Addressing the Scalability of Ethernet with MOOSE

Total Page:16

File Type:pdf, Size:1020Kb

Addressing the Scalability of Ethernet with MOOSE Addressing the Scalability of Ethernet with MOOSE Malcolm Scott, Daniel Wagner-Hall, Andrew Moore and Jon Crowcroft University of Cambridge Computer Laboratory fMalcolm.Scott, daw63, Andrew.Moore, [email protected] Abstract necessity for virtualised infrastructure [3]. While IP Mo- bility [4] addresses the problem of maintaining higher- Ethernet does not scale well to large networks. The flat layer connections when roaming between subnets, it re- MAC address space, whilst having obvious benefits for quires client support that is neither ubiquitous or reli- the user and administrator, is the primary cause of this able. Common practice sees the provision of one phys- poor scalability; other recent efforts to improve upon ical Ethernet network covering an entire data centre, or Ethernet’s scalability have addressed symptoms, rather even an entire WAN of data centres. than this underlying cause. In this paper we present Our approach, Multi-level Origin-Organised Scalable MOOSE, Multi-level Origin-Organised Scalable Ether- Ethernet (MOOSE), provides all the advantages of an net, an Ethernet switch architecture that performs in- Ethernet network without the capital and running costs place rewriting of MAC addresses in order to impose and administrative overhead of a IP router-based ap- a hierarchy upon the address space without reconfigu- proach. MOOSE does this by providing a hierarchical ration or modification of connected devices. This re- addressing scheme without requiring host reconfigura- moves the need for switches to maintain large forward- tion or modification. ing databases, is of direct use in implementing improved Ethernet’s scalability is limited firstly by the forward- routing, and allows for a variety of other scalability ing database that every switch in an Ethernet network and security innovations. We also present a globally- must maintain [5, x7.8–7.9]. A switch’s forwarding scalable, distributed and resilient protocol for the auto- database contains one entry per source address seen in matic assignment of addresses to switches, and for de- any frame passing through that switch, and stores that tecting and cheaply resolving addressing conflicts. MAC address together with the learnt location of that address—the port on which packets from that address 1 Introduction were last seen. This is later used to determine on which Ethernet has lasted well since its inception in the ’70s [1] port to transmit frames destined for that address. De- with Ethernet frame-structure and addressing remaining vices frequently broadcast frames throughout the net- ubiquitous in the data centre environment as in many work (e.g. ARP queries) so active devices on the net- others. Alongside IP and IP-transported services such as work are listed in most switches’ forwarding databases iSCSI, it is now commonplace to see converged network most of the time. services such as physical disk interfaces and cluster in- In modern switches the capacity of this database is terconnects layered directly over Ethernet (e.g. ATA- generally of the order of 16,000 entries [6]. (Higher- over-Ethernet and variants of Infiniband). However, Eth- capacity forwarding databases exist but are currently ernet exhibits scalability issues on networks of more constrained to very high-end switches.) On a moderately than a few thousand devices, such as costly and energy- large network, full databases are a serious risk. If the dense address table logic and storms of broadcast traffic. database becomes full, entries will be discarded; frames Aside from more physical devices, virtualised infras- for unknown addresses are flooded to all ports and the tructure further increases the density of Ethernet ad- resulting traffic storm could cause major problems, es- dresses in data centres. Widely-used layer-2 virtualisa- pecially in the presence of low-capacity edge links. tion mandates a unique Ethernet address per virtual ma- Traditionally the forwarding database has been stored chine [2]. This means that each physical machine in a in a content-addressable memory (CAM) as lookups data centre may represent many tens of Ethernet devices. must be very fast, particularly as 10 Gbit/s Ethernet be- The traditional method of avoiding such problems is comes ubiquitous. As networks grow, the number of en- the artificial subdivision of a network, but this introduces tries in a switch’s forwarding database must naturally in- an administrative burden, requires significant routing crease; however, increasing the capacity of CAMs with- equipment and also precludes seamless migration—a out sacrificing speed whilst constraining energy con- sumption is proving to be challenging [7, 8]. Cheaper wireless LANs are the one remaining vestige of Ethernet switches use DRAM in place of a CAM, but this is likely operating over shared media, where one switch (access to remain slower especially for large tables. point) serves many hosts on the same radio channel. Secondly, Ethernet’s inability to handle networks con- Ethernet’s poor scalability arises in