The Expression of Crustacean Mating Strategies STEPHEN M

Total Page:16

File Type:pdf, Size:1020Kb

The Expression of Crustacean Mating Strategies STEPHEN M 9 · The expression of crustacean mating strategies STEPHEN M. SHUSTER CHAPTER SUMMARY strategies are represented and opportunities for further research abound. Three fundamental patterns of phenotypic expression exist Several frameworks for understanding alternative mat- for alternative mating strategies. These patterns include ing strategies now exist (Gadgil 1972, Maynard Smith 1982, Mendelian strategies, developmental strategies, and Austad 1984, Dominey 1984, Gross 1985, 1996, Lucas and behavioral strategies. Each pattern of expression is revealed Howard 1995, Gross and Repka 1998). Because these by hormonal and neurological factors that regulate the approaches have focused primarily on behavioral or deve- timing and degree to which phenotypic differences appear; lopmental differences among individuals (that is, on however, the nature of each regulatory mechanism depends “condition-dependent phenotypes” often called “tactics” fundamentally on its underlying mode of inheritance. The (Box 9.1), and because such polymorphisms seldom conform genetic architectures underlying such inheritance in turn to the simplifying assumptions required by game theory depend on the circumstances in which mating opportunities regarding inheritance and fitness, there has been little con- arise, including the intensity of selection favoring distinct sensus about the theoretical and empirical approaches best reproductive morphologies, and the predictability of mating suited for investigating alternative mating strategies and opportunities within individual lifespans. This chapter tactics, in the laboratory as well as in nature. concerns the nature of this variation and its possible causes, In response to this confusion, Shuster and Wade (2003; with illustrations from the Crustacea. see also Hazel et al. 1990, Roff 1992, 1996, Sinervo 2000, 2001, Shuster 2002) explained how alternative mating strat- 9.1 INTRODUCTION egies can be understood using conventional evolutionary Although crustaceans were among the first recorded genetic principles including game theory, provided that the examples of alternative mating strategies (Orchestia darwinii: average as well as the variance in fitness among the observed Darwin 1874, p. 275; Tanais spp.: Darwin 1874, p. 262), morphs is considered within quantitative analyses. This there is currently no synthetic treatment of how such requirement is necessary because alternative mating strat- polymorphisms are expressed within this group. The egies evolve in response to sexual selection, an evolutionary apparent scarcity of reports of male polymorphism among context in which fitness variance is often extreme. When crustaceans is unexpected given the frequency with which fundamental principles are applied, the contexts in which sexual selection has been demonstrated within this taxon alternative mating strategies evolve as well as the forms these (Holdich 1968, 1971, Manning 1975, Stein 1976, Thompson adaptations assume become clear. and Manning 1981, Knowlton 1980, Shuster 1981, This chapter has three parts. First, I will explain the Christy 1983, Hatziolos and Caldwell 1983, reviews in source of sexual selection and how it produces alternative Salmon 1984, Koga et al. 1993). As explained below, when mating strategies in the first place. Second, I will describe sexual selection occurs, alternative mating strategies are Levins’ (1968) scheme for understanding polyphenism (the likely to evolve. This chapter provides an evolutionary tendency for individuals to express variable phenotypes in framework for understanding the expression of alternative response to environmental cues) to show why alternative mating strategies, with illustrations from the Crustacea mating strategies can be understood in this light (see (Table 9.1). My goals are to show that in this fascinating Shuster and Wade 2003). Third, using crustacean collection of species, all known forms of alternative mating examples, I will demonstrate how this approach predicts the Alternative Reproductive Tactics, ed. Rui F. Oliveira, Michael Taborsky, and H. Jane Brockmann. Published by Cambridge University Press. ª Cambridge University Press 2008. 