A Combined Linkage and Exome Sequencing Analysis for Electrocardiogram Parameters in the Erasmus Rucphen Family Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Targeted Sequence Capture and High-Throughput Sequencing in the Molecular Diagnosis of Ichthyosis and Other Skin Diseases
View metadata, citation and similar papers at core.ac.uk brought to you by CORE providedCA by Elsevier Scott - Publisheret al. Connector Sequence Capture in Molecular Diagnosis of Skin Diseases Immunohistochemical staining indi- 1The Wellcome Trust Center for Human cause of Olmsted syndrome. Am J Hum cated that MBTPS2 is mainly expressed Genetics, Nuffield Department of Clinical Genet 90:558–64 Medicine, University of Oxford, Oxford, UK; Mevorah B, Goldberg I, Sprecher E et al. (2005) in the upper granular layer in normal 2 Centre for Cutaneous Research, The Blizard Olmsted syndrome: mutilating palmo- skin, as previously shown (Aten et al., Institute, Barts & The London School of plantar keratoderma with periorificial 2010); however, in OS skin, MBTPS2 Medicine and Dentistry, Queen Mary keratotic plaques. J Am Acad Dermatol 53: University of London, London, UK; S266–72 was expressed throughout the epi- 3 dermis (Figure 2c). There was no Department of Dermatology, Jundishapur Naiki M, Mizuno S, Yamada K et al. (2012) University of Medical Sciences, Ahvaz, Iran; MBTPS2 mutation causes BRESEK/BRESHECK 4 apparent difference in MBTPS2 locali- Genetic Department, Kerman University of syndrome. Am J Med Genet A 158A:97–102 zation in the skin of a KFSD patient with 5 Medical Sciences, Kerman, Iran and Darwin Oeffner F, Fischer G, Happle R et al. (2009) IFAP the p.N508S mutation (Aten et al., Building, University College London Genetics syndrome is caused by deficiency in MBTPS2, 2010). It is unclear why this is but it Institute, University College London, London, an intramembrane zinc metalloprotease essen- may be because of differences in UK tial for cholesterol homeostasis and ER stress E-mail: [email protected] response. -
This Is an Author Produced Version of a Paper Published in Immunology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications from Karolinska Institutet This is an author produced version of a paper published in Immunology. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Pubmed citation for the paper: Immunology. 2014 May 6. [Epub ahead of print] Ligation of human Fc receptor like-2 (FCRL2) by monoclonal antibodies downregulates B cell receptor mediated signaling. Shabani M, Bayat AA, Jeddi-Tehrani M, Rabbani H, Hojjat-Farsangi M, Ulivieri C, Amirghofran Z, Baldari CT, Shokri F. URL: http://dx.doi.org/10.1111/imm.12311 Access to the published version may require subscription. Published with permission from: Wiley Ligation of human Fc receptor like-2 (FCRL2) by monoclonal antibodies downregulates B cell receptor mediated signaling Mahdi Shabania,b, Ali Ahmad Bayata, Mahmood Jeddi-Tehrania, Hodjatallah Rabbania,c, Mohammad Hojjat-Farsangid, Cristina Ulivierie, Zahra Amirghofranb, Cosima Tatiana Baldarie and Fazel Shokria,f* a Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran b Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran c Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden d Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm e Department of Life Sciences, University of Siena, Siena, Italy f Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran *Corresponding author: Fazel Shokri, Ph.D., Professor, Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, P.O. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2008 ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Yu Fukuda University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Chemicals and Drugs Commons, and the Medical Sciences Commons Recommended Citation Fukuda, Yu , "ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters" (2008). Theses and Dissertations (ETD). Paper 345. http://dx.doi.org/10.21007/etd.cghs.2008.0100. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. ABCB6 Is a Porphyrin Transporter with a Novel Trafficking Signal That Is Conserved in Other ABC Transporters Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Interdisciplinary Program Research Advisor John D. Schuetz, Ph.D. Committee Linda Hendershot, Ph.D. James I. Morgan, Ph.D. Anjaparavanda P. Naren, Ph.D. Jie Zheng, Ph.D. DOI 10.21007/etd.cghs.2008.0100 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/345 ABCB6 IS A PORPHYRIN TRANSPORTER WITH A NOVEL TRAFFICKING SIGNAL THAT -
ABCA12 (N-16): Sc-48435
