TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.16, 2007,pp.1-12. Copyright©TÜB‹TAK

DifferentModesofStressTransferinaStrike-slip Zone:anExampleFromtheNorthAnatolian FaultSysteminTurkey

OSMANBEKTAfi1,YENEREYÜBO⁄LU1 &NAFIZMADEN2

1Departmentof,KaradenizTechnicalUniversity,GümüflhaneEngineeringFaculty, TR–29000,Gümüflhane,Turkey(E-mail:[email protected]) 2 DepartmentofGeophysics,KaradenizTechnicalUniversity,TR–61080Trabzon,Turkey

Abstract: ThedextralNorthAnatolianFaultSystem(NAFS)extendsforwellover1000kmfromthecompressive tectonicdomainofeasternAnatoliaintothebroadanddiversetectonicdomainofthewesternAnatolian,Marmara andAegeanregions.Thesedifferenttectonicregimesarecharacterizedbyanarrowdeformationzoneintheeast andamuchbroaderdeformationzonewithmultiplesub-parallelfaultzonesinthewest.Thespatialandtemporal distributionoflargehistoricalandmodern(Mw>5)showstwodistinctivemacro-seismiczonesinthe easternandwesternpartsoftheNAFS.Theeasternmacro-seismiczone,betweenthetownsofErzincanandBolu, hasproducedasuccessivelinearseriesparalleltothefaultsystemoverthelast500years,suggesting thatstresstransferalongthefaultoccurredinamannerof‘StaticCoulombfailurestresschanges’throughthe entireelasticcrust.Incontrast,thewesternmacro-seismiczoneoftheNAFS,intheMarmararegion,hasproduced successiveearthquakepairs ontheparallelfaults,implying‘dynamicstresschanges’,involvinglarge-scaleflowin theaseismiclowercrustandthemantle.

KeyWords: NorthAnatolianFaultSystem(NAFS),strike-slipfaulting,earthquake,stresstransfer

Do¤rultuAt›ml›FayZonlar›ndaFarkl›StresTransferleri: KuzeyAnadoluFay›SistemindenBirÖrnek,Türkiye

Özet: Sa¤yönlüKuzeyAnadoluFaySistemi(KAFS),Do¤uAnadolu’nuns›k›flmal›tektonikrejimiile,Bat› Anadolu’nungenifllemelitektonikrejimiaras›ndauzanmaktad›r.Bufarkl›tektonikrejimlerdendolay›Kuzey AnadoluFaySistemi,do¤udadarbirdeformasyonzonuna,bat›daiseyar›paralelfaylardanoluflandahageniflbir deformasyonzonunasahiptir.KAFS’ninErzincan-Boluaras›ndakalan‘do¤umakrosismikzonu’500y›ll›ksüreç içerisindefayzonunaparalel,birbirinitakipedenlineerdepremserileriüretmifltir.Budurum,depremserilerini oluflturanstrestransferininbütünüyleelastikkabukiçerisindekifayboyunca‘statikCoulombk›r›lmastres de¤iflimleri’ninsonucundameydanageldi¤inigösterir.Di¤eryandan,MarmaraBölgesindeKuzeyAnadoluFay Sistemi’nin‘bat›makrosismikzonu’iseyar›paralelfaylar(KAFS’ninkuzeyvegüneykollar›)üzerindebirbirinitakip edendepremçiftleriüretmifltir.Butürsismiközellik,asismikaltkabukvemantoiçindekibüyükölçekliakmalar ile,paralelfaylararas›ndaki‘dinamikstresde¤iflimlerine’iflareteder.

AnahtarSözcükler:KuzeyAnadoluFay›(KAFS),do¤rultuat›ml›faylanma,deprem,strestransferi

Introduction Theverticalcrustalgeometryofthestrike-slipfaultzones Stresschangesintectonicallyactiveareasareimportant suggeststhatasignificantamountofcouplingoccurs parametersforassessingtheseismicpotentialofanarea. alongthefaultsystembetweenthebrittleupperand However,ourabilitytoevaluatestresschangesvia ductilelowercrustalregimes. numericalsimulationdependsstronglyontheassumed Thereisextensivesupportforanintracrustal faultconfiguration(Cai&Wang2001)andyetthenature viscoelasticlayerashasbeensuggestedfortheSan ofstrike-slipfaultingatdepthisstillpoorlyunderstood. AndreasFaultSystembyAnderson(1971),Hadley& Somestrike-slipfaultzonesappeartobenearverticaland Kanamori(1977),Yeats(1981),Furlong(1993), penetratedeeplyinto,ifnotcompletelythrough,the Brocheretal. (1994)andBürgmann(1997).According crust,whereasothersareconfinedtotheuppercrust toHadley&Kanamori(1977)anintracrustaldecollement abovedetachmenthorizons(Lemiszki&Brown1988). displacestheupperandlowerportionsoftheSan

