A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subsurface Science
Subsurface Science H. Levine G. MacDonald O. Rothaus M. Ruderman ~5_io__ n __ F_o __ r ____~.1 , __ J S. Treiman NTIS CRA&I ~ E. Williams OTIC TAB Ulldnfl0U'lCed J li s tifica tion In collaboration with: By ........... _._ ... _.... _...... ____ ._ .. ______ J ]. Banfield Distribution I R. Colwell r------------------ Avcilab!li~y (oces B. Ensley t-------;---------- .--.--- Avail21lCJioi D. Galas Oist ;:.pecial July 1995 JSR-94-330 Approved for public release; distribution unlimited. JASON The MITRE Corporation 7525 Coishire Drive Mclean, Vrrginia 22102-3481 (703) 883-6997 Form Approved REPORT DOCUMENTATION PAGE OM8 No. 0704·0188 PUblIC reporting burden for thiS collection of Information estimated to average 1 hour per response. includmg the time for review instructions, searc hing eXisting data sources, gathering and maintaining the data needed, and completing and revieWing the collection of information. Send comments regarding thls burden estimate or any other aspect of this collection of information, including suggestions for reducing thiS burden, to Washington Headquarte~ Services, Directorate for Information Operations and Reports. 1215 Jefferson DaviS Highway. Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork. Reduction Project (0704-0188), Washington, OC 20503, 1. AGENCY USE ONLY (LeavB blank) r. REPORT DATE 13. REPORT TYPE AND DATES COVERED July 25, 1995 4. TITLE AND SUBTITLE s. FUNDING NUMBERS SUBSURFACE SCIENCE 04-958534-01 6.~~OR(S). vme, G. MacDonald, O. Rot h aus, M. Ru d erman, S. Trelman,. E. Williams. In collaboration with: J. Banfield, R. Colwell, B. Ensley, D. Galas 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. -
Nanoparticle Deposition and Dosimetry for in Vitro Toxicology
NANOPARTICLE DEPOSITION AND DOSIMETRY FOR IN VITRO TOXICOLOGY by CHRISTIN MARIE GRABINSKI Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy CASE WESTERN RESERVE UNIVERSITY May 2015 CASE WESTERN RESEREVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Christin Marie Grabinski candidate for the degree of Doctor of Philosophy.* Committee Chair R. Mohan Sankaran Committee Member Donald L. Feke Committee Member Harihara Baskaran Committee Member Nicole F. Steinmetz Committee Member Saber M. Hussain Date of Defense 04 March 2015 *We also certify that written approval has been obtained for any proprietary material contained therein. ii TABLE OF CONTENTS COMMITTEE APPROVAL SHEET ................................................................................. ii TABLE OF CONTENTS ................................................................................................... iii LIST OF TABLES ............................................................................................................. iv LIST OF FIGURES .............................................................................................................v ACKNOWLEDGEMENTS .............................................................................................. vii LIST OF ABBREVIATIONS .......................................................................................... viii LIST OF NOTATIONS .................................................................................................... -
Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements
nanomaterials Review Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements Anna Bratek-Skicki 1,2,* , Marta Sadowska 2, Julia Maciejewska-Pro ´nczuk 3 and Zbigniew Adamczyk 2 1 Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; [email protected] (M.S.); [email protected] (Z.A.) 3 Department of Chemical and Process Engineering, Cracow University of Technology, Warszawska 24, PL-31155 Krakow, Poland; [email protected] * Correspondence: [email protected] Abstract: Controlled deposition of nanoparticles and bioparticles is necessary for their separation and purification by chromatography, filtration, food emulsion and foam stabilization, etc. Compared to numerous experimental techniques used to quantify bioparticle deposition kinetics, the quartz crystal microbalance (QCM) method is advantageous because it enables real time measurements under different transport conditions with high precision. Because of its versatility and the decep- tive simplicity of measurements, this technique is used in a plethora of investigations involving nanoparticles, macroions, proteins, viruses, bacteria and cells. However, in contrast to the robustness of the measurements, theoretical interpretations of QCM measurements for a particle-like load is complicated because the primary signals (the oscillation frequency and the band width shifts) depend on the force exerted on the sensor rather than on the particle mass. Therefore, it is postulated that a proper interpretation of the QCM data requires a reliable theoretical framework furnishing reference results for well-defined systems. Providing such results is a primary motivation of this work where Citation: Bratek-Skicki, A.; the kinetics of particle deposition under diffusion and flow conditions is discussed. -
Pre-Polymerised Inorganic Coagulants and Phosphorus Removal by Coagulation - a Review