various guises, as taining loops also presents a scalability problem. The outlined in section 1. It would seem at first glance that Rapid Spanning Tree Protocol, RSTP [5, x17], must re- these are entirely distinct and unrelated. However, there move loops by disabling any redundant links. On a dense is a common underlying cause: that MAC addresses pro- mesh network, RSTP will disable a large proportion of vide no location information. links; this constrains frames to suboptimal routes and Globally-unique MAC addresses are structured such may introduce bottlenecks in the network, particularly that the first three bytes of a device’s address contain an around the root of the spanning tree. In a data centre en- organisationally unique identifier (OUI) allocated to the vironment, this potentially amounts to a very large pro- device’s manufacturer by the IEEE, with the remaining portion of capacity being wasted wherever redundant fi- three bytes allocated by the manufacturer. This hierar- bres are installed, e.g. between cabinet switches and be- chy exists solely for the purpose of allocating unique ad- tween data centres. dresses in a decentralised fashion, and is of no use to Thirdly, not only does Ethernet flood frames des- Ethernet switches, which must treat the unicast address tined for unknown hosts, but it also uses—and encour- space as flat. ages higher-layer protocols to use—broadcast for con- A flat address space has the advantage that no configu- trol messages. For example, ARP [9] performs address ration of devices is required; a device can use its unique, resolution via broadcast queries, and DHCP [10] uses manufacturer-assigned MAC address anywhere on any broadcast messages for automatic configuration. It is im- network. However, this leaves each switch with the task practical to replace these protocols entirely as this would of discovering and storing the location of every address- require software upgrades to every device, but it would able device. be desirable for the network to minimise the amount of If the MAC address space were not flat, but instead broadcast traffic required to be forwarded. contained enough information to locate the device pos- In this paper we identify the relevant underlying prob- sessing the address, several advantages would be gained. lems in the design of Ethernet (section 2), review pre- Firstly, large forwarding databases would no longer have vious work (section 3) and present the MOOSE switch to be maintained on every switch. This location infor- architecture, which addresses inadequacies in the funda- mation could instead be distributed across the network mental operation of Ethernet in a novel yet backwards- so that frames are directed towards their destinations ac- compatible way (section 4). By revisiting the address- cording to successive stages of a hierarchy. ing scheme itself, rather than simply addressing symp- Secondly, a hierarchical MAC address space would toms of the problem as many previous proposed solu- also make the addition of shortest-path routing consid- tions have done, we can go about solving all of the above erably easier. Shortest-path routing is clearly a desir- scalability problems and more. able property for a network, yet it is one that Ethernet A working high-level software implementation of does not provide. Flat addressing does not lend itself MOOSE is described and evaluated in section 6. to easy routing: any address can be located anywhere on This work expands on our previous paper presented the network, which means either advertising every host’s at the First Workshop on Data Center – Converged and MAC address via the routing protocol—which scales Virtual Ethernet Switching (DC CAVES) [11]. We have very poorly—or providing some other location lookup added a crucial piece of the architecture—an automatic service. The use of hierarchical addresses, with each addressing scheme with cheap conflict resolution—and switch handling a block of sequential addresses akin to have better addressed the key issue of compatibility with an IP subnet, would reduce the routing problem to the existing protocols. one that routing protocols were designed to solve. Thirdly, this would allow for reduction of broadcast 2 Ethernet’s Underlying Problem traffic in a variety of different ways. Hierarchical MAC The original Ethernet was a shared-medium network, addresses could, for example, be mapped directly and where every frame was broadcast and no switching took deterministically onto the IP address space, if appro- place. Modern-day wired Ethernet-based networks in- priate for the specific deployment. This would allow stead consist almost entirely of point-to-point links; as switches to respond directly and simply to DHCP and a result of this, the distinction between unicast, broad- ARP queries, avoiding the need to forward the most cast and multicast has become more important. 802.11 common sources of broadcast frames. Alternatively, a distributed directory service can be used, which is less sulating switches must obtain a new destination address limiting and is thus our preferred approach as detailed in for every frame using a lookup table that—like Ether- section 4.5.