1 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

AndreasFaultSystem.Argumentsforthisdecollement uppermantle45kmbeneaththesurface,althoughthey werealsogivenbyYeats(1981).Turcotte etal. (1984) arecurrentlyonlyimagedinthecrust. emphasizedtheroleofintracrustalductilityonthe Thespatialandtemporalvariationofhistoricand behaviourofmajorstrike-slipfaults.Theysuggestedthat modernearthquakesthathaveoccurredalongthedextral anupperelasticplateextendstoadepthofabout15km, NorthAnatolianFaultSystem(NAFS)inTurkeycanhelp thedepthofthedeepestseismicityon,andadjacentto, toresolvetheproblemofstresstransferalongstrike-slip thefault.Beneaththisupperelasticplatetheypostulated faultzonesandinthisstudyweshowthatdifferentstress thatasoft,intracrustal‘asthenosphere’exhibits transfermodels,namely‘staticCoulombfailurestress viscoelasticbehaviour. changes’and‘dynamicstresschangesinvolvinglarge- Lemiszki&Brown(1988)usedseismicreflection scaleflowintheaseismiclowercrustandthemantle’,are profilesacrossstrike-slipfaultstorevealthatintra-plate responsiblefortheformationoftheearthquakeseries strike-slipfaultsystemsaredecoupledinthemiddlecrust andearthquakepairsontheeasternandwesternpart bysub-horizontaldetachments.Suchdetachmentsinthe partstheNAFS,respectively. middlecrustmayacttoeasetherotationofupper-crustal blocksadjacenttostrike-slipfaultzones,asobservedin palaeomagneticstudiesbyGarfunkel&Ron(1985), ReviewoftheNorthAnatolianFaultSystem(NAFS) Tataretal. (1995)andPiperetal. (1997).Brocheretal. TheNAFSisamorphologicallydistinctandseismically (1994)postulatedalowercrustaldetachmentbetween activestrike-slipfaultwhichextendsforabout1200km theSanAndreasFaultSystemandHaywardFault.The fromKarl›ovatotheGulfofSarosalongtheBlackSea postulatedexistenceofaquasi-horizontaldetachment mountainsofNorthAnatolia(Figure1).Formostofits structurecouldfacilitatemorestresstransferbetween length,thetransformhasatypicalstrike-slipfaultzone sub-parallelfaultsthanwouldbeexpectedfromastress morphology,characterizedbyanarrowriftzone(fiengör changeinanelasticmedium,suchasachangeofthe 1979).Additionally,fiengör(1979)addedthatthecrust Coulombfailurefunctionwhichisoftencalculated alongthefaultzoneisthinnerthannormal.The followinglargeseismicevents(Reasenberg&Simpson transformprobablyoriginatedsometimebetweenthe 1997).However,Parsons&Hart(1999)suggestthat BurdigalianandthePlioceneandhasoffsetofabout85 fault-planereflectionsrevealthattheSanAndreasand km.TheNorthAnatoliantransformfaultsystemappears Haywardfaultsactuallydiptowardeachotherbelow tohaveoriginatedasaconsequenceoftheArabia- seismogenicdepthsatanglesof60and70degrees, AnatoliacollisionduringtheLate(?Middle)Miocene, respectively,andpersisttothebaseofthecrust. whentheAnatolianPlateformedandwaswedgedout Byusingcodawaves,Nishigami(2000)has intotheoceanictractoftheeasternMediterraneanfrom interpretedthedeeperimageoftheSanAndreasFault theconvergingjawsofArabiaandEurasiatoprevent System.Hearguesthatcontinuousslipacrossthedeep excessivecrustalthickeningineasternAnatolia.The plateboundaryencountersasub-horizantaldetachment westerlymotionofAnatolia,withrespecttoEurasiaand inthelowercrustsothatbrittlefractureoccursalong Africa,causedagreatchangeinthetectonicevolutionof thesefaultsandshearstressesaretransferred theeasternMediterranean,givingrisetotheAegean horizontallytothebottomsoftheSanAndreasand extensionalregimeandtointernaldeformationof Haywardfaults.Thissuggeststhatsub-parallelactive Anatolia(fiengör1979).Zhu etal. (2006)suggestthat faultsmaybecontrolledbylowercrustaldetachments thereisgeneraltrendofwestwardcrustalthinningfrom thatfacilitatethebroadeningofashearzone.Thiskind 36kmincentralAnatoliato28–30kminthecentral ofdeepstructurefortheSanAndreasFaultSystemisalso MenderesMassifto25kmbeneaththeAegeanSea suggestedbyLemiszki&Brown(1988),andLisowski et (Figure1).ThereaderisreferredtoBozkurt(2001)and al. (1991).OntheotherhandParsons&Hart(1999) fiengör etal. (2004)foramoreinformationonthe suggestthattheSanAndreasandHaywardfaultsactually NAFS. continueasfaultsbeneathseismogenicdepths.Ifthese InareviewpaperconcerningtheNAFS,fiengör etal. faultsretaintheirobserveddipsat60and70degrees, (2004)suggestedthatsincetheseventeenthcenturythe respectively,theywouldconvergeintoasinglezoneinthe NAFShasdisplayedcyclicalseismicbehaviour,with

2 O. BEKTAfiET AL.

21 25 29 33 37 41 45

EURASIAN PLATE

Black Sea

24+2 NAFS 10+2 EAFS ?

AEGEAN ARC 9+2 30+2 ?

18+2 Caucasus convergence Eastern Turkey distributed strike-slip zone Mediterranean Sea 0 600 km Anatolian Plate W NAFS and NATS strike- ARABIAN slip and extensional zone PLATE W Turkey and SE Aegean AFRICAN PLATE zone of N-S extension 6+2 SW Aegean/Peloponiosis plate

Figure1. PlatetectonicframeworkandrelativemotionsinTurkeyandadjoiningregionsafterMcClusky etal. (2000). century-longcyclesbeginningintheeastandprogressing AnatolianFaultSystem(NAFS)mayhelpustounderstand westward.Forearliertimes,therecordislessclearbut andestimateseismicactivityalongthesemajor doesindicatealivelyseismicity.Thetwentiethcentury intracrustaltransforms.Itiswellestablishedthatthe recordhasbeensuccessfullyinterpretedintermsofa NAFSmovesfromacompressivetectonicdomainin Coulombfailuremodel,wherebyeveryearthquake EasternAnatoliaintoadiverse,dominantlyextensional, concentratestheshearstressatthewesterntipsofthe tectonicdomaininWesternAnatolia(McClusy etal. brokensegmentsleadingtowestwardmigrationoflarge 2000;Figure1).Thesedifferenttectonicregimesarethe earthquakes.Followingthe17Augustand12November resultofdiffentialindentationoftheAnatolian 1999,events,thereisa~50%probabilityofamajor,M accretionarycollagebythenorthwardmovementofthe <7.6,eventonthesegment(s)oftheNAFSwithinthe ArabianPlateandthetectonicescapeoftheseterranesby MarmaraSeawithinthenexthalfcentury.Currently,the acombinationofwestwardpushandsuctionintothe strainintheMarmaraSearegionishighlyasymmetric, southward-retreatingAegeanTrench.Thespatialand withgreaterstraintothesouthoftheNorthernstrand. temporaldistributionsoflargehistoricalandmodern earthquakes(Mw>5)wouldappeartomakeuptwo DifferentMacro-seismicZonesAlongtheNorth macro-seismiczones,onetotheeastoftheNAFSandone AnatolianFaultSystem tothewestoftheNAFS.Thesezonesdifferinstyleand expressthedifferentrheologicpropertiesofthecrust, Comparativegeologicalandgeophysicalstudiesbetween thusimplyingdifferentstresstransfermechanisms. thewellknownSanAndreasFaultSystemandNorth

