The Persistence of Spin

Total Page:16

File Type:pdf, Size:1020Kb

The Persistence of Spin The persistence of spin H.K.Moffatt Trinity College, Cambridge, CB2 1TQ, UK Abstract: Three spinning toys that illustrate fundamental dynamical phenomena are discussed: the rising egg, prototype of dissipative instability; the shuddering Euler's disc, prototype of finite- time singularity; and the reversing rattleback, prototype of chiral dynamics. The principles un- derlying each phenomenon are discussed, and attention is drawn to analogous phenomena in the vorticity dynamics of nearly inviscid fluids. 1 Introduction This informal evening lecture, delivered at the Carlsberg Academy, was con- cerned with dynamical principles illustrated by the behaviour of three mechan- ical toys. The first of these, the tippe-top, was the subject of a famous 1954 photograph (figure 1) of Niels Bohr (then honorary resident of the Carlsberg Academy) and Wolfgang Pauli, who were evidently intrigued by the tippe- top's ability to turn upside-down as it spins, a vivid example of a dissipative (or slow) instability driven by slipping friction at the point of contact with the floor. The rising egg (the spinning hard-boiled egg that rises to the vertical if spun rapidly enough) is a similar phenomenon, which may be understood in terms of minimising the spin energy subject to conservation, not of angular momentum, but rather of the `adiabatic Jellett invariant' (see section 2). My second toy is `Euler's disc' (see <www.eulersdisc.com>), that rolls on its bevelled edge on a plane table, and settles to rest (like a spun coin) with a rapid shudder, a beautiful table-top example of a finite time singularity. Controversy surrounds the question of what is the dominant contribution to the rate of dissipation of energy for this toy; but whatever mechanism is invoked, the singularity is resolved in the final split second of the motion, most probably by loss of contact between the disc and the table and consequent release of the no-slip constraint. My third toy is the rattleback, a canoe-shaped object that spins reasonably smoothly in one direction, but which, when spun in the opposite direction, exhibits a pitching instability leading to spin reversal. The rattleback is in 2 H.K.Moffatt Fig. 1. Niels Bohr and Wolfgang Pauli investigate the behaviour of the tippe-top; Photograph (1954) by Erik Gustafson, courtesy AIP Emilio Segre Visual Archives, Margrethe Bohr Collection fact very slightly deformed giving it a chiral (i.e. non-mirror-symmetric) mass distribution. It is this chiral property in conjunction with spin that leads to the intriguing behaviour, which may be regarded as providing a prototype of `chiral dynamics'. The nature of the dissipative effects that damp the motion are as yet ill-understood; but a semi-empirical choice of linear damping coeffi- cients provides a model that agrees well, at least qualitatively, with observed behaviour. The fluid counterpart of spin is of course vorticity, and it is therefore perhaps appropriate that, at this Symposium commemorating Helmholtz's seminal 1858 paper on the laws of vortex motion, the phenomenon of spin may be taken as a natural starting point. Just as friction plays a key role in each of the above toy examples, so frictional (i.e. viscous) effects in fluids are nearly always important no matter how small the viscosity may be, a fact that should be constantly borne in mind (as Helmholtz was himself well aware) when adopting inviscid modelling techniques. 2 The rising egg Spin a hard boiled egg sufficiently rapidly on a table and it will rise to the vertical, a parlour trick that invariably provokes a startled response: what is The Persistence of Spin 3 it that makes the centre-of-mass rise in this way? The key to understanding this phenomenon was provided by Moffatt & Shimomura (2002) (and in the comprehensive treatment of this problem by Moffatt, Shimomura & Branicki 2004, Shimomura et al. 2005, Branicki et al. 2006, and Branicki & Shimo- mura 2007; see also Bou-Rabee et al. 2005) on the basis of the `gyroscopic approximation', which is applicable when the spin is large and the slipping friction at the point of contact with the table weak. These conditions are the counterparts of the conditions of small Rossby number and large Reynolds number in the mechanics of rotating fluids. They imply a state of `balance' in which (at leading order) coriolis forces dominate the behaviour. Nevertheless, the frictional force at the point of slipping contact with the table exerts a torque relative to the centre-of-mass of the egg, causing this centre-of-mass to rise on a slow (dissipative) time-scale. Figures 2,3 and 4 show three posters prepared for the Summer Science Exhibition held at the Royal Society, London, in July 2007. These posters were designed by Andrew Burbanks (University of