Pre-polymerised inorganic coagulants and phosphorus removal by coagulation - A review Jia-Qian Jiang and Nigel J D Graham Environmental and Water Resource Engineering, Department of Civil Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BU Abstract This paper reviews the use of pre-polymerised inorganic coagulants in water and waste-water treatment, and discusses the removal of phosphorus by chemical precipitation and coagulation. Commonly used inorganic coagulants are aluminium or iron (III) based salts, but a range of hydrolysed Al/Fe species, and not the Al/Fe salt itself, are responsible for the removal of impurities from water. By the development and use of polymeric inorganic coagulants, the coagulation performance can be improved significantly in some cases. Chemical precipitation and coagulation in phosphorus removal are two different processes, with the former related to the compound solubility and the latter depending on the destabilisation-adsorption mechanism. Presently, there is uncertainty concerning the mechanisms and overall performance of phosphorus removal by pre-polymerised metal coagulants. Introduction coagulants in water and waste-water treatment; to assess the present use of chemical precipitation and coagulation as a means Coagulants used for water and waste-water treatment are pre- for phosphorus removal; to evaluate the overall performance of dominantly inorganic salts of iron and aluminium. When dosed pre-polymerised coagulants in comparison with that of conven- into water the iron or aluminium ions hydrolyse rapidly and in an tional coagulants; and to discuss the relevant coagulation mecha- uncontrolled manner, to form a range of metal hydrolysis species. nisms for treating water and waste water. -
Electrophoretic Deposition of Ni(OH)2 Nanoplatelets Modified by Polyelectrolyte 2 Multilayers
1 Electrophoretic Deposition of Ni(OH)2 Nanoplatelets modified by polyelectrolyte 2 multilayers. Study of the Coatings Formation in a Laminar Flow Cell 3 Z. Gonzalez1, *, C. Filiatre2, C.C. Buron2, A.J. Sanchez-Herencia1 and B. Ferrari1 4 1) Institute for Ceramic and Glass, CSIC, Madrid, Spain. 5 2 ) Institute UTINAM-UMR 6213, University of Bourgogne - Franche-Comté, Besançon, 6 France 7 (*corresponding author: [email protected]) 8 9 10 Abstract 11 The electrophoretic deposition (EPD) of semiconductor ceramic nanoplatelets 12 functionalized by self-assembled polyelectrolyte multilayers has been investigated. The 13 influence of particle surface modification in the packing of the nanostructured film on 14 a nickel cathode has been determined for different electrical conditions. A polymer 15 multilayer shell has been fashioned onto β-Ni(OH)2 nanoplatelets surfaces by 16 alternating the adsorption of Polyethylenimine (PEI) and Polyacrylic Acid (PAA). Two 17 different core-shell systems with 1, 3 and 5 layers were considered using either linear 18 or branched PEI as polycation to alternate with the anionic polyelectrolyte (PAA). The 19 Layer by layer, (LbL) build-up of polyanions and polycations was characterized both in 20 terms of particle zeta potential measurements and in situ measurements of 21 polyelectrolyte adsorption onto a flat substrate by optical fixed-angle reflectometry. 22 The amount of polyelectrolyte required to build up each layer was determined from 23 zeta potential measurements. Both data allowed the design of the in situ formation of 24 the core-shell nanostructures as well as the shaping of the particulated coatings 25 following the one-pot procedure, avoiding intermediate steps of drying or washing. -
Electrical Double Layer Interactions with Surface Charge Heterogeneities
Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments. -
The Influence of Inter-Particle Forces on Diffusion at the Nanoscale
www.nature.com/scientificreports OPEN The infuence of inter-particle forces on difusion at the nanoscale Francesco Giorgi1, Diego Coglitore2, Judith M. Curran1, Douglas Gilliland3, Peter Macko3, Maurice Whelan3, Andrew Worth3 & Eann A. Patterson1 Received: 18 March 2019 Van der Waals and electrostatic interactions are the dominant forces acting at the nanoscale and they Accepted: 12 August 2019 have been reported to directly infuence a range of phenomena including surface adhesion, friction, Published: xx xx xxxx and colloid stability but their contribution on nanoparticle difusion dynamics is still not clear. In this study we evaluated experimentally the changes in the difusion coefcient of nanoparticles as a result of varying the magnitude of Van der Waals and electrostatic forces. We controlled the magnitude of these forces by varying the ionic strength of a salt solution, which has been shown to be a parameter that directly controls the forces, and found by tracking single nanoparticles dispersed in solutions with diferent salt molarity that the difusion of nanoparticles increases with the magnitude of the electrostatic forces and Van der Waals forces. Our results demonstrate that these two concurrently dynamic forces play a pivotal role in driving the difusion process and must be taken into account when considering nanoparticle behaviour. Gold nanoparticles have attracted a growing interest in the scientifc community in recent years, especially for biological and medical applications. However, there is a lack of knowledge about the mechanisms that regulate their difusion through liquid media. It is well-known that two of the main forces acting on charged nanoparticles dispersed in a medium are Van der Waals and electrostatic forces, but their actual contribution to particle difu- sion has not been experimentally investigated. -
Nonlinear Electrostatics. the Poisson-Boltzmann Equation
Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap. -
FORCES and INTERACTIONS BETWEEN NANOPARTICLES for CONTROLLED STRUCTURES by PAUL R. MARK a Dissertation Submitted to the Graduate
FORCES AND INTERACTIONS BETWEEN NANOPARTICLES FOR CONTROLLED STRUCTURES by PAUL R. MARK A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Materials Science and Engineering Written under the direction of Dr. Laura Fabris And approved by ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ New Brunswick, New Jersey January, 2013 ABSTRACT OF THE DISSERTATION Forces and Interactions Between Nanoparticles for Controlled Structures PAUL R MARK Dissertation Director: Dr. Laura Fabris In recent years, structured nanomaterials have started to demonstrate their full potential in breakthrough technologies. However, in order to fulfill the expectations held for the field, it is necessary to carefully design these structures depending upon the targeted application. This tailoring process suggests that a feedback between theory and experiment could potentially allow us to obtain a structure as near optimum as possible. This thesis seeks to describe the theory and experiment needed to understand and control the interactions among nanoparticles to build a functional device for the efficient conversion of sunlight into energy. This thesis will discuss a simulation built from the existing theories explaining nanoparticle interactions -