SAN TA C RUZ BI OTEC HNOL OG Y, INC . ABCA12 (N-16): sc-48435 BACKGROUND CHROMOSOMAL LOCATION The ATP binding cassette (ABC) transporters, or traffic ATPases, constitute Genetic locus: ABCA12 (human) mapping to 2q35; Abca12 (mouse) mapping an expansive family of proteins accountable for the transport of a wide to 1 C3. variety of substrates across cell membranes in both prokaryotic and eukary - otic cells. They also aid in the regulation of lipid transport and membrane SOURCE trafficking. ABCA12 (ATP-binding cassette, subfamily A, member 12) contains ABCA12 (N-16) is an affinity purified goat polyclonal antibody raised against two transmembrane (TM) domains, each with six membrane-spanning seg - a peptide mapping within an internal region of ABCA12 of human origin. ments and two nucleotide-binding domains (NBDs), which are located in the cytoplasm. ABCA12 is expressed in normal human keratinocytes (RT-PCR PRODUCT reveals expression in placenta, testis, fetal brain and skin) and is upregulated during keratinization. Immunoelectron microscopy reveals that the ABCA12 Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide protein is located in lamellar granules in the upper epidermal keratinocytes and 0.1% gelatin. of human skin. The ABCA12 gene, which synthesizes a 2,595 amino acid Blocking peptide available for competition studies, sc-48435 P, (100 µg protein, may produce an alternative splice variant with an in-frame deletion peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). leading to truncation of 79 amino acids. APPLICATIONS REFERENCES ABCA12 (N-16) is recommended for detection of ABCA12 of mouse, rat and 1. -
Microsatellites As EWS/FLI Response Elements in Ewing's Sarcoma
Microsatellites as EWS/FLI response elements in Ewing’s sarcoma Kunal Gangwal*†, Savita Sankar*†, Peter C. Hollenhorst*†, Michelle Kinsey*†, Stephen C. Haroldsen†, Atul A. Shah†, Kenneth M. Boucher*†, W. Scott Watkins‡, Lynn B. Jorde‡, Barbara J. Graves*†, and Stephen L. Lessnick*†§¶ʈ *Department of Oncological Sciences, †Huntsman Cancer Institute, ‡Department of Human Genetics, §Huntsman Cancer Institute Center for Children, and ¶Division of Pediatric Hematology/Oncology, University of Utah, Salt Lake City, UT 84112 Edited by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved May 3, 2008 (received for review February 4, 2008) The ETS gene family is frequently involved in chromosome trans- in close proximity to low affinity binding sites for other tran- locations that cause human cancer, including prostate cancer, scription factors that allow for cooperative DNA binding. leukemia, and sarcoma. However, the mechanisms by which on- Ewing’s sarcoma was the first tumor in which ETS family cogenic ETS proteins, which are DNA-binding transcription factors, members were shown to be involved in chromosomal transloca- target genes necessary for tumorigenesis is not well understood. tions and serves as a paradigm for ETS-driven cancers (10). Ewing’s sarcoma serves as a paradigm for the entire class of Ewing’s sarcoma is a highly malignant solid tumor of children ETS-associated tumors because nearly all cases harbor recurrent and young adults that usually harbors a recurrent chromosomal chromosomal translocations involving ETS genes. The most com- translocation, t(11;22)(q24;q12), that encodes the EWS/FLI mon translocation in Ewing’s sarcoma encodes the EWS/FLI onco- fusion oncoprotein (10). -
Transcriptional and Post-Transcriptional Regulation of ATP-Binding Cassette Transporter Expression
Transcriptional and Post-transcriptional Regulation of ATP-binding Cassette Transporter Expression by Aparna Chhibber DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences and Pbarmacogenomies in the Copyright 2014 by Aparna Chhibber ii Acknowledgements First and foremost, I would like to thank my advisor, Dr. Deanna Kroetz. More than just a research advisor, Deanna has clearly made it a priority to guide her students to become better scientists, and I am grateful for the countless hours she has spent editing papers, developing presentations, discussing research, and so much more. I would not have made it this far without her support and guidance. My thesis committee has provided valuable advice through the years. Dr. Nadav Ahituv in particular has been a source of support from my first year in the graduate program as my academic advisor, qualifying exam committee chair, and finally thesis committee member. Dr. Kathy Giacomini graciously stepped in as a member of my thesis committee in my 3rd year, and Dr. Steven Brenner provided valuable input as thesis committee member in my 2nd year. My labmates over the past five years have been incredible colleagues and friends. Dr. Svetlana Markova first welcomed me into the lab and taught me numerous laboratory techniques, and has always been willing to act as a sounding board. Michael Martin has been my partner-in-crime in the lab from the beginning, and has made my days in lab fly by. Dr. Yingmei Lui has made the lab run smoothly, and has always been willing to jump in to help me at a moment’s notice. -