Portsmouth). Their purpose was to make the scientific principles that govern the behaviour of such spinning toys accessible to a wide public. The first poster (Figure 2) was based on photographs provided by Yutaka Shimomura of the rising egg phenomenon, including side reference to the analogous role of coriolis forces in large scale atmospheric dynamics. Under the gyroscopic approximation, the equations governing the spin of the egg admit an invariant J = Ωh, where Ω is the component of angular velocity about the vertical, and h is the height of the centre-of-mass above the table. This invariant similarly exists for the case of any convex axisymmetric body spinning with slipping friction on a horizontal plane boundary. For the particular case of a body that is part spherical, this invariant was found by Jellett(1872) (and so is appropriately called the Jellett invariant), and in this case it is exact (without need to make the gyroscopic approximation.) This is the case for the tippe-top (a mushroom-shaped spherical-cap top) which so intrigued Niels Bohr and Wolfgang Pauli; the manner in which the tippe-top turns upside-down when it spins was successfully explained by Hugenholtz (1952). The existence of the Jellett invariant provides a reasonably transparent explanation for the rise of the egg. The slipping friction causes a slow loss of energy (to heat), and the system seeks a minimum energy state compatible with the `prescribed' and constant value of J. At high spin rates (as required for the gyroscopic approximation), the energy is predominantly the kinetic energy of spin (the potential energy being much smaller). Consider the case of a uniform prolate spheroid with semi-axes a; b with a > b, the kinetic energy when the axis is horizontal is 2 2 2 2 E1 = (5=2)J =(a + b )b ; (1) and the kinetic energy when the axis is vertical is 4 H.K.Moffatt 2 2 2 E2 = (5=4)J =a b : (2) Hence, since a > b, it follows that E2 < E1, i.e the vertical state has lower en- ergy (for the same value of J) and is therefore the preferred stable equilibrium. Note that for the case of an oblate spheroid (a < b), the opposite conclusion holds: if spun sufficiently rapidly on the table about its axis of symmetry, it will rise to spin on its rim. A `go'-stone, or indeed a mint imperial, provides a suitably oblate object on which to experiment. The above argument is reminiscent of that used to explain why a body rotating freely in space will tend, under the effects of weak internal friction, to rotate about its axis of greatest inertia. For a prolate spheroid, this is an axis perpendicular to the axis of symmetry, a conclusion quite the opposite of that obtained above for the spinning egg problem. So why the difference? It is because in the case of the freely rotating body, angular momentum is conserved, and energy is minimised subject to this constraint. For the spinning egg, angular momentum is not conserved, but the Jellett invariant takes its place; this makes all the difference. The moral is: for any weakly dissipative system, first determine what is conserved (even in some approximate sense), then minimise energy subject to this constraint. The rise of the egg is only one ‘filtered’ aspect of the fifth-order nonlin- ear dynamical system that governs the non-holonomic rigid body dynamics. Superposed on the `slow' rise are rapid oscillations whose amplitude is con- trolled by the current state of spin. For sufficiently large spin (well above that required to make the egg rise) these oscillations can cause the normal reaction between egg and table to fluctuate to such an extent that the egg momentar- ily loses contact with the table, a prediction verified experimentally by Mitsui et al(2006). The analogous oscillations in the geophysical context are Rossby waves superposed on the mean large-scale atmospheric circulation. Dissipative instabilities have been set in an abstract geometric context by Bloch et al. (1994). The rising egg provides a prototype dissipative instability, brought to life by this simple table-top demonstration. 3 Euler's Disc The toy known as Euler's disc is a heavy steel disc that can be rolled on its edge on a horizontal surface (or on the slightly concave dish that is supplied with it, see figure 3). It works well on a glass-topped table. This toy exhibits a ‘finite-time singularity' in the final stage of its motion before it comes to rest on the table: the point of rolling contact of the disc on the table describes a circle with angular velocity Ω that increases `to infinity' as the angle α between the plane of the disc and the table decreases to zero, as it obviously must in this final stage of motion. I place `to infinity' in parentheses because in reality this potential singularity must be `resolved' in some way by physical processes during the final split second when the motion is arrested.