Arxiv:1706.04027V2
Interactions between Silica Particles in the Presence of Multivalent Coions Biljana Uzelac, Valentina Valmacco,∗ and Gregor Trefalt† Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland (Dated: July 25, 2017) Forces between charged silica particles in solutions of multivalent coions are measured with col- loidal probe technique based on atomic force microscopy. The concentration of 1:z electrolytes is systematically varied to understand the behavior of electrostatic interactions and double-layer prop- erties in these systems. Although the coions are multivalent the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory perfectly describes the measured force profiles. The diffuse-layer potentials and regulation properties are extracted from the forces profiles by using the DLVO theory. The de- pendencies of the diffuse-layer potential and regulation parameter shift to lower concentration with increasing coion valence when plotted as a function of concentration of 1:z salt. Interestingly, these profiles collapse to a master curve if plotted as a function of monovalent counterion concentration. I. INTRODUCTION in the case of multivalent coion systems. Force pro- files across solutions containing multivalent counterions Interactions between charged objects in electrolyte so- are usually exponential, which is typical for double-layer lutions are important for many biological systems [1], and forces. Interestingly, their coion counterparts invoke non- in processes such as paper making [2], waste water treat- exponential and soft long-ranged forces, which can be ment [3], ceramic processing [4], ink-jet printing [5], par- well described with the PB theory [21, 27]. Extreme case ticle design [6], and concrete hardening [7]. -
Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants
colloids and interfaces Article Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants Tianchi Cao 1,2, Michal Borkovec 1 and Gregor Trefalt 1,* 1 Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland; [email protected] (T.C.); [email protected] (M.B.) 2 Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: Heteroaggregation and homoaggregation is investigated with time-resolved multi-angle dynamic light scattering. The aggregation rates are measured in aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles in the presence of sodium octyl sulfate (SOS) and sodium dodecyl sulfate (SDS). As revealed by electrophoresis, the surfactants adsorb to both types of particles. For the AL particles, the adsorption of surfactants induces a charge reversal and triggers fast aggregation close to the isoelectric point (IEP). The negatively charged SL particles remain negatively charged and stable in the whole concentration range investigated. The heteroaggregation rates for AL and SL particles are fast at low surfactant concentrations, where the particles are oppositely charged. At higher concentrations, the heteroaggregation slows down above the IEP of the AL particles, where the particles become like-charged. The SDS has higher affinity to the surface compared to the SOS, which induces a shift of the IEP and of the fast aggregation regime to lower surfactant concentrations. Keywords: colloidal stability; heteroaggregation; DLVO 1. Introduction Aggregation of particles in suspensions is important in many practical applications, such as ceramic processing, paint fabrication, or drug formulation [1–4]. -
Understanding Adhesion: a Means for Preventing Fouling
ELSEVIER Understanding Adhesion: A Means for Preventing Fouling R. Oliveira • Adhesion of particulate materials is an important step in the formation Engenharia Biol6gica, of fouling. Because the size of such materials is generally less than 1 tzm, Unicersidade do Minho, the phenomenon can be described in terms of colloid chemistry. Accord- Braga, Portugal ingly, the net force of interaction between foulants and the surface has been described in terms of DLVO theory (van der Waals attraction and electrostatic double-layer repulsion). However, those forces are sometimes not sufficient to describe the formation of fouling. Recent works have made it possible to calculate the effect of hydrophobic interactions and steric forces, which can also be taken into account. In aqueous media, the various types of interactions can be strongly affected by the pH, the ionic strength, the type of ions, and the presence of polymeric molecules. The objective of this work is to give a general overview of the basic physicochemical factors playing a role in fouling and to outline some practical aspects related to the theoretical reasoning to help prevent or at leasl[ mitigate fouling. © Elsevier Science Inc., 1997 Keywords: adhesion, DLVO theory, surface free energy, hydrophobic interactions, steric forces, ionic strength, ion bridging INTRODUCTION tant roles. In bifouling, the adhesion of microorganisms can be strongly dependent on their external appendages. The accumulation of inorganic particles, microorganisms, The net effect is a balance between all possible interac- macromolecules, and corrosion products on heat ex- tions. A knowledge of the roles of the main variables changer surfaces gives rise to the so-called fouling phe- affecting the interactions outlined above is of great impor- nomenon.