3 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

TheEasternMacro-seismicZoneandEarthquake 2005)makingupearthquakepairsonthenorthernand SeriesoftheNAFS southernbranchesoftheNAFSoverthelast500years Theeasternmacro-seismiczoneoftheNAFS,between (Figure4).From1912to2001,sixdestructive ErzincanandBolu,hasproducedsuccessivelinear earthquakepairsoccurredcorrespondingtothenorthern andsouthernbranchesoftheNAFSaroundthemarginof earthquakeseriesparalleltothefaultzoneforatleast theMarmaraSea(Figure5).The1935Mw6.4Erdek- 500years(Figure2).Fivelinearhistoricalearthquake Bigaand1943Mw6.6Adapazar›-Hendekearthquake serieswithanintervalof100yearswereproduced pair,the1953Mw7.2Yenice-Gönenand1963Mw6.3 betweenthe15 th and19 th centuries.Eachearthquake Ç›narc›k-Yalovaearthquakepair,andthe1964Mw7 seriesconsistsofsuccessiveearthquakeeventsmigrating Manyasand1967Mw6.3Adapazar›earthquakepairare fromeastnearErzincantoKastamonucityinthewest allcharacteristicpairedearthquakesonparallelfault (Steinetal. 1997;Soysal etal. 1981;Table1).Atthe branchesoftheNAFSintheMarmararegion.The1983 endofthe19 th centurytheearthquakeactivityincreased Bigaearthquake(Mw4.9)onthesouthernbranchwas andasimilarearthquakeserieswithanintervalof~50 followedbythe1999YalovaandDüzceearthquakes(Mw yearsoccuredonthiszone(Figure2).Thefirst 7.4)onthenorthernbranchincludingoneoftherecent earthquakeseriesofthe20 th centurybeganwiththe catastrophicearthquakeeventsintheMarmararegion Erzincanearthquake(M=7.9)in1939,andhas (Figure5).Historicalearthquakeswith(Mw>7)inthe comprisedsevenearthquakes(Mw6–7)migratingtothe Marmararegion(Ambraseys&Jackson2000)alsomake- west(Figures2&3).Apossiblesecondearthquake upearthquakepairsonthenorthernandsouthern th series,beginninginthe20 century,beganwiththe branchesoftheNAFS(Figures4&5).Examplesinclude Erzincanearthquake(M=6.9)in1992andmaybe the1509‹stanbulearthquake–1556Erdekearthquake, completedbywestwardmigratingearthquakesover 1719‹zmitearthquake–1737Bigaearthquake,the1766 approximatelythenext50years(Figure2).These Geliboluearthquake–1855Bursaearthquakeand1894 successiveearthquakeseriesontheNAFS,whichhavea ‹zmitearthquake;ineachcasehistoricalearthquakepairs narrowexpressioninthe‘easternmacroseismiczone’ havealternatedonthetwobranchesoftheNAFS(Table suggestthatstresstransferalongtheNAFShasoccurred 1).Thesehistoricalandmodernseismicpatternsofthe withinahigh-viscositycrustexhibitingprimarilyelastic NAFSintheMarmararegionsuggestthatthekinematics behaviouratalldepthsassuggestedbyRoy&Royden andgeometryofthewesternpartoftheNAFSare (2000).Accordingtothisinterpretation,asignificant controlledbylarge-scaleflowintheaseismiclowercrust. fractionofthestressreleasedonthefaultistransferred Thusshearstressistransferredhorizontallytothe totheremaininglockedsectionafteramajorearthquake bottomofthenorthernandsouthernparallelfault (Stein etal. 1997).Thistypeofstaticstresstransfer branchesbyahorizontaldetachmentsothatbrittle betweenthelockedsectionsofthefaultiscompatible fracturehasoccurredsuccessivelyonfaultsinthe withtheobservedbehaviouroftheSanAndreasFault seismogenicuppercrust.Adynamicstresstransfermodel (Turcotteetal. 1984). involvingmantleflowfortheparallelbranchesofthe NAFSintheMarmararegionisapplicabletoexplaining theoccurrenceofearthquakepairssuchasthe1992Mw TheWesternMacro-seismicZoneandEarthquake 7.3Landersand1999Mw7.1HectorMineearthquake PairsoftheNAFS pairinCalifornia(Pollitzetal. 2001). WestofBolutheNAFSsplitsintonorthernandsouthern sub-parallelbranchesinabroadextensionaldeformation zoneincorporatingtheMarmara-northernAegeanregion Discussion (McCluskyetal. 2000).Incontrasttotheeasternmacro- Ithasbeenknownforalongtimethatearthquake seismiczone,thewesternmacro-seismiczoneofthe occurrenceisnon-randominspaceandtime.Earthquakes NAFSintheMarmararegion,hasproducedseven inducedbystaticordynamicstresschangesmaytrigger historical(Mw>7)and12modern(Mw4.9–7) subsequentearthquakes.Inadditiontothese,transient successiveearthquakes(Ambraseys&Jackson2000; flowintheuppermantleisafundamentalcomponentof Ambraseys2002;fiaro¤lu etal. 1999;Yalt›rak etal. theearthquakecycle(Pollitzetal. 2001).