Recommended publications
  • Properties of Numerical Solutions Versus the Dynamical Equations
    Dynamics of the Tippe Top – properties of numerical solutions versus the dynamical equations Stefan Rauch-Wojciechowski, Nils Rutstam [email protected], [email protected] Matematiska institutionen, Linköpings universitet, SE–581 83 Linköping, Sweden. October 19, 2018 Abstract We study the relationship between numerical solutions for inverting Tippe Top and the structure of the dynamical equations. The numerical solutions confirm oscillatory behaviour of the inclination angle θ(t) for the symmetry axis of the Tippe Top. They also reveal further fine features of the dynamics of inverting solutions defining the time of inversion. These features are partially understood on the basis of the underlying dynamical equations. Key words: tippe top; rigid body; nonholonomic mechanics; numerical solutions 1 Introduction A Tippe Top (TT) is modeled by an axially symmetric sphere of mass m and radius R with center of mass (CM) shifted w.r.t. the geometrical center O by Rα, 0 < α < 1 (see Fig. 1). In a toy TT it is achieved by cutting off a slice of a sphere and by substituting it with a small peg that is used for spinning the TT. The sphere is rolling and gliding on a flat surface and subjected to the gravitational force mgzˆ. arXiv:1306.5641v1 [math.DS] 24 Jun 2013 When spun slowly− on the spherical part the TT spins wobbly for some time and comes to a standstill due to loss of energy caused by spinning friction. However when the initial spin is sufficiently fast the TT displays a counterin- tuitive behaviour of flipping upside down to spin on the peg with CM above the geometrical center O.
    [Show full text]
  • Dynamics of Nano Tippe
    Dynamics of nano tippe top Yue Chan∗, Ngamta Thamwattana and James M. Hill Nanomechanics Group, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia October 26, 2018 Abstract We investigate the motion of a nano tippe top, which is formed from a C60 fullerene, and which is assumed to be spinning on either a graphene sheet or the interior of a single-walled carbon nanotube. We assume no specific geometric configuration for the top, however for example, the nano tippe top might be formed by joining a fullerene C60 with a small segment of a smaller radius carbon nanotube. We assume that it is spinning on a graphene sheet or a carbon nanotube surface only as a means of positioning and isolating the device, and the only effect of the graphene or the carbon nanotube surface is only through the frictional effect generated at the point of the contact. We employ the same basic physical ideas originating from the classical tippe top and find that the total retarding force, which comprises both a frictional force and a magnetic force at the contact point between the C60 fullerene and the graphene sheet or the inner surface of the single-walled carbon nanotube, induces the C60 molecule to spin and precess from a standing up position to a lying down position. Unlike the classical tippe top, the nanoscale tippe top does not flip over since the gravitational effect is not sufficient at the nano scale. After the precession, while the molecular top spins about its lying down axis, if we apply the opposite retarding magnetic force at the contact point, then the molecule will return to its standing up position.
    [Show full text]
  • The Influence of the Rolling Resistance Model on Tippe Top Inversion
    The influence of the rolling resistance model on tippe top inversion A. A. Kilin, E. N. Pivovarova Abstract In this paper, we analyze the effect which the choice of a fric- tion model has on tippe top inversion in the case where the resulting action of all dissipative forces is described not only by the force applied at the contact point, but also by the additional rolling resis- tance torque. We show that, depending on the friction model used, the system admits different first integrals. In particular, we give ex- amples of friction models where the Jellett integral, the Lagrange integral or the area integral is preserved. We examine in detail the case where the action of all dissipative forces reduces to the horizontal rolling resistance torque. For this case we find permanent rotations of the system and analyze their linear stability. Also, we show that for this friction model no inver- sion is observed. arXiv:2002.06335v2 [math.DS] 20 Feb 2020 Introduction In this paper we analyze the dynamics of the tippe top on a smooth plane in the presence of forces and torques of rolling resistance. Tippe top inver- sion has attracted the attention of researchers for the last decades [1–12]. Reference [1] discusses the development of a spherical prototype of the top which a capable of performing various modes of motion (in particular, complete or partial inversion) by changing the mass-geometric characteris- tics. Many studies from the last century [2–7] and from the early part of this century [8–12] gave mathematical explanations of tippe top inversion.