Recommended publications
  • Characterization of Moose Movement Patterns and Movement of Black Bears in Relation to Anthropogenic Food Sources on Joint Basse
    Form Approved REPORT DOCUMENTATION PAGE OMB No. 074-0188 AD_________________ (Leave blank) Award Number(s): W81XWH-08-2-0179-0002 W912DY-09-2-0011 W9126G-10-2-0042 TITLE: Characterization of moose movement patterns and movement of black bears in relation to anthropogenic food sources on Joint Base Elmendorf- Richardson, Alaska PRINCIPAL INVESTIGATOR: (Enter the name and degree of Principal Investigator and any Associates) Sean D. Farley,Ph.D.; Perry Barboza, Ph.D ; Herman Griese, MS; Christopher Garner, BS CONTRACTING ORGANIZATION: 673d Civil Engineering Squadron 724 Quartermaster Drive Joint Base Elmendorf Richardson, Alaska 99505-8860 REPORT DATE: Sept 2014 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 (W81XWH-08-2-0179-0002) Army Corps of Engineers U.S. Army Engineering and Support Center Huntsville, Alabama 35816-1822 (W912DY-09-2-0011) Army Corps of Engineers U.S. Army Engineering and Support Center Fort Worth, Texas 76102-0300 (W9126G-10-2-0042) DISTRIBUTION STATEMENT: (Check one) X Approved for public release; distribution unlimited Distribution limited to U.S. Government agencies only; report contains proprietary information The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. 1 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information.
    [Show full text]
  • National Reactor Innovation Center Enabling the Testing and Demonstration of Advanced Reactor Concepts
    National Reactor Innovation Center Enabling the testing and demonstration of advanced reactor concepts he National Reactor Innovation Center (NRIC) • Validate advanced nuclear reactor concepts. at Idaho National Laboratory provides resources for testing, demonstration, and • Resolve technical challenges of advanced T nuclear reactor concepts. performance assessment to accelerate deployment of new advanced nuclear technology concepts. • Provide general research and development to improve innovative technologies. What is NRIC? Authorized by the Nuclear Energy Innovation How will NRIC interface with the Gateway for Capabilities Act (NEICA), NRIC provides private Accelerated Innovation in Nuclear (GAIN)? sector technology developers access to the Both GAIN and NRIC are necessary components strategic infrastructures and assets of the national laboratories. Companies can use in a modern business model and approach, given these resources for commercial nuclear energy today’s technological and regulatory environment. research, development, demonstration and The GAIN initiative was developed as a mechanism deployment activities. These capabilities will to provide the nuclear energy industry with access ultimately support a timely and cost-effective to the technical, regulatory and financial support path to the licensing and commercialization of necessary to move new or advanced nuclear new nuclear energy systems. technologies toward commercialization, as well as ensuring the continued reliable; clean and Why is NRIC needed? economic operation of the existing nuclear reactor NRIC is intended to: fleet. It offers a single point of access to the broad • Enable testing and demonstration of reactor range of capabilities in DOE’s national laboratory concepts by the private sector. complex and has developed and maintained NRIC Provides Capabilities to Accelerate Technology Readiness from Proof of Concept through Proof of Operations.
    [Show full text]
  • MOOSE Applications
    NUCLEAR ENERGY NUCLEAR ENERGY Continued from previous page • Bighorn: The physics contained in Bighorn (led by Richard Martineau) will simulate the mass and energy transport of reac- tor systems coolant. The project will help advance INL’s MOOSE (Multiphysics Object Oriented Simulation INL’s Advanced Test Reac- Environ ment) enables tor (ATR) modeling and advanced simulation tools to simulation to the forefront be devel oped in a fraction of of computational methods the time previously required. for nuclear reactor design/ For more information analysis. Its applications could include light water reactors, Next Generation Joseph Campbell Nuclear Plant concepts and (208) 526-7785 The Grizzly code models degradation that can build up after years of sodium-cooled fast reactors. use in reactor pressure vessels and other components. [email protected] • Condor: This module (led by Argonne National Laboratory) is a proposed fort will build Condor using interface — and proven A U.S. Department of Energy high-temperature supercon- the MOOSE framework. scalability properties — is National Laboratory ductivity simulation tool. MOOSE, with its multi- an ideal platform for this The Argonne SciDAC (Sci- physics coupling capabili- pressing computational sci- entific Discovery through ties, adaptive mesh refine- ence problem. Advanced Computing) ef- ment and mesh generator • RAVEN: The RAVEN soft- ware tool (led by Cristian Rabiti) will provide a user interface for RELAP-7, the newest version of INL’s Reactor Excursion and Leak Analysis Program, INL’s premier reactor safety and systems analysis tool. The RAVEN software tool also MOOSE Simulation Environment will use RELAP-7 to per- Fostering a herd of modeling applications form Risk-Informed Safety Margin Characterization.