4 O. BEKTAfiET AL.

27 29 31 33 35 37 39 41

Kastamonu Ilgaz ? Ladik Gerede ? Niksar Bolu ? Çerkeş Amasya ? NAFS Tokat 1992 40 ERZİNCAN 1966-? M6.9 1966 SERIES-VII M 6.9 19511953 1957 1943 Ladik M6 53 year M 6.9 M 7.2 1942 M7 Niksar very destructive M 7.4 1944 Amasya Tokat earthquake M 7.2 1939 destructive earthquake ERZİNCAN 1939-1957 M 7.9 damage creative earthquake SERIES-VI very intensive Kastamonu earthquake 1890 20th century Bolu earthquakes 1890 51 year Amasya Niksar migration of the 1888 earthquake 1888-1890 Tokat ERZİNCAN SERIES-V ? possible earthquakes regions Kastamonu 1882 Bolu 1870 1887 104 year 1873 Amasya 1784-1887 Tokat 1784 ERZİNCAN SERIES-IV

Kastamonu 1668 Bolu 117 year 1684 1668 Amasya 1667 1667-1684 ERZİNCAN SERIES-II I

Bolu 1598 1585 83 year Çorum Amasya 1584 1584-1598 ERZİNCAN SERIES-II

Bolu 102 year 1509 1513 Çorum Amasya 1482 1482-1509 ERZİNCAN SERIES- I

Figure2. Historicaland20 th centuryearthquakeseriesonthe segmentsoftheNorthAnatolianFaultSystembetween ErzincanandBoluandpossiblefuturedestructive earthquakes.Thehistoricaland20th centuryearthquakesare takenfromSoysal etal. (1981)andfiaro¤lu etal. (1999), respectively.

5 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

Table1. Intensity,dateandlocationsofthehistoricalearthquakes.

Intensity Date Location Serie

IX 1482 Erzincan VI 1513 Amasya VIII 1509 Çorum Series1 ? 1584 Erzincan VII 1585 Amasya IX 1598 Çorum Series2 VIII 1667 Erzincan IX 1668 Amasya-Tokat VIII 1668 Bolu-Kastamonu Series3 VIII 1684 Amasya VIII 1784 Erzincan V 1870 Amasya VII 1873 Niksar VI 1882 Tosya-Kastamonu Series4 VI 1887 Tokat VII 1888 Erzincan VI 1890 Niksar Series5 VI 1890 Kastamonu

StaticStressTransferandFormationofthe byearthquakestresstriggering.Thisprogressivefailure EarthquakeSeries modealongtheeasternpartoftheNAFSmakesupthe Harris(1998)andStein(1999)usecalculationsofa modernandhistorical earthquakeseries ontheeastern Coulombstressincrementcalculatedfromanelastic- macroseismiczoneoftheNAFS(Figures2&3). dislocationmodelofthemain-shocktoexamine Ontheotherhand,differentseismicpatterns, geographicalpatternofsubsequentearthquakesrelative earthquakeseriesandearthquakepairs,ontheeastern topatternofchangeinCoulombfailure.Thecoseismic andwesternpartoftheNAFS,respectively,maynotbe changeinCoulombfailurefunction(CF)isgivenby simplyexplainedbythestaticstresschangeofthe ∆ ∆ ∆ ∆ successiveearthquakes.Forexample,inseriesVII, CF= σs +µ( σn + p), (Figure2),thestaticstressincreaserelatedtothe1966 ∆ where σs isthecoseismicchangeinshearstressinthe earthquakeM6.9intheareaofthe1992M6.9Erzincan ∆ directionofthefaultslip, σn isthechangeinnormal earthquake,maybenegligibleduetothelongdistance, ∆ stress(withpositivetension), pisthechangeinpore- 125km,betweentheepicentresoftwoearthquakes. fluidpressure,andµisanassumed‘coefficientofinternal Similarly,inthehistoricalseriesIVandV,ifwetakeinto ’.Thisgeneralmethodhasshownthatstatic accountthelongdistancesbetweenearthquakesortheir Coulombstresstransferisconsistentwithapatternof intensities,itseemsthatstaticstresschangecannotbe 70–80%forthestudiedevents.Accordingto responsiblefortheearthquakeseriesintheeasternpart Stein etal. (1997),thereisprogressivefailureonthe oftheNAFS. easternpartoftheNAFSfromeasttowestsince1939

6 O. BEKTAfiET AL.

27 29 31 33 35 37 39 N

Black Sea Kastamonu 1944 Figures4&5 NAFS 1943 7.2 7.2 41 Gerede 1942 41 Marmara Bolu Ilgaz Ladik 7 Sea Amasya Niksar Çerkeş 1953 1939 6 1951 Ezinepazarı Tokat 7.9 1957 6.9 40 40 7.1 0 100 km Erzincan

Figure3. TheeasternmacroseismiczoneoftheNAFSlocatedbetweenErzincanandBolu,showinghowanearthquakeseriesofsevenlarge earthquakes(M~6–7.4)hasmigratedregularlyfromeasttowestduringthe20 th century.