    [Show full text]
  • Motion of the Tippe Top: Gyroscopic Balance Condition and Stability
    YNU-HEPTh-05-102 July 2005 Motion of the Tippe Top Gyroscopic Balance Condition and Stability Takahiro UEDA∗, Ken SASAKI† and Shinsuke WATANABE‡ Dept. of Physics, Faculty of Engineering, Yokohama National University Yokohama 240-8501, JAPAN Abstract We reexamine a very classical problem, the spinning behavior of the tippe top on a horizontal table. The analysis is made for an eccentric sphere version of the tippe top, assuming a modified Coulomb law for the sliding friction, which is a continuous function of the slip velocity vP at the point of contact and vanishes at vP =0. We study the relevance of the gyroscopic balance condition (GBC), which was discovered to hold for a rapidly spinning hard-boiled egg by Moffatt and Shimomura, to the inversion phenomenon of the tippe top. We introduce a variable ξ so that ξ = 0 corresponds to the GBC and analyze the behavior of ξ. Contrary to the case of the spinning egg, the GBC for the tippe top is not fulfilled initially. But we find from simulation that for those tippe tops which will turn over, the GBC will soon be satisfied approximately. It is shown that the GBC and the geometry lead to the classification of tippe tops into three groups: The tippe tops of Group I never flip over however large a spin they are given. Those of Group II show a complete inversion and the tippe tops of Group III tend to turn over up to a certain inclination angle θf such that θf <π, when they are spun sufficiently rapidly. There exist three steady states for the spinning motion of the tippe top.
    [Show full text]
  • Physics of the Phitop® Kenneth Brecher, Boston University, Boston, MA Rod Cross, University of Sydney, Sydney, Australia
    Physics of the PhiTOP® Kenneth Brecher, Boston University, Boston, MA Rod Cross, University of Sydney, Sydney, Australia he PhiTOP® (or TOP®) is a physics toy designed G due to N is equal to MgR and it acts into the page along the not only to act as a spinning top but also to appeal to positive Y-axis through G. Intuition might predict that the the eye and to the scientifically curious mind.1 It is top should rotate about the Y-axis, and fall onto the horizontal Tcurrently made in two versions, one from solid aluminum surface instead of rising, as it would in Fig. 2 if the top was not and the other solid brass. Each top is highly polished, and spinning. Intuition is clearly wrong. Instead, the top rotates is elliptical in one cross section and circular in another. It is about the vertical axis like any other spinning top, an effect therefore a prolate ellipsoid or a spheroid, as indicated in Fig. known as precession. 1. Its name derives from the ratio of the lengths of the major to minor axes, which is equal to the golden mean = (1 + 5)/2 ~ 1.618. It functions in the same way as a spinning egg or a spin- ning football in that it rises on one end if Fig. 1 An upright PhiTOP® spinning on a curved it is initially mirror. Fig. 2. Geometry of a spinning PhiTOP®. F is the friction force set spinning into the page. at sufficient speed with its long axis horizontal. The center of mass rises in an unexpected and somewhat mysterious man- When the top is first set in motion, it is set spinning rapidly ner, an effect that it also shares with a tippe top.
    [Show full text]
  • Dynamics of the Tippe Top Via Routhian Reduction
    Dynamics of the Tippe Top via Routhian Reduction M.C. Ciocci1 and B. Langerock2 1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK 2 Sint-Lucas school of Architecture, Hogeschool voor Wetenschap & Kunst, B-9000 Ghent, Belgium October 22, 2018 Abstract We consider a tippe top modeled as an eccentric sphere, spinning on a horizontal table and subject to a sliding friction. Ignoring translational effects, we show that the system is reducible using a Routhian reduction technique. The reduced system is a two dimensional system of second order differential equations, that allows an elegant and compact way to retrieve the classification of tippe tops in six groups according to the existence and stability type of the steady states. 1 Introduction The tippe top is a spinning top, consisting of a section of a sphere fitted with a short, cylindrical rod (the stem). One typically sets off the top by making it spin with the stem upwards, which we call, from now on the initial spin of the top. When the top is spun on a table, it will turn the stem down towards the table. When the stem touches the table, the top overturns and starts spinning on the stem. The overturning motion as we shall see is a transition from an unstable (relative) equilibrium to a stable one. Experimentally, it is known that such a transition only occurs when the spin speed exceeds a certain critical value. Let us make things more precise and first describe in some detail the model used throughout this paper. The tippe top is assumed to be a spherical rigid body with its center of mass ǫ off the geometrical center of the sphere with radius R.