224 Table 9.1. A preliminary taxonomic distribution of alternative mating strategies within the Crustacea Taxon Species Conventional morph Alternative morph(s) Mode of expression References Branchiopoda Anostraca Eubranchipus serratus Guard individual females in Usurper Behavioral Belk 1991 sequence Notostraca Triops newberryi Hermaphrodite Male Mendelian Sassaman 1991 Conchostraca Eulinmadia texana Hermaphrodite Male Mendelian Sassaman 1989, Sassaman and Weeks 1993, Weeks and Zucker 1999 Maxillipoda Copepoda Euteropina acutifrons Large males Small males Mendelian/develop- Haq 1965, 1972, 1973, mental D’Apolito and Stancyk 1979, Moreira et al. 1983, Moreira and McNamara 1984, Stancyk and Moreira 225 1988 Malacostraca Stomatopoda Pseudosquilla ciliata Guard individual females in Usurper Behavioral Hatziolos and sequence Caldwell 1983 Gonodactylus bredini Guard individual females in Usurper Behavioral Shuster and Caldwell sequence 1989 Decapoda Caridea Alpheus armatus Guard individual or groups of Usurper/sneaker? Behavioral Knowlton 1980 females Argis dentata Protandrous hermaphrodites Primary females Developmental? Fre´chette et al. 1970 Athanas spp. Protandrous hermaphrodites Primary males Developmental? Nakashima 1987, Gherardi and Calloni 1993 Crangon crangon Protandrous hermaphrodites Primary females Developmental? Boddeke et al. 1991 Exhippolysmata sp. Protandrous simultaneous Developmental? Bauer 2002 hermaphrodites Lysmata spp. Protandrous simultaneous Developmental Bauer 2000, Baeza and hermaphrodites Bauer 2004 Macrobrachium dayanum Guard female groups Female mimic, sneaker Developmental Kuris et al. 1987 Table 9.1 (cont.) Taxon Species Conventional morph Alternative morph(s) Mode of expression References Macrobrachium idea Guard female groups Female mimic, sneaker Developmental Kuris et al. 1987 Macrobrachium malcolmsonii Guard female groups Female mimic, sneaker Developmental Kuris et al. 1987 Macrobrachium rosenbergii Guard female groups Female mimic, sneaker Developmental Nagamine et al. 1980, Ra’anan and Sagi 1989, Kuris et al. 1987, Barki et al. 1992, Karplus et al. 2000, Kurup et al. 2000 Macrobrachium rosenbergii Large females Small females Unknown Harikrishnan et al. 1999 Macrobrachium scabriculum Guard female groups Female mimic, sneaker Developmental Kuris et al. 1987 Pandalus spp. Protandrous hermaphrodites Primary females Developmental? Charnov 1979, 1982, Bergstro¨m 1997 Processa edulis Protandrous hermaphrodites Primary females Developmental? Noe¨l 1976 Rhynchocinetes typus Guard individual females in Sneaker (intermedius), Behavioral Correa et al. 2000, 226 sequence (robustus, sperm competitor 2003, Correa and intermedius) (typus) Thiel 2003 Thor manningi Protandrous hermaphrodites Primary males Developmental? Chace 1972, Bauer 1986 Brachyura Callinectes sapidus Guard individual females in Usurper Behavioral/develop- Jivoff and Hines 1998 sequence mental Chionoecetes opilio Smooth spermatophores Wrinkled spermato- Unknown Moriyasu and phores Benhalima 1998 Inachus phalangium Mate with many females in Sperm competitors Behavioral Diesel 1989 sequence Libinia emarginata Guard individual females in Usurper (small males) Developmental Sagi et al. 1994, Ahl sequence (large males) and Laufer 1996 Pachygrapsus transversus Guard female groups (large Sneaker (small males) Behavioral/develop- Abele et al. 1986 males) mental Scopimera globosa Guard resources required by Usurpers/wanderers Behavioral/develop- Wada 1986, Koga 1998 females (males occupy (small males) mental burrows) Uca spp. Guard resources required by Usurpers/wanderers Behavioral Salmon and Hyatt females (males occupy 1983, Christy and burrows) Salmon 1991, Jennions and Backwell 1998 Palinura Jasus edwardsii Mate with many females in Sperm competitor Behavioral MacDiarmid and sequence Butler 1999 Dendrobrachiata Sicyonia dorsalis Mate with many females in Sperm competitor? Behavioral Bauer 1992 sequence Astacidea Homarus americanus Guard individual females in Usurper Behavioral Cowan and Atema sequence 1990, Cowan 1991 Amphipoda Jassa falcata Guard individual females in Sneaker (thumbless Developmental Borowsky 1985 sequence (thumbed males) males) Jassa marmorata Guard individual females in Sneaker (thumbless Developmental Clark 1997, Kurdziel sequence (thumbed males) males) and Knowles 2002 Microdeutopus gryllotalpa Guard individual females in Sneaker (thumbless Developmental Borowsky 1980, 1984, sequence (thumbed males) males) 1989 Orchestia darwinii Guard individual females in Sneaker (thumbless Developmental? Darwin 1874 sequence (thumbed males) males) Isopoda Elaphognathia cornigera