Supplementary Table 1 Genes Tested in Qrt-PCR in Nfpas
Supplementary Table 1 Genes tested in qRT-PCR in NFPAs Gene Bank accession Gene Description number ABI assay ID a disintegrin-like and metalloprotease with thrombospondin type 1 motif 7 ADAMTS7 NM_014272.3 Hs00276223_m1 Rho guanine nucleotide exchange factor (GEF) 3 ARHGEF3 NM_019555.1 Hs00219609_m1 BCL2-associated X protein BAX NM_004324 House design Bcl-2 binding component 3 BBC3 NM_014417.2 Hs00248075_m1 B-cell CLL/lymphoma 2 BCL2 NM_000633 House design Bone morphogenetic protein 7 BMP7 NM_001719.1 Hs00233476_m1 CCAAT/enhancer binding protein (C/EBP), alpha CEBPA NM_004364.2 Hs00269972_s1 coxsackie virus and adenovirus receptor CXADR NM_001338.3 Hs00154661_m1 Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1) DICER1 NM_177438.1 Hs00229023_m1 Homo sapiens dystonin DST NM_015548.2 Hs00156137_m1 fms-related tyrosine kinase 3 FLT3 NM_004119.1 Hs00174690_m1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 GRIN1 NM_000832.4 Hs00609557_m1 high-mobility group box 1 HMGB1 NM_002128.3 Hs01923466_g1 heterogeneous nuclear ribonucleoprotein U HNRPU NM_004501.3 Hs00244919_m1 insulin-like growth factor binding protein 5 IGFBP5 NM_000599.2 Hs00181213_m1 latent transforming growth factor beta binding protein 4 LTBP4 NM_001042544.1 Hs00186025_m1 microtubule-associated protein 1 light chain 3 beta MAP1LC3B NM_022818.3 Hs00797944_s1 matrix metallopeptidase 17 MMP17 NM_016155.4 Hs01108847_m1 myosin VA MYO5A NM_000259.1 Hs00165309_m1 Homo sapiens nuclear factor (erythroid-derived 2)-like 1 NFE2L1 NM_003204.1 Hs00231457_m1 oxoglutarate (alpha-ketoglutarate) -
L1 Antisense Promoter Drives Tissue-Specific Transcription Of
Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2006, Article ID 71753, Pages 1–16 DOI 10.1155/JBB/2006/71753 Research Article L1 Antisense Promoter Drives Tissue-Specific Transcription of Human Genes Kert Matlik,¨ Kaja Redik, and Mart Speek Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 19086, Estonia Received 26 July 2005; Revised 11 November 2005; Accepted 16 November 2005 Transcription of transposable elements interspersed in the genome is controlled by complex interactions between their regulatory elements and host factors. However, the same regulatory elements may be occasionally used for the transcription of host genes. One such example is the human L1 retrotransposon, which contains an antisense promoter (ASP) driving transcription into adjacent genes yielding chimeric transcripts. We have characterized 49 chimeric mRNAs corresponding to sense and antisense strands of human genes. Here we show that L1 ASP is capable of functioning as an alternative promoter, giving rise to a chimeric transcript whose coding region is identical to the ORF of mRNA of the following genes: KIAA1797, CLCN5,andSLCO1A2. Furthermore, in these cases the activity of L1 ASP is tissue-specific and may expand the expression pattern of the respective gene. The activity of L1 ASP is tissue-specific also in cases where L1 ASP produces antisense RNAs complementary to COL11A1 and BOLL mRNAs. Simultaneous assessment of the activity of L1 ASPs in multiple loci revealed the presence of L1 ASP-derived transcripts in all human tissues examined. We also demonstrate that L1 ASP can act as a promoter in vivo and predict that it has a heterogeneous transcription initiation site. -
ABCA12 Is the Major Harlequin Ichthyosis Gene Anna C
ORIGINAL ARTICLE ABCA12 Is the Major Harlequin Ichthyosis Gene Anna C. Thomas1, Tom Cullup2, Elizabeth E. Norgett1, Tara Hill3, Stephanie Barton4, Beverly A. Dale5, Eli Sprecher6, Eamonn Sheridan7, Aileen E. Taylor8, Robert S. Wilroy9, Celia DeLozier10, Nigel Burrows11, Helen Goodyear12, Philip Fleckman5, Karen G. Stephens5, Lakshmi Mehta13, Rosemarie M. Watson14, Robert Graham15, Roni Wolf16, Anne Slavotinek17, Madelena Martin17, David Bourn4, Charles A. Mein2, Edel A. O’Toole1 and David P. Kelsell1 Harlequin ichthyosis (HI) is the most severe form of autosomal-recessive, congenital ichthyosis. Affected infants have markedly impaired barrier function and are more susceptible to infection. Abnormalities in the localization of epidermal lipids as well as abnormal lamellar granule formation are features of HI