Biological Networks

Total Page:16

File Type:pdf, Size:1020Kb

Biological Networks NETWORK THEORY Dr. Alioune Ngom School of Computer Science University of Windsor [email protected] Winter 2013 1 What is a Network? Network is a mathematical structure composed of points connected by lines Network Theory <-> Graph Theory Network Graph Nodes Vertices (points) Links Edges (Lines) F. Harary, Graph Theory, Addison Wesley, Reading, MA, 1969 Gross & Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, FL, 2004 A network can be build for any functional system System vs. Parts = Networks vs. Nodes Networks As Graphs Networks can be undirected or directed, depending on whether the interaction between two neighboring nodes proceeds in both directions or in only one of them, respectively. 1 2 3 4 5 6 The specificity of network nodes and links can be quantitatively characterized by weights 2.5 7.3 3.3 12.7 5.4 8.1 2.5 Vertex-Weighted Edge-Weighted Networks As Graphs - 2 A network can be connected (presented by a single component) or disconnected (presented by several disjoint components). connected disconnected Networks having no cycles are termed trees. The more cycles the network has, the more complex it is. trees cyclic graphs Networks As Graphs - 3 Some Basic Types of Graphs Paths Stars Cycles Complete Graphs Bipartite Graphs Air Transportation Network The World Wide Web Fragment of a Social Network (Melburn, 2004) Biological Networks A. Intra-Cellular Networks Protein interaction networks Metabolic Networks Signaling Networks Gene Regulatory Networks Composite networks Networks of Modules, Functional Networks Disease networks B. Inter-Cellular Networks Neural Networks C. Organ and Tissue Networks D. Ecological Networks E. Evolution Network L-A Barabasi GENOME miRNA _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ regulation? - protein-gene - interactions PROTEOME protein-protein interactions METABOLISM Bio-chemical reactions Citrate Cycle The Protein Network of Drosophila CuraGen Corporation Science, 2003 Metabolic Networks Source: ExPASy Apoptosis Pathway - 1 Apoptosis is a mechanism of controlled cell death critically important in many biological processes Cleavage of Caspase Substrates DISC CASP6 CASP10 Heterodimer DFF FAS-L FAS-R FADD CASP3 Membrane Death protein CASP8 DFF45 DFF40 activator Death-Inducing Signaling Complex CASP7 Initiator Caspases Start DNA Executor Fragmentation Caspases D. Bonchev, L.B. Kier, C. Cheng, Lecture Series on Computer and Computational Sciences 6, 581-591 (2006). Gene Regulation Networks The Longevity Gene-Protein Network (LGPN) C. elegans T. Witten, D. Bonchev, Network of Interacting Pathways (NIP) 381 organisms A.Mazurie D.Bonchev G.A. Buck, 2007 Functional Networks Yeast: 1400 proteins, 232 complexes, nine functional groups of complexes Cell Cycle Cell Polarity & Structure (Data A.-M. Gavin 13 7 8 Number of protein complexes et al. (2002) Nature 111 25 40 61 Number of proteins Transcription/DNA 415,141-147) 77 19 Number of shared proteins Maintenance/Chromatin 14 11 15 Structure 30 16 27 7 22 55 187 43 Intermediate 740 94 33 221 and Energy 73 Metabolism 83 37 103 65 Signaling 11 20 13 20 Membrane 125 53 147 Biogenesis & Turnover 35 321 19 41 299 49 75 97 5 RNA 28 9 33 Protein Synthesis 24 260 Metabolism 692 6 419 and Turnover 172 12 75 160 Protein RNA / Transport D. Bonchev, Chemistry & Biodiversity 1(2004)312-326 Summary All complex networks in nature and technology have common features. They differ considerably from random networks of the same size By studying network structure and dynamics, and by using comparative network analysis, one can get answers of important biological questions. Some Fundamental Biological Questions to Answer (i) Which interactions and groups of interactions are likely to have equivalent functions across species? (ii) Based on these similarities, can we predict new functional information about proteins and interactions that are poorly characterized? (iii) What do these relationships tell us about the evolution of proteins, networks and whole species? (iv) How to reduce the noise in biological data: Which interactions represent true binding events? False-positive interaction is unlikely to be reproduced across the interaction maps of multiple species. Why Study Networks? It is increasingly recognized that complex systems cannot be described in a reductionist view. Understanding the behavior of such systems starts with understanding the topology of the corresponding network. Topological information is fundamental in constructing realistic models for the function of the network. Properties of Biological Networks Large network comparison is computationally hard due to NP- completeness of the underlying subgraph isomorphism problem: • Given 2 graphs G and H as input, determine whether G contains a subgraph that is isomorphic to H. Thus, network comparisons rely on easily computable heuristics (approximate solutions), called “network properties” Network properties can roughly & historically be divided in two categories: 1. Global network properties: give an overall view of the network, but might not be detailed enough to capture complex topological characteristics of large networks. 