Guard female groups (large Sneaker (small males) Unknown Tanaka and Aoki 1999, 227 males) Tanaka 2003 Idotea baltica Guard individual females in Usurper Behavioral Jormalainen et al. 1994 sequence Jaera albifrons Guard individual females in Unknown, males with Mendelian Bocquet and Veuille sequence (males with setose nonsetose walking legs 1973 walking legs) Paracerceis sculpta Guard female groups (a- Female mimic (b- Mendelian Shuster 1989, 1992, males) males), sneaker (c- Shuster and Wade males) 1991, 2003, Shuster and Sassaman 1997, Shuster and Levy 1999, Shuster et al. 2001 Thermosphaeroma spp. Guard individual females in Usurper Behavioral Shuster 1981, sequence Jormalainen and Shuster 1999 Tanadiacea Tanais spp. Guard individual females in Sneaker
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
    Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • CURRICULUM VITAE Stephen M
    CURRICULUM VITAE Stephen M. Shuster Updated: 25 September 2012 Present Address: Department of Biological Sciences, Northern Arizona University; Box 5640, Flagstaff, AZ 86011-5640 Telephone: office: (928) 523-9302, 523-2381; laboratory: (928) 523-4641; FAX: (928) 523-7500; Email: [email protected]; Webpage: http://www4.nau.edu/isopod/ Education: Ph.D. Department of Zoology, University of California, Berkeley, 1987. M.S. Department of Biology, University of New Mexico, Albuquerque, 1979. B.S. Department of Zoology, University of Michigan, Ann Arbor, 1976. Academic Positions 2001-Present Professor of Invertebrate Zoology; Curator of Marine Invertebrates and Molluscs, Department of Biological Sciences, Northern Arizona University. 1995-2001 Associate Professor, Department of Biological Sciences, Northern Arizona University. 1990-95 Assistant Professor, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ. 1987-88 Visiting Assistant Professor, Department of Biology, University of California, Riverside, CA. 1979-81 Academic Instructor, Department of Biology, University of Albuquerque, Albuquerque, NM. 1979 Program Specialist and Instructor, Human Anatomy and Physiology, Presbyterian Hospital School of Nursing, Albuquerque, NM. Postdoctoral Research Experience 1988-90 NIH grant GM 22523-14, Post-doctoral Research Associate with Dr. Michael J. Wade, "Evolution in structured populations." University of Chicago. 1987-88 NSF grant BSR 87-00112, Post-doctoral Research Associate with Dr. Clay A. Sassaman, "A genetic analysis of male alternative reproductive behaviors in a marine isopod crustacean," University of California, Riverside. Fellowships and Grants ($7.1M since 1990): 2012 NAU Interns to Scholars Program, One student supported. 2012 Global Course Development Support, “A Field Course in Saipan,” Northern Arizona University, $4.5K. 2011 Global Learning Initiative Grant, “Research Internships at the University of Bordeaux, France,” Northern Arizona University, Co-PIs Patricia Frederick.
    [Show full text]
  • JCPA-S-19-00140.Pdf
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Comparative Physiology A. The final authenticated version is available online at: https://doi.org/10.1007/s00359-019-01387-5. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Journal of Comparative Physiology A Optic lobe organization in stomatopod crustacean species having different degrees of retinal complexity --Manuscript Draft-- Manuscript Number: Full Title: Optic lobe organization in stomatopod crustacean species having different degrees of retinal complexity Article Type: S.I. : Visual Circuits Funding Information: Air Force Office of Scientific Research Dr. Thomas W Cronin (FA9550-18-1-0278) Abstract: Stomatopod crustaceans possess tripartite compound eyes; upper and lower hemispheres are separated by an equatorial midband of several ommatidial rows. The organization of stomatopod retinas is well studied, but their optic lobes are less understood. We used histological staining, immunolabeling, and fluorescent tracer injections to compare optic lobes in two 6-midband-row species, Neogonodactylus oerstedii and Pseudosquilla ciliata , to those in two 2-midband-row species, Squilla empusa and Alima pacifica . Compared to the 6-row species, we found structural simplification in all optic neuropils in both 2-row species. Photoreceptor axons from 2- row midband ommatidia supply two sets of enlarged lamina cartridges, but a gap in the lamina exists at the location where the cartridges of the dorsal four ommatidial rows of 6-row species would appear.