    [Show full text]
  • Warthog: a MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS (MS-15OR04010310)
    ORNL/TM-2015/532 Warthog: A MOOSE-Based Application for the Direct Code Coupling of BISON and PROTEUS (MS-15OR04010310) Alexander J. McCaskey Approved for public release. Stuart Slattery Distribution is unlimited. Jay Jay Billings September 2015 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website: http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Website: http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex- change representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Website: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal lia- bility or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep- resents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not nec- essarily constitute or imply its endorsement, recommendation, or fa- voring by the United States Government or any agency thereof.
    [Show full text]
  • Cody Permann 1687 Sunny Pine Way Idaho Falls, ID 83404 (208) 521-7514
    Cody Permann 1687 Sunny Pine Way Idaho Falls, ID 83404 (208) 521-7514 EXPERIENCE Computational Frameworks Research Scientist Idaho National Laboratory 2008 - present Worked as a core developer on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework, which is a high performance, parallel, fully implicit, finite element simulator. My duties include contributions to the core framework, management of the collaboration and source control services, assisting and instruction users on the use of the framework, and running large parallel jobs on INLs supercomputing resources. High Performance Computing Application Consultant Idaho National Laboratory 2000 - 2008 High Performance Computing Application Consultant responsible for efficient application utiliza- tion of various HPC class machines. My responsibilities included creating and/or maintaining the Bioinformatics applications and utilizing the HPC resources as appropriate for larger scale problems, working on a large scale Waste Tracking System contract for Ontario Power Generation in Toronto, Canada, assisting in configuring, troubleshooting and using many operating systems including Linux variants, Mac OS X, and Windows. Finally, I created and maintained numerous scripts to automate both scientific and business processes. EDUCATION Mississippi State University Sept 2010 - present Computational Engineering Ph.D. Program University of Idaho Dec 2010 M.S. Computer Science GPA 4.0/4.0 Specialites in HPC, OpenCL, Compilers, and Genetic Programming Idaho State University May 2000
    [Show full text]
  • Interoperability Via Mapping Objects
    Interoperability via Mapping Objects Fragkiskos Pentaris and Yannis Ioannidis University of Athens, Dept. of Informatics and Telecommunications Panepistemioupolis, 157 84, Athens, Hellas (Greece) {frank, yannis}@di.uoa.gr 1. Introduction In order to provide end-users with services of better quality, Digital Libraries (DLs) need to be constantly adopting new technologies that are emerging in various related fields, e.g., new metadata models and languages, new information retrieval algorithms, and new storage means. These force DLs to constantly alter their basic structure, generat- ing significant interoperability problems between the new and the old systems. Solving the various semantic, syntactic and structural interoperability issues in large federations of DLs, remains a major problem [8]. Over the years, system designers have developed several different approaches for in- teroperability [12], including the use of (families of) standards, external mediation, speci- fication-based interaction, and mobile functionality. The use of mediation or middleware techniques has gained much support, as it provides good results without compromising the autonomy of existing systems. Recent examples of such DL systems and architectures in- clude MARIAN [3], MIX [1], and the Alexandria Digital Library [4]. Some other relevant, yet more general, systems include Pegasus, Infomaster, TSIMMIS, GARLIC, HERMES, MOCHA, MOMIS, OPM, SIMS/ARIADNE, Information Manifold, Clio, IRO-DB, and MIRO-Web. In this short paper, we give an overview of the HORSE II distributed mediated sys- tem. This system, follows the traditional mediator-wrapper model, combined with several techniques to provide bi-directional (read-write) access to multiple, disparate data sources. Transformations between different forms of data and queries are expressed with the help of volatile mapping objects.