2. Local network properties: more detailed network descriptors which usually encompass larger number of constraints, thus reducing degrees of freedom in which the networks being compared can vary. 21 Biological Networks Properties Scale-Free - Power law degree distribution: Rich get richer Small World: A small average path length Mean shortest node-to-node path Robustness: Resilient and have strong resistance to failure on random attacks and vulnerable to targeted attacks Hierarchical Modularity: A large clustering coefficient How many of a node’s neighbors are connected to each other Global Network Properties Readings: Chapter 3 of “Analysis of biological networks” by Junker and Björn Global Network Measures: 1) Degree distribution P(k) 2) Average clustering coefficient 3) Clustering spectrum 4) Network Diameter 5) Average Diameter 6) Mean Path Length 7) Spectrum of shortest path lengths 8) Centralities 9) … etc 23 Global Network Properties - Degree Distribution x Definitions: deg(x)=5 degree of a node is the number of edges incident to the node. Average degree of a network: average of the degrees over all nodes in the network. However, avg. deg might not be representative, since the distribution of degrees might be skewed. 24 Global Network Properties – Degree Distribution Let P(k) be the percentage of nodes of degree k in the network. The degree distribution is the distribution of P(k) over all k. P(k) can be understood as the probability that a node has degree k. The degree distribution is the probability distribution function P(k), which shows the probability that the degree of a randomly selected node is k. 25 Degree Distribution # of nodes k having degree 10 1 2 3 4 Degree Degree Distribution P(k) 1 1 2 3 4 Degree Any randomness in the network will broaden the shape of this peak Degree Distribution # of nodes k having degree 4 2 1 2 3 4 Degree Degree Distribution P(k) 0.5 0.25 1 2 3 4 Degree Degree Distribution k P() k e k! Poisson’s Distribution e = 2.71828..., the Base of natural Logarithms Degree distribution of random graphs follow Poisson’s distribution Degree Distribution P(k) P(k) ~ k-γ Power Law Distribution Connectivity k Degree distribution of many biological networks follow Power Law distribution Power Law Distribution on log-log plot is a straight line Degree distributions fk = fraction of nodes with degree k frequency = probability of a randomly selected node to have degree k fk k degree Why measure the degree distribution? The degree distribution is a “fingerprint” of the network– it allows us to generally characterize its structure Degree distribution from a random network What if we constructed a network by adding edges between proteins at random? Log-log plot: Frequency Node degree Properties: highly concentrated around the mean the probability of very high degree nodes is exponentially small Barabasi, Oltvai. Network Biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5, 101-113 (2004). What about the degree distribution of real networks? Random network: Yeast 2-hybrid interaction network Hawoong Jeong et al. Oltvai Centrality and lethality of protein networks. Nature 411, 41-42 (2001) What about other types of real networks? Random Conclusion: many real networks have the same fingerprint! [Newman, 2003] Global Network Properties – Scale-Freeness 1) Degree Distribution Example: (log-log plot) Here P(k) ~ k-γ , where often 2 ≤ γ < 3. This is a power-law, heavy-tailed distribution. Networks with power-law degree distributions are called scale-free networks. In them, most of the nodes are of low degree, but there is a small number of highly- linked nodes (nodes of high degree) called “hubs.” 36 WHAT DOES SCALE FREE REALLY MEAN, ANYWAY? P(k) is probability of each degree k For scale free: g P(k) ~ k What happens for small vs. large g? Random vs Preferential Attachment Erdos-Renyi Start with N nodes and connect each pair with equal probability p Scale-free Add nodes incrementally. New nodes connect to each existing node I with probability proportional to its degree: kI kJ J Scale-free networks have small avg. path lengths ~ log (log N)– this is called the ‘small world’ effect Global Network Properties – Small-World Network Most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops Small average path length Any node can be reached
Recommended publications
  • A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers
    Wright State University CORE Scholar Master of Public Health Program Student Publications Master of Public Health Program 2014 Best Practices: A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers Greg Attenweiler Wright State University - Main Campus Angie Thomure Wright State University - Main Campus Follow this and additional works at: https://corescholar.libraries.wright.edu/mph Part of the Influenza Virus accinesV Commons Repository Citation Attenweiler, G., & Thomure, A. (2014). Best Practices: A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers. Wright State University, Dayton, Ohio. This Master's Culminating Experience is brought to you for free and open access by the Master of Public Health Program at CORE Scholar. It has been accepted for inclusion in Master of Public Health Program Student Publications by an authorized administrator of CORE Scholar. For more information, please contact library- [email protected]. Running Head: A NETWORK APPROACH 1 Best Practices: A network approach of the mandatory influenza vaccination among healthcare workers Greg Attenweiler Angie Thomure Wright State University A NETWORK APPROACH 2 Acknowledgements We would like to thank Michele Battle-Fisher and Nikki Rogers for donating their time and resources to help us complete our Culminating Experience. We would also like to thank Michele Battle-Fisher for creating the simulation used in our Culmination Experience. Finally we would like to thank our family and friends for all of the
    [Show full text]
  • Introduction to Network Science & Visualisation
    IFC – Bank Indonesia International Workshop and Seminar on “Big Data for Central Bank Policies / Building Pathways for Policy Making with Big Data” Bali, Indonesia, 23-26 July 2018 Introduction to network science & visualisation1 Kimmo Soramäki, Financial Network Analytics 1 This presentation was prepared for the meeting. The views expressed are those of the author and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting. FNA FNA Introduction to Network Science & Visualization I Dr. Kimmo Soramäki Founder & CEO, FNA www.fna.fi Agenda Network Science ● Introduction ● Key concepts Exposure Networks ● OTC Derivatives ● CCP Interconnectedness Correlation Networks ● Housing Bubble and Crisis ● US Presidential Election Network Science and Graphs Analytics Is already powering the best known AI applications Knowledge Social Product Economic Knowledge Payment Graph Graph Graph Graph Graph Graph Network Science and Graphs Analytics “Goldman Sachs takes a DIY approach to graph analytics” For enhanced compliance and fraud detection (www.TechTarget.com, Mar 2015). “PayPal relies on graph techniques to perform sophisticated fraud detection” Saving them more than $700 million and enabling them to perform predictive fraud analysis, according to the IDC (www.globalbankingandfinance.com, Jan 2016) "Network diagnostics .. may displace atomised metrics such as VaR” Regulators are increasing using network science for financial stability analysis. (Andy Haldane, Bank of England Executive
    [Show full text]
  • Simplified Computational Model for Generating Bio- Logical Networks
    Simplified Computational Model for Generating Bio- logical Networks† Matthew H J Bailey,∗ David Ormrod Morley,∗ and Mark Wilson∗ A method to generate and simulate biological networks is discussed. An expanded Wooten- Winer-Weaire bond switching methods is proposed which allows for a distribution of node degrees in the network while conserving the mean average node degree. The networks are characterised in terms of their polygon structure and assortativities (a measure of local ordering). A wide range of experimental images are analysed and the underlying networks quantified in an analogous manner. Limitations in obtaining the network structure are discussed. A “network landscape” of the experimentally observed and simulated networks is constructed from the underlying metrics. The enhanced bond switching algorithm is able to generate networks spanning the full range of experimental observations. Two dimensional random networks are observed in a range of 17 contexts across considerably different length scales in nature: to be limited to avoid damaging the delicate networks . How- from nanometres, in the form of amorphous graphene; to me- ever, even when a high-quality image is obtained, there is further tres, in the form of the Giant’s causeway; to tens of kilometres, in difficulty in analysis. For example, each edge in a network is a the form of geopolitical borders 1–3. A framework for describing complex molecule made up of tens of thousands of atoms which these continuous random networks for chemical systems was first may not lie strictly in a single plane. In addition, the most inter- introduced by Zachariasen to describe silica-like glasses, and has esting dynamic behaviour often occurs over very long timescales proved to be extremely versatile in the years since 4, being used to – potentially decades.