skin. Previously, we and others have shown that mutations in the ABCA12 gene encoding an adenosine triphosphate-binding cassette (ABC) transporter underlie the skin disease HI. In this study, we have sequenced the ABCA12 gene in an additional 14 patients and show that all contain mutations, with the majority being either nonsense substitution or frameshift mutations. Eleven HI patients had bi-allelic ABCA12 mutations, whereas in the remaining three HI patients in this study, ABCA12 mutations were detected on only one allele by sequencing. In addition, the one patient from the previous study where no sequence mutations were detected was screened for heterozygous deletions. A combination of oligonucleotide arrays, multiplex PCR analysis -
Whole-Exome Sequencing Identifies Novel Mutations in ABC Transporter
Liu et al. BMC Pregnancy and Childbirth (2021) 21:110 https://doi.org/10.1186/s12884-021-03595-x RESEARCH ARTICLE Open Access Whole-exome sequencing identifies novel mutations in ABC transporter genes associated with intrahepatic cholestasis of pregnancy disease: a case-control study Xianxian Liu1,2†, Hua Lai1,3†, Siming Xin1,3, Zengming Li1, Xiaoming Zeng1,3, Liju Nie1,3, Zhengyi Liang1,3, Meiling Wu1,3, Jiusheng Zheng1,3* and Yang Zou1,2* Abstract Background: Intrahepatic cholestasis of pregnancy (ICP) can cause premature delivery and stillbirth. Previous studies have reported that mutations in ABC transporter genes strongly influence the transport of bile salts. However, to date, their effects are still largely elusive. Methods: A whole-exome sequencing (WES) approach was used to detect novel variants. Rare novel exonic variants (minor allele frequencies: MAF < 1%) were analyzed. Three web-available tools, namely, SIFT, Mutation Taster and FATHMM, were used to predict protein damage. Protein structure modeling and comparisons between reference and modified protein structures were performed by SWISS-MODEL and Chimera 1.14rc, respectively. Results: We detected a total of 2953 mutations in 44 ABC family transporter genes. When the MAF of loci was controlled in all databases at less than 0.01, 320 mutations were reserved for further analysis. Among these mutations, 42 were novel. We classified these loci into four groups (the damaging, probably damaging, possibly damaging, and neutral groups) according to the prediction results, of which 7 novel possible pathogenic mutations were identified that were located in known functional genes, including ABCB4 (Trp708Ter, Gly527Glu and Lys386Glu), ABCB11 (Gln1194Ter, Gln605Pro and Leu589Met) and ABCC2 (Ser1342Tyr), in the damaging group. -
Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma
Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen Submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in the Graduate School of Arts and Sciences Columbia University 2013 ! 2013 James Chen All rights reserved ABSTRACT Computational Inferences of Mutations Driving Mesenchymal Differentiation in Glioblastoma James Chen This dissertation reviews the development and implementation of integrative, systems biology methods designed to parse driver mutations from high- throughput array data derived from human patients. The analysis of vast amounts of genomic and genetic data in the context of complex human genetic diseases such as Glioblastoma is a daunting task. Mutations exist by the hundreds, if not thousands, and only an unknown handful will contribute to the disease in a significant way. The goal of this project was to develop novel computational methods to identify candidate mutations from these data that drive the molecular differentiation of glioblastoma into the mesenchymal subtype, the most aggressive, poorest-prognosis tumors associated with glioblastoma. TABLE OF CONTENTS CHAPTER 1… Introduction and Background 1 Glioblastoma and the Mesenchymal Subtype 3 Systems Biology and Master Regulators 9 Thesis Project: Genetics and Genomics 20 CHAPTER 2… TCGA Data Processing 23 CHAPTER 3… DIGGIn Part 1 – Selecting f-CNVs 33 Mutual Information 40 Application and Analysis 45 CHAPTER 4… DIGGIn Part 2 – Selecting drivers 52 CHAPTER 5… KLHL9 Manuscript 63 Methods 90 CHAPTER 5a… Revisions work-in-progress 105 CHAPTER 6… Discussion 109 APPENDICES… 132 APPEND01 – TCGA classifications 133 APPEND02 – GBM f-CNV list 136 APPEND03 – MES f-CNV candidate drivers 152 APPEND04 – Scripts 149 APPEND05 – Manuscript Figures and Legends 175 APPEND06 – Manuscript Supplemental Materials 185 i ACKNOWLEDGEMENTS I would like to thank the Califano Lab and my mentor, Andrea Califano, for their intellectual and motivational support during my stay in their lab.