Sowecandeducethatinadditiontothestaticstress asignificanteffect(potentiallyaminimum40%oflarge change,differentcrustalrheologyplayedaconsiderable triggeredearthquakesgloballyfromdynamicstress roleintheformationoftheearthquakeseriesandpairs. transfer)althoughthephysicsandtimingofthedynamic Indeed,Roy&Royden(2000)suggestedthatbrittle triggeringareacknowledgedtobepoorlyunderstood. failureinahighviscositycrustisprimarilyfocusedalong Deeppost-earthquakeafter-slipandviscoelastic thenarrowstrike-slipfaultzoneformingearthquake relaxationofthelowercrustanduppermantlemayactto seriesregardlessofthetimeoftheearthquakes.In redistributestressintotheseismogeniccrustovertime contrast,whentheelasticuppercrustisunderlainbya (Pollitzetal. 2001).Stresstransferwithinelasticcrustis low-viscositylowercrustallayer,thedeformationzone staticandimmediate,whereasstresstransferredbya broadensintimetoencompassmanyparallelstrike-slip largeearthquakeinthehighertemperaturelowercrust faultsinaninteractingnetworkandtheirearthquake anduppermantleistimedependentbecausestrainoccurs pairs. atdepthbyviscoelasticflowinresponsetoasudden Inthemodernseries,VII(Figure2)theregion stresschange(Pollitz etal. 2001;Pollitz2005).Deep recoveredfromthestressshadowcreatedbythe1939M post-seismicreadjustmentmayimpacttheseismogenic 7.9earthquakeviathe1992M6.9Erzincanearthquake. crustandacttomodifythecoseismicstaticstresschange. Wesuggestthereforethatthisseriesmaypropagate Thisprocessisknownasstressdiffusion,andappearsto westwardfromErzincancityoverthenext~50years. occurrapidlyrelativetotheseismiccycle(Parsons2002). Stressdiffusionmodelswerefittedtogeodetic measurementsmadeafterthe1999(Mw7.1)Hector FaultInteractionsinaViscoelasticEarthand Mine,Californiaand1999(Mw7.4)‹zmit,Turkey FormationofEarthquakePairs earthquakes(Hearn etal. 2002).Theresultsemphasise Inadditiontostaticstresschanges,dynamicortransient thatstressdiffusionmodelsmoreeasilyexplainthe1992 stresschangesmayalsobecapableoftriggering Mw7.2Landers–1999Mw7.1HectorMineearthquake earthquakes.Lomnitz(1996)suggestedthatfault pairontheparallelfaultsratherthantheclassicstatic interactionincludingdistanttriggeringisduetodeep- stresstransfermodel.Roy&Royden(2000)emphasize seatedflowintheearthinaresponsetothetriggering theeffectsoflowercrustalflowonfaultingatstrike-slip earthquake.Alternatively,Harris(2000)consideredthat plateboundaries.Theyshowthatwhenalow-viscosity dynamicstrainsmaybecausedbydistanttriggering. lowercrustallayerunderliesaprimarilyelasticupper Parsons(2005)suggeststhatdynamicstresstransferhas crust,thedeformationzonebroadensintimeto

7 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

26 27 28 29 30 31 N Black Sea

41 1509 İstanbul Tekirdağ 1894 1719 İzmit Adapazarı

NNAFS central Marmara trough Çınarcık Yalova Armutlu trough Marmara Sea Peninsula 1766 1556 1855 Biga 1737 Gönen Bursa HISTORICAL EARTHQUAKE PAIRS 40 SNAFS Manyas 1509 İstanbul 1556 Erdek 1719 İzmit Körfezi Balıkesir 1737 Biga SNAFS NNAFS 1766 Gelibolu Aegean Sea 1855 Bursa 0 100 km 1894 İzmit Körfezi

Figure4. Alternatinghistoricalandlargeearthquakespairswithmagnitudeof ≥7onthenorthern(NNAFS)andsouthern(SNAFS)branches oftheNorthAnatolianFaultSystemintheMarmararegion.ThehistoricalearthquakesaretakenfromAmbraseys&Jackson (2000),thefaultmapfromKoçyi¤it(1988). encompassmanyparallelstrike-slipfaultsinan thetwomodelsarenotablydifferentandleadpotentially interactingnetworksuchasintheSanFranciscoBayarea todifferentassessmentsoftheseismicpotentialina andintheMarmararegionoftheNAFS.Incontrast, givenregion.Whenweconsiderearthquakealternations whentheentirecrustbehaveselastically,thedeformation onsub-parallelfaultsoftheNAFSintheMarmararegion zoneremainsnarrowasintheeasternpartofNAFS,and wepredictthatmodelbisanappropriateexplanationfor becomesfocussedonasingleplate-boundingfault.In thesub-parallelfaultsonthewesternseismiczoneofthe theirmodel,themaximumdepthoffaultsislimitedby NAFS. stressrelaxationandlarge-scaleviscousflowinthelower Primaryinterpretationofthisworkinrelationtothe crust,whichconfinesbrittlefailuretoshallowand NAFSsuggeststhatthekinematicsandgeometryofthe midcrustallevels.Cai&Wang(2001)testfaultmodels faultsystemandtheirearthquakepairsintheMarmara withnumericalsimulationandproposetwodistinct regionisconsistentwiththepresenceoflarge-scaleflow tectonicmodelsforthefaultsincentralCalifornia.Inone intheaseismiclowercrustandcontrastswiththeeastern model(Figure7,modela),nobasaldetachmentis seismiczoneoftheNAFS.Thushistoricandmodern assumed.Inanothermodel(Figure7,modelb),amaster earthquakepairsontheparallelfaultsoftheNAFSinthe detachmentisassumedtobepresentbelowthe Marmararegionareexplainedbyastressdiffusionmodel seismogeniclayerandconnectstheSanAndreasFault ratherthanbyastaticstresstransfermodel. Systemwiththeotherfaultsinthesystem.Theauthors suggestthatmodelb,thepresenceofabasaldetachment, Thoughsomeearthquakepairs(1983–1999; mayfacilitatethetransferofsheardeformationfromthe 1964–1967)areseparatedbymorethan200km,they baseofthelithosphere.Hencethestressespredictedby arealsolocatedinthebroaderMarmaradeformation zoneoftheNAFS.Ifthemodelwesuggestedaboveis

8 O. BEKTAfiET AL.

26 27 28 29 30 31

N Black Sea

41 İstanbul Tekirdağ 1943 İzmit Adapazarı 1935 1935 1963 NNAFS central Marmara 1975 Çınarcık Yalova trough Armutlu 1999 trough Marmara Sea Peninsula 1967

1964 Biga 1983 Gönen EARTHQUAKE PAIRS Bursa

SNAFS Manyas 1912 Mürefte (M 7.3) 1935 Erdek-Biga (M6.4-6.3) 40 1953 1943 Hendek (M 6.6) 1953 Gönen (M 7.2)

