – METAR Decode
Aerodrome Actual Weather – METAR decode Code element Example Decode Notes 1 Identification METAR — Meteorological Airfield Report, SPECI — selected special (not from UK civil METAR or SPECI METAR METAR aerodromes) Location indicator EGLL London Heathrow Station four-letter indicator 'ten twenty Zulu on the Date/Time 291020Z 29th' AUTO Metars will only be disseminated when an aerodrome is closed or at H24 aerodromes, A fully automated where the accredited met. observer is on duty break overnight. Users are reminded that reports AUTO report with no human of visibility, present weather and cloud from automated systems should be treated with caution intervention due to the limitations of the sensors themselves and the spatial area sampled by the sensors. 2 Wind 'three one zero Wind degrees, fifteen knots, Max only given if >= 10KT greater than the mean. VRB = variable. 00000KT = calm. 31015G27KT direction/speed max twenty seven Wind direction is given in degrees true. knots' 'varying between two Extreme direction 280V350 eight zero and three Variation given in clockwise direction, but only when mean speed is greater than 3 KT. variance five zero degrees' 3 Visibility 'three thousand two Prevailing visibility 3200 0000 = 'less than 50 metres' 9999 = 'ten kilometres or more'. No direction is required. hundred metres' Minimum visibility 'Twelve hundred The minimum visibility is also included alongside the prevailing visibility when the visibility in one (in addition to the 1200SW metres to the south- direction, which is not the prevailing visibility, is less than 1500 metres or less than 50% of the prevailing visibility west' prevailing visibility. A direction is also added as one of the eight points of the compass.