    [Show full text]
  • Dynamics of a Spherical Tippe Top Or Disk Rod Cross
    European Journal of Physics PAPER Related content - Effects of rolling friction on a spinning coin Dynamics of a spherical tippe top or disk Rod Cross To cite this article: Rod Cross 2018 Eur. J. Phys. 39 035001 - Spinning eggs and ballerinas Rod Cross - Experimenting with a spinning disk Rod Cross View the article online for updates and enhancements. Recent citations - A hemispherical tippe top Rod Cross This content was downloaded from IP address 200.130.19.152 on 22/04/2021 at 19:35 European Journal of Physics Eur. J. Phys. 39 (2018) 035001 (10pp) https://doi.org/10.1088/1361-6404/aaa34f Dynamics of a spherical tippe top Rod Cross School of Physics, University of Sydney, Sydney, Australia E-mail: [email protected] Received 9 November 2017, revised 7 December 2017 Accepted for publication 20 December 2017 Published 9 March 2018 Abstract Experimental and theoretical results are presented concerning the inversion of a spherical tippe top. It was found that the top rises quickly while it is sliding and then more slowly when it starts rolling, in a manner similar to that observed previously with a spinning egg. As the top rises it rotates about the horizontal Y axis, an effect that is closely analogous to rotation of the top about the vertical Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction.
    [Show full text]
  • TIPPE TOP Consider a Spherical Top of Radius R, Except That Its Center of Mass Is Not at the Center of the Sphere, but Rather At
    TIPPE TOP YOSI AVRON Abstract. Tippe-top is a top a spherical top that flips on its head when spun fast enough. The reason for that is hidden in an interesting constant of motion. This implies that the top has less energy when standing on its head. Consider a spherical top of radius R, except that its center of mass is not at the center of the sphere, but rather at ~® away from the center of the sphere. The top is moving on top of a table and the normal to the table isz ˆ. If we assume that the sphere touches the table at a point, then the problem has an interesting constant of motion, namely, with L~ the angular momentum of the top about its center of mass: C = L~ ¢ (Rzˆ + ®) Indeed ˙ C˙ = L~ ¢ (Rzˆ + ~®) + L~ ¢ ®˙ Now, with F~ the force at the contact point, the equations of motion is ˙ L~ = (Rzˆ + ~®) £ F From this follows that the first term drops and so C˙ = L~ ¢ ®˙ Now, compute the right hand side in the frame of the top. In this frane ~® is aa fixed vector so ~®˙ = ~! £ ® is perpendicular to both ! and ®. However, since the top is symmetric L~ = I2 ~! + (I3 ¡ I2)(! ¢ ®ˆ)® ˆ L~ is in the plane of ! and ®. Hence C˙ = 0. From this conservation law it follows the tippe top has less energy when its center of mass is above the center of the sphere than when it is below it. Indeed, from the coservation law !a(R + ®) = !b(R ¡ ®) 2 or !a < !b. The kinetic energy is proportional to ! and the result follows.
    [Show full text]
  • A Constraint-Based Approach to Rigid Body Dynamics for Virtual Reality Applications
    A Constraint-Based Approach to Rigid Body Dynamics for Virtual Reality Applications J¨org Sauer Elmar Sch¨omer Daimler-Benz AG Universit¨at des Saarlandes Research and Technology Lehrstuhl Prof. Hotz P.O.Box 2360 Im Stadtwald D-89013 Ulm D-66123 Saarbruc¨ ken Germany Germany email: [email protected] email: [email protected] Abstract classified according to figure 1: The GALILEO-system is a developmental state-of-the-art rig- id body simulation tool with a strong bias to the simulation GALILEO of unilateral contacts for virtual reality applications. On Unilateral the one hand the system is aimed at closing the gap be- Bilateral Constraints tween the ‘paradigms of impulse-based simulation’ and of Constraints ‘constraint-based simulation’. On the other hand the cho- sen simulation techniques enable a balancing of the trade-off between the real-time demands of virtual environments (i.e. non-permanent permanent contacts 15-25 visualizations per second) and the degree of physi- contacts cal correctness of the simulation. The focus of this paper lies on the constraint-based simulation approach to three- dimensional multibody systems including a scalable friction SIMULATION Impulse-based Constraint-based model. This is only one of the two main components of CAPABILITY Simulation the GALILEO-software-module. A nonlinear complementar- ity problem (NCP) describes the equations of motion, the contact conditions of the objects and the Coulomb friction Figure 1: The classification of contact situations. model. Further on we show, as an interesting evaluation ex- ample from the field of ‘classical mechanics’, the first rigid In the GALILEO-module (that is part of the VR-software- body simulation of the tippe-top.