    [Show full text]
  • (Peracarida: Isopoda) Inferred from 18S Rdna and 16S Rdna Genes
    76 (1): 1 – 30 14.5.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes Regina Wetzer *, 1, Niel L. Bruce 2 & Marcos Pérez-Losada 3, 4, 5 1 Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA; Regina Wetzer * [[email protected]] — 2 Museum of Tropical Queensland, 70–102 Flinders Street, Townsville, 4810 Australia; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Niel L. Bruce [[email protected]] — 3 Computation Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA 20148, USA; Marcos Pérez-Losada [mlosada @gwu.edu] — 4 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal — 5 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA — * Corresponding author Accepted 13.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.iv.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 m, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids’ impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy.
    [Show full text]
  • Two New Nonindigenous Isopods in the Southwestern Atlantic
    Journal of Sea Research 138 (2018) 1–7 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Two new nonindigenous isopods in the Southwestern Atlantic: Simultaneous T assessment of population status and shipping transport vector ⁎ Carlos Rumbolda,b, , Marco Melonic, Brenda Dotib,d,e, Nancy Correaf, Mariano Albanob,g, Francisco Sylvesterb,h, Sandra Obenata a Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina c IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina d Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina e Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina f Servicio de Hidrografía Naval, Ministerio de Defensa de la República Argentina, Argentina g Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina h Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina ARTICLE INFO ABSTRACT Keywords: The Southwestern Atlantic is often perceived as remote region, yet it is not immune to biological invasions. Dynamene edwardsi Patchy information on historical community composition hinders our ability to identify introductions to coastal Paracerceis sculpta ecosystems in this region. Hull fouling is an under-managed shipping vector that likely continues to transport Population biology large numbers of marine species worldwide. The port of Mar del Plata is a comparatively well-studied shipping Hull fouling and commercial hub that may serve as an observatory to monitor new introductions to the Argentine coast.
    [Show full text]
  • Crustacea of the Environs of St. John, New Brunswick, Canada
    Proceedings of the Iowa Academy of Science Volume 74 Annual Issue Article 38 1967 Crustacea of the Environs of St. John, New Brunswick, Canada Richard W. Coleman Upper Iowa College Let us know how access to this document benefits ouy Copyright ©1967 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Coleman, Richard W. (1967) "Crustacea of the Environs of St. John, New Brunswick, Canada," Proceedings of the Iowa Academy of Science, 74(1), 240-246. Available at: https://scholarworks.uni.edu/pias/vol74/iss1/38 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Coleman: Crustacea of the Environs of St. John, New Brunswick, Canada Crustacea of the Environs of St. John, New Brunswick,. Canada RICHARD w. COLEMAN 1 Abstract. The following species of crustacea were col­ lected in a survey of the environs of St. John, New Bruns­ wick, Canada: Crangonyx gracilis Smith, Gammarus duebeni Lilly, Gammarus lawrencianus Bousfield, Gammarus ocean­ icus Segerstrale, Gammarus tigrinus Sexton, Hyale nilssoni Rathke, Hyalella azteca Sauss., ]aera albifrons Leach, Mar­ inogammarus finmarchicus Dahl, Marinogammarus obtusatus Dahl and Marinogammarus stoerensis Reid: Hyalella azteca was the predominant species in purely fresh water lakes; Gammarus Ugrinus predominated in fresh to brackish waters; and Hyale nilssoni appeared to be the dominant species from marine sources. This discussion is based upon a paper entitled "A Report to the Provincial Department of Public Health, Province of New Brunswick, Fredericton, New Brunswick, Canada, on a Survey for Certain Crustacea of the Environs of St.