    [Show full text]
  • Modeling Radionuclide Diffusion Using Moose a Multiscale, Multiphysics Platform Jonathon Gardner University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2016 Modeling Radionuclide Diffusion Using Moose A Multiscale, Multiphysics Platform Jonathon Gardner University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Gardner, J.(2016). Modeling Radionuclide Diffusion Using Moose A Multiscale, Multiphysics Platform. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3918 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. MODELING RADIONUCLIDE DIFFUSION USING MOOSE A MULTISCALE, MULTIPHYSICS PLATFORM by Jonathon Gardner Bachelor of Science Georgia College & State University, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Mechanical Engineering College of Engineering and Computing University of South Carolina 2016 Accepted by: Travis W. Knight, Director of Thesis Kyle Brinkman, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School c Copyright by Jonathon Gardner, 2016 All Rights Reserved. ii DEDICATION This thesis is dedicated to my wife Rachel Gardner and my family, for their constant encouragement and support. iii ACKNOWLEDGEMENTS Funding for this project is from the U.S. Department of Energy. This material is based upon work supported by the U.S. Department of Energy Office of Sci- ence, Office of Basic Energy Sciences and Office of Biological and Environmental Research under Award Number DE-SC-00012530. Great contributions to this project were made in the form of the review and instruction of Dr.
    [Show full text]
  • Petition to List the U.S
    BEFORE THE SECRETARY OF THE INTERIOR PETITION TO LIST THE U.S. POPULATION OF NORTHWESTERN MOOSE (ALCES ALCES ANDERSONI) UNDER THE ENDANGERED SPECIES ACT JULY 9, 2015 CENTER FOR BIOLOGICAL DIVERSITY HONOR THE EARTH NOTICE OF PETITION Sally Jewell, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Dan Ashe, Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Douglas Krofta, Chief Branch of Listing, Endangered Species Program U.S. Fish and Wildlife Service 4401 North Fairfax Drive, Room 420 Arlington, VA 22203 [email protected] PETITIONERS The Center for Biological Diversity (Center) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center is supported by more than 900,000 members and activists throughout the United States. The Center and its members are concerned with the conservation of endangered species and the effective implementation of the Endangered Species Act. Honor the Earth is a Native-led organization, established by Winona LaDuke and Indigo Girls Amy Ray and Emily Saliers. Our mission is to create awareness and support for Native environmental issues and to develop needed financial and political resources for the survival of sustainable Native communities. Honor the Earth develops these resources by using music, the arts, the media, and Indigenous wisdom to ask people to recognize our joint dependency on the Earth and be a voice for those not heard. ii Submitted this 9th day of July, 2015 Pursuant to Section 4(b) of the Endangered Species Act (ESA), 16 U.S.C.
    [Show full text]
  • Overview of the Incompressible Navier–Stokes Simulation Capabilities in the MOOSE Framework
    Overview of the Incompressible Navier{Stokes simulation capabilities in the MOOSE Framework John W. Peterson, Alexander D. Lindsay, and Fande Kong jw.peterson,alexander.lindsay,fande.kong @inl.gov f g Department of Modeling and Simulation Idaho National Laboratory 2525 N. Fremont Ave. Idaho Falls, ID 83415 February 22, 2018 Abstract The Multiphysics Object Oriented Simulation Environment (MOOSE) framework is a high-performance, open source, C++ finite element toolkit developed at Idaho Na- tional Laboratory. MOOSE was created with the aim of assisting domain scientists and engineers in creating customizable, high-quality tools for multiphysics simulations. While the core MOOSE framework itself does not contain code for simulating any particular physical application, it is distributed with a number of physics \modules" which are tailored to solving e.g. heat conduction, phase field, and solid/fluid mechan- ics problems. In this report, we describe the basic equations, finite element formula- tions, software implementation, and regression/verification tests currently available in MOOSE's navier_stokes module for solving the Incompressible Navier{Stokes (INS) equations. arXiv:1710.08898v2 [math.NA] 21 Feb 2018 1 Introduction The MOOSE framework [1], which has been under development since 2008 and LGPL-2.1 licensed open source software on GitHub1 since March 2014 [2], was originally created to fa- cilitate the development of sophisticated simulation tools by domain experts in fields related to nuclear power generation (neutron transport, nuclear fuel performance, mesoscale mate- rial modeling, thermal hydraulics, etc.) who were not necessarily experts in computational science. A guiding principle in the development of the MOOSE framework is: by lowering the typical computational science-related barriers of entry, e.g.