    [Show full text]
  • Study of Equations for Tippe Top and Related Rigid Bodies
    Linköping Studies in Science and Technology. Thesis No. 1452 Study of equations for Tippe Top and related rigid bodies Nils Rutstam Department of Mathematics Linköping University, SE–581 83 Linköping, Sweden Linköping 2010 Linköping Studies in Science and Technology. Thesis No. 1452 Study of equations for Tippe Top and related rigid bodies Nils Rutstam [email protected] www.mai.liu.se Division of Applied Mathematics Department of Mathematics Linköping University SE–581 83 Linköping Sweden ISBN 978-91-7393-298-1 ISSN 0280-7971 LIU-TEK-LIC-2010:23 Copyright © 2010 Nils Rutstam Printed by LiU-Tryck, Linköping, Sweden 2010 Abstract The Tippe Top consist of a small truncated sphere with a peg as a handle. When it is spun fast enough on its spherical part it starts to turn upside down and ends up spinning on the peg. This counterintuitive behaviour, called inversion, is a curious feature of this dynamical system that has been studied for some time, but obtaining a complete description of the dynamics of inversion has proved to be a difficult problem. The existing results are either numerical simulations of the equations of mo- tion or asymptotic analysis that shows that the inverted position is the only attractive and stable position under certain conditions. This thesis will present methods to analyze the equations of motion of the Tippe Top, which we study in three equivalent forms that each helps us to un- derstand different aspects of the inversion phenomenon. Our study of the Tippe Top also focuses on the role of the underlying as- sumptions in the standard model for the external force, and what consequences these assumptions have, in particular for the asymptotic cases.
    [Show full text]
  • Constants of the Motion for Nonslipping Tippe Tops and Other Tops with Round Pegs C
    Constants of the motion for nonslipping tippe tops and other tops with round pegs C. G. Graya) and B. G. Nickelb) Department of Physics, University of Guelph, Guelph, Ontario NIG 2W1, Canada ͑Received 5 August 1999; accepted 21 December 1999͒ New and more illuminating derivations are given for the three constants of the motion of a nonsliding tippe top and other symmetric tops with a spherical peg in contact with a horizontal plane. Some rigorous conclusions about the motion can be drawn immediately from these constants. It is shown that the system is integrable, and provides a valuable pedagogical example of such systems. The equation for the tipping rate is reduced to one-dimensional form. The question of sliding versus nonsliding is considered. A careful literature study of the work over the past century on this problem has been done. The classic work of Routh has been rescued from obscurity, and some misstatements in the literature are corrected. © 2000 American Association of Physics Teachers. I. INTRODUCTION shows that there are three constants of the motion: the en- ergy, the so-called Jellett constant ͑a linear combination of The behavior of the tippe top has fascinated physicists for angular momentum components͒, and what we term the over a century.1–30 Textbook discussions are, however, still Routh constant. The physical significance of the Routh con- quite rare and brief.26,28,29 Figure 1 shows schematically the stant has not yet been understood, but we show that it in- small wooden commercial model readily available. ͑Appen- volves purely kinetic energy. dix A gives the specifications of the model in our posses- Our contribution is to simplify the derivation of the con- sion.͒ This type was introduced in Denmark a half century stants of the motion, and to discuss their physical signifi- ago.
    [Show full text]
  • Analysis of Dynamics of the Tippe Top
    Linköping Studies in Science and Technology. Dissertations, No. 1500 Analysis of Dynamics of the Tippe Top Nils Rutstam Department of Mathematics Linköping University, SE–581 83 Linköping, Sweden Linköping 2013 Linköping Studies in Science and Technology. Dissertations, No. 1500 Analysis of Dynamics of the Tippe Top Nils Rutstam [email protected] www.mai.liu.se Division of Applied Mathematics Department of Mathematics Linköping University SE–581 83 Linköping Sweden ISBN 978-91-7519-692-3 ISSN 0345-7524 Copyright © 2013 Nils Rutstam Printed by LiU-Tryck, Linköping, Sweden 2013 iii They have proven quite effectively that bumblebees indeed can fly against the field’s authority. -Einstürzende Neubauten Abstract The Tippe Top is a toy that has the form of a truncated sphere with a small peg. When spun on its spherical part on a flat supporting surface it will start to turn upside down to spin on its peg. This counterintuitive phenomenon, called in- version, has been studied for some time, but obtaining a complete description of the dynamics of inversion has proven to be a difficult problem. This is because even the most simplified model for the rolling and gliding Tippe Top is a non- integrable, nonlinear dynamical system with at least 6 degrees of freedom. The existing results are based on numerical simulations of the equations of motion or an asymptotic analysis showing that the inverted position is the only asymptot- ically attractive and stable position for the Tippe Top under certain conditions. The question of describing dynamics of inverting solutions remained rather in- tact. In this thesis we develop methods for analysing equations of motion of the Tippe Top and present conditions for oscillatory behaviour of inverting solu- tions.
    [Show full text]