    [Show full text]
  • A Centrality Measure for Electrical Networks
    Carnegie Mellon Electricity Industry Center Working Paper CEIC-07 www.cmu.edu/electricity 1 A Centrality Measure for Electrical Networks Paul Hines and Seth Blumsack types of failures. Many classifications of network structures Abstract—We derive a measure of “electrical centrality” for have been studied in the field of complex systems, statistical AC power networks, which describes the structure of the mechanics, and social networking [5,6], as shown in Figure 2, network as a function of its electrical topology rather than its but the two most fruitful and relevant have been the random physical topology. We compare our centrality measure to network model of Erdös and Renyi [7] and the “small world” conventional measures of network structure using the IEEE 300- bus network. We find that when measured electrically, power model inspired by the analyses in [8] and [9]. In the random networks appear to have a scale-free network structure. Thus, network model, nodes and edges are connected randomly. The unlike previous studies of the structure of power grids, we find small-world network is defined largely by relatively short that power networks have a number of highly-connected “hub” average path lengths between node pairs, even for very large buses. This result, and the structure of power networks in networks. One particularly important class of small-world general, is likely to have important implications for the reliability networks is the so-called “scale-free” network [10, 11], which and security of power networks. is characterized by a more heterogeneous connectivity. In a Index Terms—Scale-Free Networks, Connectivity, Cascading scale-free network, most nodes are connected to only a few Failures, Network Structure others, but a few nodes (known as hubs) are highly connected to the rest of the network.
    [Show full text]
  • A Novel Neuronal Network Approach to Express Network Motifs
    Introduction to NeuraBASE: A Novel Neuronal Network Approach to Express Network Motifs Robert Hercus Choong-Ming Chin Kim-Fong Ho Introduction Since the discovery by Alon et al. [1-3], network motifs are now at the forefront of unravelling complex networks, ranging from biological issues to managing the traffic on the Internet. Network motifs are used, in general, as a technique to detect recurring patterns featured in networks. This is based on the assumption that information flows in distinct networks and, hence, common causal associations between nodal networks can be surmised statistically. In essence, the motif discovery algorithm [1-4] begins with a list of variable-information of a particular network and, their connections to other network variables. An analysis is subsequently made on the most prevalent causal relationships in the network based on the frequency of occurrences. These are then compared with a randomised network with the same number of variables and directed edges. Finally, the algorithm lists out statistically significant patterns of associations that occur more frequently than they would at random. In the paper by Alon et al. [2], it was reported that most of the networks analysed demonstrate identical motifs, even though they belong to disparate network families. For example, the said literature discovered that gene regulation in genetics, neuronal connectivity network and electronic circuit systems share two identical network motifs, which involved less than four variables. This observation implies that some similarities exist in these three network architectures. Besides the MFinder tool [1], researchers have also developed other network motif discovery tools. However, MAVisto [6] was found to be as computationally costly with long run-time periods as the MFinder tool uses the same network search for the same subgraph sizes.
    [Show full text]
  • Exploring Network Structure, Dynamics, and Function Using Networkx
    Proceedings of the 7th Python in Science Conference (SciPy 2008) Exploring Network Structure, Dynamics, and Function using NetworkX Aric A. Hagberg ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA Daniel A. Schult ([email protected])– Colgate University, Hamilton, NY USA Pieter J. Swart ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA NetworkX is a Python language package for explo- and algorithms, to rapidly test new hypotheses and ration and analysis of networks and network algo- models, and to teach the theory of networks. rithms. The core package provides data structures The structure of a network, or graph, is encoded in the for representing many types of networks, or graphs, edges (connections, links, ties, arcs, bonds) between including simple graphs, directed graphs, and graphs nodes (vertices, sites, actors). NetworkX provides ba- with parallel edges and self-loops. The nodes in Net- sic network data structures for the representation of workX graphs can be any (hashable) Python object simple graphs, directed graphs, and graphs with self- and edges can contain arbitrary data; this flexibil- loops and parallel edges. It allows (almost) arbitrary ity makes NetworkX ideal for representing networks objects as nodes and can associate arbitrary objects to found in many different scientific fields. edges. This is a powerful advantage; the network struc- In addition to the basic data structures many graph ture can be integrated with custom objects and data algorithms are implemented for calculating network structures, complementing any pre-existing code and properties and structure measures: shortest paths, allowing network analysis in any application setting betweenness centrality, clustering, and degree dis- without significant software development.