    [Show full text]
  • Phase Field Modeling of the Tetragonal-To-Monoclinic Phase
    Phase Field Modeling of the Tetragonal-to-Monoclinic Phase Transformation in Zirconia Matthew Trappett 1, Morgan Diefendorf 2 Mahmood Mamivand 2 Mechanical and Biomedical Engineering 1Department of Physics, Utah Valley University 2Department of Mechanical and Biomedical Engineering, Boise State University Introduction Methods Results The tetragonal to monoclinic phase transformation (T M) in • Phase Field Equations zirconia is an important contributor to the failure of nuclear MOOSE fuel rods used in nuclear power plants. A model of this • Material Properties process has been developed using a phase field method by Input File for Mamivand et al. Our goal is to apply this model using the • Energy Functions Processing MOOSE framework. MOOSE, multi-physics object oriented software environment, is a valuable tool for modeling T M because: Phase Field Method: • Automatic parallelization • Mathematical model used for moving boundary Figure 4: Zirconia • Finite Element Framework problems. Figure 5: Current TM using COMSOL. • Plug-n-physics modules • Minimizes and accounts for all the energies. results using MOOSE. • Free and open source • Ginzburg-Landau Kinetic Equation implemented into MOOSE kernels to define the phase field model: Figure 1. Zirconia Conclusion cladding crack. , , 1, … MOOSE is capable of modeling T M in zirconia with , an approach more valuable than classical methods. This could provide important insight for development of nuclear fuel rods for prevention of cracking. Figure 2. TEM micrograph of Future Works partially transformed t-ZrO 2. • Continue fixing parameters in MOOSE to represent Objectives TM zirconia structure as shown in figure 2. • Run MOOSE code on the • Understand MOOSE framework and it’s phase field Figure 3.
    [Show full text]
  • Julyaugust 2016
    TM THRESHOLDVolume 32, No. 4 July/Aug 2016 2016 IEW - ESD Technology Mixed with Bavarian Fun! The 2016 IEW workshop was held at the Evangelische Akademie in Tutzing, Germany, and we continue to receive comments about its success. The workshop was attended by 87 people, making this one of the most popular locations for the IEW. The conference facilities made the event a wonderful experience, with a circular auditorium for talks that created both a relaxed and open environment for the speakers and attendees. The conference included poster sessions and presentations about several ESD related issues. Discussion Groups were quite popular and attendees actively participated. For this workshop there were several invited talks from industries including medical appliances and automotive. On Monday evening, attendees were entertained with Bavarian tradi- tions such as a particular form of dancing called ‘Schuhplattln’. On Wednesday, there was time for everyone to enjoy some of the local scenery. The IEW workshop is proving to be a popular event containing some valuable technical presentations, posters, tutorials, and discussions, while maintaining a relaxed and informal environment. If you would like to be a part of this rewarding event we invite you to join us next year at the 11th annual IEW workshop from May 7-11, 2017 at the Granlibakken Tahoe, Tahoe City, CA. In this issue IEW, page 1 Standards Virtual Meetings Series, page 10 From the President, page 2 Standards Sept Meetings Series, page 11 National Chiao-Tung Symposium on Demand, page 12 University, pages 3-5 Q & A, page 13 Symposium, pages 6-7 EOS/ESD Factory Symposium Finland, page 14 Corporate Sponsorship, page 8 Calendar, page 15 ESDA Spotlight, page 9 Photo Corner, page 16 THRESHOLDTM July/Aug 2016 From the President Volunteer and join the team! The ESD Association is successful because of its network of mem- bers who volunteer to carry out its mission and activities.
    [Show full text]
  • Grizzly Usage and Theory Manual Version 1.0 Beta
    INL/EXT-16-38310 Light Water Reactor Sustainability Program Grizzly Usage and Theory Manual Version 1.0 Beta B. W. Spencer M. Backman P. Chakraborty D. Schwen Y. Zhang H. Huang X. Bai W. Jiang March 2016 DOE Office of Nuclear Energy DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-16-38310 Light Water Reactor Sustainability Program Grizzly Usage and Theory Manual Version 1.0 Beta B. W. Spencer – INL M. Backman – University of Tennesse, Knoxville P. Chakraborty – INL D. Schwen – INL Y. Zhang – INL H. Huang – INL X. Bai – INL W. Jiang – INL March 2016 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov/lwrs Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Acknowledgments Development of Grizzly is funded by the Risk-Informed Safety Margins Characterization (RISMC) pathway of the Department of Energy’s Light Water Reactor Sustainability (LWRS) program.
    [Show full text]