1964 Manyas (M 7) Balıkesir 1963 Yalova (M 6.3) SNAFS NNAFS 1967 Adapazarı (M 6.3) 1969-1972 Gönen-Ezine (M5.7-5)

1944 1975 Saros (M 6.4) 1983 Biga (M 6.4) Aegean Sea 0 100 km 1999 Kocaeli (M 7.4) 2001 Savaştepe (M 5)

Figure5. Thewesternmacro-seismiczoneoftheNAFSincludes6earthquakepairs(M6.1–7.4)thathavealternatedondistinctparallelfault segmentsoftheNNAFSandSNAFSintheMarmararegionduringthe20 th century(NNAFS:northernbranch,SNAFS:southern branch,oftheNorthAnatolianFaultSystem).

correctwecansaythatthesub-parallelfaultsofthe increasedthestressbeyondtheeastendoftherupture NAFS,onwhichearthquakepairsoccurred,maybe by1–2bars,wheretheM7.2Düzceearthquakestruck, controlledbythelowerdetachmentthatfacilitatesthe andby0.5–5barsbeyondthewestendofthe17August broadeningofthedeformationzone. rupture,whereaclusterofaftershocksoccurred (Parsons etal. 2000).However,acriticalquestion However,Hubert-Ferrarietal. (2000)andKingetal. relatedtothishypothesisis:whydidthe1999‹zmit (2001)examinedearthquakeinteractionssince1900in fracturenotcontinuewestwardintoMarmaraSeainstead theMarmaraSea.Theyshowedthat23outof29 ofeastwardtoDüzce(e.g.,King etal. 2001;Hartlebet earthquakes(M>6)overan85yearperiodcouldbe al. 2002)? relatedtoearlierevents.Inasimilarway,theyshowed thathistoricalearthquakes,between1700–1900, Thehypothesismentionedabovecontrastswithboth migratedwestwardandeastwardonthenorthernand themodernandhistoricalearthquakepairsmodelswe southernbranchesoftheNAFS,respectively,inthe suggestedinthetext(Figures4&5)fortheMarmara MamaraSea. Sea.Thoughweusedallofthe12modernearthquakes (M>5)since1912,wehadtousethehistorical Similarly,Parsonsetal. (2000)arguethatthe1999 earthquakesofM>7withdatesbetween1700and1900 M7.4‹zmitearthquake,aswellasmostbackground (Ambraseys&Jackson2000).AccordingtoKing etal. seismicityoftheMarmaraSea,occurredwherethefailure (2001)theM>7eventsbroketwoormoresegments stressiscalculatedtohaveincreased1–2barsbyM6.5 whilethesmallerearthquakeoccurredonasingle earthquakessince1939.The‹zmitevent,inturn, segment.

9 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

31

30

29 BLACK SEA PLATE

28 24 mm/year İstanbul Düzce 27 16 mm/year Bolu Tekirdağ NNAFS Adapazarı İzmit N

Mudurnu İznik Yalova Saros Fault 40 km Şarköy 0 Erdek 24 mm/year 9 mm/year Biga GönenManyas Bursa

SNAFS

ANATOLIAN PLATE LOWER CRUSTAL DETEACHMENT STRUCTURE Balıkesir no vertical scale

UPPER CRUST deteachment fault LOWER CRUST and stress transfer (SEISMIC ZONE) (ASEISMIC ZONE) extensional stress strike-slip fault dextral fault normal fault reverse fault

Figure6. Schematicblockdiagramdepictingsub-horizontaldetachmentbetweentheloweranduppercrustwithshearstresstransferred horizontallytothebottomofthenorthernandsouthernbranchesoftheNAFSintheMarmararegionasinFigure7modelbcentury (NNAFS:northernbranch,SNAFS:southernbranch,oftheNorthAnatolianFaultSystem).

Conclusion Royden2000).Thistypeofstaticstresstransferbetween Spatialandtemporalvariationsofseismicityinthe thelockedsectionsofthefaultisconsistentwith easternandwesternpartsoftheNAFSmakeuptwo observedbehaviourontheSanAndreasFault(Turcotteet differentmacro-seismiczones,reflectingdifferentcrustal al. 1984). rheologiesandstresstransferintwodistincttectonic WestofthetownofBoluinthewesternmacro- domainsasillustratedbythetectonicmodelsdiscussed seismiczonetheNAFSsplitsintonorthernandsouthern above(Lemiszki&Brown1988;Nishigami2000;Roy& sub-parallelbranchesinabroadextensionaldeformation Royden2000;Cai&Wang2001;Parsons2004).The zonewithintheMarmara-northernAegeanregion. easternmacro-seismiczoneoftheNAFS,locatedbetween Duringthelastcentury,seismicactivityinthiszonehas ErzincanandBolu,hasproducedaseriesofsevenmodern includedsixearthquakepairs(Mw6.1–7.4)alternating largeearthquakes(Mw6–7.4)whichhavemigrated onthedistinctparallelfaultsegmentsofthenorthernand regularlyfromeasttowestbytheCoulombstaticstress southernbranchesoftheNAFS(Figure5).Thistypeof transfer(Figures2&3).Thismodernearthquakeseries seismicactivitymayimplythatthereisalowercrustal runningparalleltothenarrowNAFSzonesuggeststhat sub-horizontaldetachmentfaultthatmayfacilitatemore stresstransferandmigrationoftheearthquakesalong dynamicstresstransferbetweensub-parallelfaultsofthe thefaulthasoccurredwithinahigh-viscositycrust NAFSthanwouldbeexpectedfromastaticstress exhibitingprimarilyelasticbehaviouratalldepths(Roy& transferinanelasticmedium(Figure6).However,sofar,

10 O. BEKTAfiET AL.

T1 S T2 T1 S T2

Moho Moho

Model A Model B

(a) (b)

Figure7. Schematicdrawingsoftwodifferentfaultconfigurationsshowing (a) allfaultsterminatingatthebaseoftheseismogenic layerand(b) allfaultsconnectingtoadetachmentatthebaseoftheseismogeniclayer.( ⊗)shearoutofpage;( ¤)shear inthepage(afterCai&Wang2001). inseismichazardevaluations,orearthquakepredictions, Acknowledgements faultsintheMarmaraSeaaresimulatedasdislocationsin TheauthorsaregratefultoOrhanTatar,JohnPiperand ahalf-spacewherenobasaldetachmenthasbeen ErdinBozkurtforconstructivecommentsandcorrecting assumed.Weconcludethatthestaticstresstransfer theEnglishofthemanuscript.TheauthorsthankAurelia modelintheeasternpartoftheNAFSandthedynamic Hubert-Ferrariandanonymousrefereeforscientific stresstransfermodelamongtheparallelbranchesofthe contributionsandessentialdiscussions.TheEnglishofthe NAFStothewestprovidethesignificantparametersfor finaltextiseditedbyDarrelMaddy. predictingseismichazardsontheNAFS.