    [Show full text]
  • Biological Network Approaches and Applications in Rare Disease Studies
    G C A T T A C G G C A T genes Review Biological Network Approaches and Applications in Rare Disease Studies Peng Zhang 1,* and Yuval Itan 2,3 1 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA 2 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] 3 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA * Correspondence: [email protected]; Tel.: +1-646-830-6622 Received: 3 September 2019; Accepted: 10 October 2019; Published: 12 October 2019 Abstract: Network biology has the capability to integrate, represent, interpret, and model complex biological systems by collectively accommodating biological omics data, biological interactions and associations, graph theory, statistical measures, and visualizations. Biological networks have recently been shown to be very useful for studies that decipher biological mechanisms and disease etiologies and for studies that predict therapeutic responses, at both the molecular and system levels. In this review, we briefly summarize the general framework of biological network studies, including data resources, network construction methods, statistical measures, network topological properties, and visualization tools. We also introduce several recent biological network applications and methods for the studies of rare diseases. Keywords: biological network; bioinformatics; database; software; application; rare diseases 1. Introduction Network biology provides insights into complex biological systems and can reveal informative patterns within these systems through the integration of biological omics data (e.g., genome, transcriptome, proteome, and metabolome) and biological interactome data (e.g., protein-protein interactions and gene-gene associations).
    [Show full text]
  • Network Biology. Applications in Medicine and Biotechnology [Verkkobiologia
    Dissertation VTT PUBLICATIONS 774 Erno Lindfors Network Biology Applications in medicine and biotechnology VTT PUBLICATIONS 774 Network Biology Applications in medicine and biotechnology Erno Lindfors Department of Biomedical Engineering and Computational Science Doctoral dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Aalto Doctoral Programme in Science, The Aalto University School of Science and Technology, for public examination and debate in Auditorium Y124 at Aalto University (E-hall, Otakaari 1, Espoo, Finland) on the 4th of November, 2011 at 12 noon. ISBN 978-951-38-7758-3 (soft back ed.) ISSN 1235-0621 (soft back ed.) ISBN 978-951-38-7759-0 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 Technical editing Marika Leppilahti Kopijyvä Oy, Kuopio 2011 Erno Lindfors. Network Biology. Applications in medicine and biotechnology [Verkkobiologia. Lääke- tieteellisiä ja bioteknisiä sovelluksia]. Espoo 2011. VTT Publications 774. 81 p. + app. 100 p. Keywords network biology, s ystems b iology, biological d ata visualization, t ype 1 di abetes, oxida- tive stress, graph theory, network topology, ubiquitous complex network properties Abstract The concept of systems biology emerged over the last decade in order to address advances in experimental techniques.
    [Show full text]
  • Network Analysis with Nodexl
    Social data: Advanced Methods – Social (Media) Network Analysis with NodeXL A project from the Social Media Research Foundation: http://www.smrfoundation.org About Me Introductions Marc A. Smith Chief Social Scientist Connected Action Consulting Group [email protected] http://www.connectedaction.net http://www.codeplex.com/nodexl http://www.twitter.com/marc_smith http://delicious.com/marc_smith/Paper http://www.flickr.com/photos/marc_smith http://www.facebook.com/marc.smith.sociologist http://www.linkedin.com/in/marcasmith http://www.slideshare.net/Marc_A_Smith http://www.smrfoundation.org http://www.flickr.com/photos/library_of_congress/3295494976/sizes/o/in/photostream/ http://www.flickr.com/photos/amycgx/3119640267/ Collaboration networks are social networks SNA 101 • Node A – “actor” on which relationships act; 1-mode versus 2-mode networks • Edge B – Relationship connecting nodes; can be directional C • Cohesive Sub-Group – Well-connected group; clique; cluster A B D E • Key Metrics – Centrality (group or individual measure) D • Number of direct connections that individuals have with others in the group (usually look at incoming connections only) E • Measure at the individual node or group level – Cohesion (group measure) • Ease with which a network can connect • Aggregate measure of shortest path between each node pair at network level reflects average distance – Density (group measure) • Robustness of the network • Number of connections that exist in the group out of 100% possible – Betweenness (individual measure) F G •
    [Show full text]
  • A Meta-Analysis of Boolean Network Models Reveals Design Principles of Gene Regulatory Networks