    [Show full text]
  • Some Malacostracan Crustacean Assemblages in the Southern and Western Baltic Sea
    Rostock. Meeresbiolog. Beitr. (2001) 9, 127-143 Michael L. ZETTLER Some malacostracan crustacean assemblages in the southern and western Baltic Sea Runnning head: Crustacean assemblages in the Baltic Sea Abstract The paper presents a survey of four crustacean benthic assemblages in the southern and western Baltic Sea. Relative abundance and a multivariate method (cluster analysis) were used to describe these assemblages in German Baltic wa- ters. This study is based mainly on 17 sampling events carried out during 1998/99. The salinity ranged between 2 and 22 psu and the depth varied between 0.4 and 47.3 m. The habitats were silty sands with Mytilus-aggregates, the silt zone below 20 m, shallow stone and boulder grounds and lagoons and fjord-like bays. For as- sessment of sediment structure, current, patchiness and larger crustaceans (e.g. Crangon crangon, Carcinus maenas) in the deeper parts an underwater video- camera was used which was mounted on a sledge. In total 43 species were recor- ded. The most common and important species were Diastylis rathkei, Gammarus salinus, G. zaddachi, Gastrosaccus spinifer, Pontoporeia femorata, Calliopius lae- viusculus, Corophium insidiosum, Leptocheirus pilosus, Jaera albifrons s.l. and Sphaeroma hookeri. One habitat (Kleines Haff, Oder estuary) is characterised through some non-indigenous species, such as Pontogammarus robustoides, Gammarus tigrinus and Corophium curvispinum, especially. Kurzfassung Die Studie präsentiert einen Untersuchung über 4 benthische Krebsgemein- schaften in der südlichen und westlichen Ostsee. Mit relativen Abundanzen und der Cluster-Analyse werden diese Gemeinschaften beschrieben. Die Studie basiert hauptsächlich auf 17 Beprobungen zwischen 1998 und 1999. Die Salinität rangierte zwischen 2 und 22 psu und die Wassertiefe lag zwischen 0,4 und 47,3 m.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • BATEMAN GRADIENTS and ALTERNATIVE MATING STRATEGIES Katharine M
    BATEMAN GRADIENTS AND ALTERNATIVE MATING STRATEGIES Katharine M. Saunders1 and Stephen M. Shuster2 1School of Biological Sciences, University of Texas, Austin, TX 78712 2Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 Abstract Results and Conclusions Among the available methods for estimating the intensity of sexual selection, the Bateman Our 2-way ANOVA of the residuals for offspring number on female body length, to determine whether the fertilities of gradient is considered one of the most accurate, because it specifically measures the standardized the 3 male morphs differed or decreased with increasing mating frequency, was non-significant overall (F[5,85] =0.25, P covariance between mate numbers and offspring numbers for members of each sex. Although =0.94) with non-significant effects of male morph (F[MORPH] =0.42, P =0.66) and mate order (F[ORDER] =2.21, P =0.64) and a non-significant interaction between these factors (F =0.15, P =0.86). This result indicated that, although the widely used to compare sex differences in selection intensity, it has yet to be used to examine the [MORPH*ORDER] they appear to invest different amounts of energy to somatic and gametic functions (Shuster 1989a), the 3 male morphs did covariance between mate numbers and offspring numbers among alternative mating strategies. not differ in their sexual competency with multiple matings. This result also confirmed that there were no significant We allowed marine isopods (Paracerceis sculpta) representing the 3 genetically distinct male differences in the fecundities of females mated with α-, β- and γ-males, and, consistent with Shuster (1989a), there were no morphs in this species to mate from 1 to 5 times, and we allowed females to mate 1, 3 and 5 times.
    [Show full text]
  • Sexual Isolation with and Without Ecological Isolation in Marine Isopods Jaera Albifrons and J
    Sexual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta Ambre Ribardière, Elsa Pabion, Jérôme Coudret, Claire Daguin-Thiébaut, Céline Houbin, Stéphane Loisel, Sébastien Henry, Thomas Broquet To cite this version: Ambre Ribardière, Elsa Pabion, Jérôme Coudret, Claire Daguin-Thiébaut, Céline Houbin, et al.. Sex- ual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta. Journal of Evolutionary Biology, Wiley, In press, 10.1111/jeb.13559. hal-02349248 HAL Id: hal-02349248 https://hal.sorbonne-universite.fr/hal-02349248 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sexual isolation with and without ecological isolation in marine isopods Jaera albifrons and J. praehirsuta. Ambre Ribardière1, Elsa Pabion1, Jérôme Coudret1, Claire Daguin-Thiébaut1, Céline Houbin1,2, 5 Stéphane Loisel1, Sébastien Henry1,2, Thomas Broquet1 1- CNRS & Sorbonne Université, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France. 2- CNRS & Sorbonne Université, FR2424, Station Biologique de Roscoff, 29680 Roscoff, France. 10 Corresponding author: Thomas Broquet, Station Biologique de Roscoff, 29680 Roscoff, France. E- mail: [email protected], phone number +33 2 98 29 23 51 15 1 Abstract Sexual barriers associated with mate choice are often found to be associated with some level of ecological isolation between species.
    [Show full text]