References

AMBRASEYS,N.N.2002.TheseismicactivityoftheMarmaraSearegion GARFUNKEL,Z.&R ON, H.1985.Blockrotationanddeformationby overthelast2000Years.BulletinoftheSeismologicalSocietyof strike-slipfaults2.Thepropertiesofatypeofmacroseismic America 92,1–18. discontinuousdeformation. JournalofGeophysicalResearch 90, 8589–86029. AMBRASEYS,N.N.&JACKSON,J.A.2000.SeismicityoftheSeaofMarmara (Turkey)since1500. GeophysicalJournalInternational 141, HADLEY,D.&K ANOMORI,H.1977.SeismicstructureoftheTransverse F1–F6. Ranges,California. GeologicalSocietyofAmericanBulletin 88,

ANDERSON,D.L.1971.TheSanAndreasFault. ScientificAmerican 225, 1469–1478. 53–67. HARR›S,R.A.1998.Introductiontospecialsection:stresstriggers,stres

BOZKURT,E.2001.NeotectonicsofTurkey–asynthesis. Geodinamica shadows,andimplicationsforseismichazard. Journalof Acta14,3-30. GeophysicalResearch-SolidEarth 103(B10),24347–24358.

BROCHER,T.M.,M CCARTHY,J.,H ART,P.E.,H OLBROOK,W.S.,F URLONG, HARR›S, R.A.2000.Earthquakestresstriggers,stressshadows,and K.P.,M CEV›LLY,T.V.,H OLE,J.&K LEMPERER,S.L.1994.Seismic seismichazard.Specialsection,2000,CurrentScience evidenceforalower-crustaldetachmentbeneathSanFrancisco 79,1215–1225. Bay,California.Science 265,1436–1439. HARTLEB,R.D.,D OLAN,J.F.,A KYÜZ,H.S.,D AWSON,T.E.,T UCKER,A.Z., BÜRGMANN,R.1997.ActivedetachmentfaultingintheSanFransiscoBay YERL‹,B.,R OCKWELL,T.K.,T ORAMAN,E.,Ç AKIR,Z.,D ‹KBAfl,A.& area?.Geology 25,1135–1138. ALTUNEL, E.2002.Surfaceruptureandslipdistributionalongthe Karaderesegmentofthe17August1999‹zmitandthewestern CAI,Y.&W ANG, C.Y.2001.Testingfaultmodelswithnumerical simulation:examplefromcentralCalifornia.Tectonophysics 343, sectionofthe12November1999Düzce,Turkey,earthquakes. 233–238. BulletinoftheSeismologicalSocietyofAmerica 92,67–78.

FURLONG, K.P.1993.Thermal-rhelogicalevolutionoftheuppermantle HEARN,E.H.,B ÜRGMANN,R.&R EILENGER, R.E.2002.Dynamicsof‹zmit andthedevelopmentoftheSanAndreasFaultSystem. earthqukepost-seismicdeformationandloadingoftheDüzce Tectonophysics 223,149–164. earthquakehypocenter. BulletinoftheSeismologicalSocietyof America 92,172–193.

11 STRESSTRANSFERINSTRIKE-SLIPFAULTZONES

HUBERT-FERRAR›,A.,B ARKA,A.,J ACQUES,E.,N ALBANT,S.S.,M EYER,B., POLLITZ,F.F.2005.Transientrheologyoftheuppermantlebeneath ARM›JO,R.,TAPPONNLER,P.&K›NG, G.C.P.2000.Seismichazardin centralAlaskainferredfromthecrustalvelocityfieldfollowingthe theMarmaraSearegionfollowingthe17August1999‹zmit 2002Denaliearthquake. JournalofGeophysicalResearch-Solid earthquake.Nature 404,269–273. Earth 110(B8) B08407,10.1029/2005JB003672.

K›NG,G.C.P.,HUBERT-FERRAR›,A.,NALBANT,S.S.,MEYER,B.,ARM›JO,R.& POLLITZ,F.F.,W ICKS,C.&T HATCHER, W.2001.Mantleflowbeneatha BOWMAN,D.2001.Coulombinteractionsandthe17August1999 continentalstrike-slipfault.post-seismicdeformationafterthe ‹zmit,Turkeyearthquake. EarthandPlanetarySciences 333, 1999,HectorMineearthquake.Science 293,1814–1818. 557–569. REASENBERG,P.A.&SIMPSON,R.W.1997.Responseofregionalseismicity KOÇY‹⁄‹T, A.1988.TectonicsettingoftheGeyvebasin:ageandtotal tothestaticstresschangeproducedbytheLomaPrieta displacementoftheGeyvefaultzone. METUPureandApplied earthquake.Science 255,1687–1690. Sciences 21,81–104. ROY,M.&R OYDEN,L.H.2000.Crustalrheologyandfaultingatstrike- LEMISZKI,P.J.&B ROWN,L.D.1988.Variablecrustalstructureofstrike- slipplateboundaries2,Effectsoflowercrustalflow. Journalof slipfaultzonesasobservedondeepseismicreflectionprofiles. GeophysicalResearch-SolidEarth 105,5599–5613. GeologicalSocietyofAmericanBulletin 100,665–676. fiARO⁄LU,F.,EMRE,O.&KUfiCU,i.1999.TürkiyeDiriFayHaritas›[Active LISOWSKI,M.,S AVAGE,J.C.&P RESCOTT,W.H. 1991.Thevelocityfield FaultMapofTurkey]. MineralResearchandExplorationInstitute alongSanAndreasFaultincentralandsouthernCalifornia. (MTA)ofTurkeyPublications,Ankara. JournalofGeophysicalResearch-SolidEarth 96,8369–8389. SOYSAL,H.,S ‹PAH‹O⁄LU,S.,K OLÇAK,D.&A LT›NOK, Y.1981. Türkiyeve LOMNITZ, C.1996.Searchofworldwidecatalogforearthquakes ÇevresininTarihselDepremKatolo¤u[HistoricalEarthquake triggeredatintermediatedistances. BulletinoftheSeismological CataloqueofTurkeyanditsNeighbourhood] .TÜB‹TAKProject SocietyofAmerica 86,293–298. no.TBAG341[inTurkish,unpublished].