    A meta-analysis of Boolean network models reveals design principles of gene regulatory networks Claus Kadelkaa,∗, Taras-Michael Butrieb,1, Evan Hiltonc,1, Jack Kinsetha,1, Haris Serdarevica,1 aDepartment of Mathematics, Iowa State University, Ames, Iowa 50011 bDepartment of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 cDepartment of Computer Science, Iowa State University, Ames, Iowa 50011 Abstract Gene regulatory networks (GRNs) describe how a collection of genes governs the processes within a cell. Understanding how GRNs manage to consistently perform a particular function constitutes a key question in cell biology. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data is sparse. We generate an expandable database of published, expert-curated Boolean GRN models, and extracted the rules governing these networks. A meta-analysis of this diverse set of models enables us to identify fundamental design principles of GRNs. The biological term canalization reflects a cell's ability to maintain a stable phenotype despite ongoing environmental perturbations. Accordingly, Boolean canalizing functions are functions where the output is already determined if a specific variable takes on its canalizing input, regardless of all other inputs. We provide a detailed analysis of the prevalence of canalization and show that most rules describing the regulatory logic are highly canalizing. Independent from this, we also find that most rules exhibit a high level of redundancy. An analysis of the prevalence of small network motifs, e.g. feed-forward loops or feedback loops, in the wiring diagram of the identified models reveals several highly abundant types of motifs, as well as a surprisingly high overabundance of negative regulations in complex feedback loops.
    [Show full text]
  • Multivariate Relations Aggregation Learning in Social Networks
    Multivariate Relations Aggregation Learning in Social Networks Jin Xu1, Shuo Yu1, Ke Sun1, Jing Ren1, Ivan Lee2, Shirui Pan3, Feng Xia4 1 School of Software, Dalian University of Technology, Dalian, China 2 School of IT and Mathematical Sciences, University of South Australia, Adelaide, Australia 3 Faculty of Information Technology, Monash University, Melbourne, Australia 4 School of Science, Engineering and Information Technology, Federation University Australia, Ballarat, Australia [email protected],[email protected],[email protected],[email protected] [email protected],[email protected],[email protected] ABSTRACT 1 INTRODUCTION Multivariate relations are general in various types of networks, such We are living in a world full of relations. It is of great significance as biological networks, social networks, transportation networks, to explore existing social relationships as well as predict poten- and academic networks. Due to the principle of ternary closures tial relationships. These abundant relations generally exist among and the trend of group formation, the multivariate relationships in multiple entities; thus, these relations are also called multivariate social networks are complex and rich. Therefore, in graph learn- relations. Multivariate relations are the most fundamental rela- ing tasks of social networks, the identification and utilization of tions, containing interpersonal relations, public relations, logical multivariate relationship information are more important. Existing relations, social relations, etc [3, 37]. Multivariate relations are of graph learning methods are based on the neighborhood informa- more complicated structures comparing with binary relations. Such tion diffusion mechanism, which often leads to partial omission or higher-order structures contain more information to express inner even lack of multivariate relationship information, and ultimately relations among multiple entities.
    [Show full text]
  • Motif Aware Node Representation Learning for Heterogeneous Networks
    motif2vec: Motif Aware Node Representation Learning for Heterogeneous Networks Manoj Reddy Dareddy* Mahashweta Das Hao Yang University of California, Los Angeles Visa Research Visa Research Los Angeles, CA, USA Palo Alto, CA, USA Palo Alto, CA, USA [email protected] [email protected] [email protected] Abstract—Recent years have witnessed a surge of interest in is originally sequential in nature [35], product review graph machine learning on graphs and networks with applications constructed from reviews written by users for stores [34], ranging from vehicular network design to IoT traffic manage- credit card fraud network constructed from fraudulent and non- ment to social network recommendations. Supervised machine learning tasks in networks such as node classification and link fraudulent transaction activity data [33], etc. prediction require us to perform feature engineering that is Supervised machine learning tasks over nodes and links known and agreed to be the key to success in applied machine in networks1 such as node classification and link prediction learning. Research efforts dedicated to representation learning, require us to perform feature engineering that is known and especially representation learning using deep learning, has shown agreed to be the key to success in applied machine learning. us ways to automatically learn relevant features from vast amounts of potentially noisy, raw data. However, most of the However, feature engineering is challenging and tedious since methods are not adequate to handle heterogeneous information
    [Show full text]