MCCLUSKY,S.,B ALASSANIAN,S.,B ARKA,A.,D EM‹R,C.,E RG‹NTAV,S., STEIN, R.S.1999.Theroleofstresstransferinearthquakeoccurrence. GEORGIEV,I.,G ÜRKAN,O.,H AMBURGER,M.,H URST,K.,K AHLE,H., Nature 402,605–609. KASTENS,K.,K EKELIDZE,G.,K ING,R.,K OTZEV,V.,L ENK,O., STEIN,R.S.,B ARKA,A.A.&D IETRICH,J.H.1997.Progressivefailureon MAHMOUD,S.,MISHIN,A.,NADARIYA,M.,OUZOUNIS,A.,PARADISSIS,D., theNorthAnatolianFaultsince1939byearthquakestress PETER,Y.,PRILEPIN,M.,REILINGER,R.,SANLI,I.,SEEGER,H.,TEALEB, triggering.GeophysicalJournalInternational 128,594–604. A.,T OKSÖZ,M.N.&V EIS,G.2000.Globalpositioningsystem constraintsonplatekinematicsanddynamicsintheeastern fiENGÖR, A.M.C.1979. GeometryandKinematicsofContinental MediterraneanandCaucasus. JournalofGeophysicalResearch- DeformationinZonesofCollision:ExamplesFromCentralEurope SolidEarth 105(B3),5695–5719. andEasternMediterranean.MScThesis,StateUniversityofNew YorkatAlbany[unpublished]. NISHIGAMI,K.2000.Deepcrustalheterogeneityalongandaroundthe SanAndreasFaultSystemincentralCaliforniaanditsrelationto fiENGÖR,A.M.C.,T ÜYSÜZ,O.,‹ MREN C.,SAK›NÇ,M.,E Y‹DO⁄AN,H.,G ÖRÜR, thesegmentation. JournalofGeophysicalResearch-SolidEarth N.,LE PICHON,X.&RANGIN, C.2004.TheNorthAnatolianFault:a 105,7983–7998. newlook. AnnualReviewofEarthandPlanetarySciences 33, 37–112. PARSONS, T.2002.Post-1906stressrecoveryoftheSanAndreasFault Systemcalculatedfromthree-dimensionalfiniteelementanalysis. TATAR,O.,PIPER,J.D.A.,PARK,R.G.&GÜRSOY,H.1995.Paleomagnetic JournalofGeophysicalResearch-SolidEarth , 107(B8) 2162, studyofblockrotationsintheNiksaroverlapregionoftheNorth 10.1029/2001JB001051. AnatolianFaultZone,CentralTurkey. Tectonophysics 244, 251–266. PARSONS,T.2004.RecalculatedprobabilityofM ≥ 7earthquakes beneaththeSeaofMarmara,Turkey. JournalofGeophysical TURCOTTE,D.L.,L IU,J.Y.&K ULHAWY,F.H.1984.Theroleofan Research-SolidEarth 109(B5) B05304. intracrustalasthenosphereonthebehaviourofmajorstrike-slip faults. JournalofGeophysicalResearch-SolidEarth 89, PARSONS,T.2005.Significanceofstresstransferintime-dependent 5801–5816. earthquakeprobabilitycalculations. JournalofGeophysical Research-SolidEarth 110(B5) B05S02,10.1029/2004J YALT›RAK,C.,Y ALÇ›N,T,Y ÜCE,G.&B OZKURTO⁄LU, E.2005.Water-level B003190. changesinshallowwellsbeforeandafterthe1999‹zmitand Düzceearthquakesandcomparisonwithlong-termwater-level PARSONS,T.&H ART,P.E.1999.DippingSanAndreasandHayward observations(1999–2004),NWTurkey.TurkishJournalofEarth faultsrevealedbeneathSanFranciscoBay,California.Geology27, Sciences 14,281–309. 839–842. YEATS, R.S.1981.QuaternaryflaketectonicsoftheCalifornia PARSONS,T.,T ODA,S.,S TEIN,R.S.,B ARKA,A.&D IETERICH, J.H.2000. TransverseRanges. Geology 9,18–20. Heightenedoddsoflargeeathquakesnear‹stanbul:anineraction- basedprobabilitycalculation.Science 288,661–665. ZHU,L.,MITCHELL,B.J.,AKYOL,N.,ÇEMEN,‹.&KEKOVAL›,K.2006.Crustal thicknessvariationsintheAegeanregionandimplicationsforthe PIPER,J.D.A.,TATAR,O.&GÜRSOY, H.1997.Deformationalbehaviourof extensionofcontinentalcrust. JournalofGeophysicalResearch- continentallithospherededucedfromblockrotationsacrossthe SolidEarth 111(B1),B01301,10.1029/JB003770. NorthAnatolianFaultZoneinTurkey. EarthandPlanetary ScienceLetters 150,191–203.

Received04September2006;revisedtypescriptreceived12October2006;accepted13October2006

12