Applications of Ionic Liquids in Synthesis and Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acidic Ionic Liquids
ACIDIC IONIC LIQUIDS REFERENCES ACIDIC IONIC LIQUIDS 1-(4-sulfobutyl)-3-methylimidazolium trifluoromethanesulfonate, 98% ImSF1705c [(CH2)4SO3HMlm][CF3SO3] 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate, 98% ImSF1213c [(CH2)4SO3HMlm][HSO4] 1-(4-sulfobutyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 98% ImSF1808c [(CH2)4SO3HMlm][N(CF3SO2)2] Experimental aspect : Hydrophilic Liquid at room temperature Brønsted acids Stable with water and oxygen Non-corrosive Easily recyclable Solubility : SOLVENT MISCIBILITY Water Miscible Hexane immiscible Ester immiscible Applications : These ionic liquids are used as acid catalysts in the following reactions : Esterification, Oxidation, Alkylation, Beckmann Rearrangement, Cyclotrimerisation… Esterification of ethanol by acetic acid1: Catalyzed by a Brønsted acidic ionic liquid CH3COOC2H5 + OH 2 Ethyl acetate H SO 2 4 Conversion = 60.3% Selectivity = 98.2% CH 3COOH + C 2H5OH 60°C, 4 h Acetic acid Ethanol [(CH2)H4SO3HMIm] [HSO4] CH3COOC2H5 + OH 2 Ethyl acetate Conversion = 92.8% Selectivity = 100% The 1-(4-sulfobutyl)-3-methylimidazoliumhydrogensulfate is a more effective catalyst than a conventional catalyst (sulphuric acid H2SO4). The ester formed is extracted by a simple separation and the acidic ionic liquid may then be recycled without any loss of activity (at the 5th recycling, Conversion=88.5% and Selectivity=100%). Cyclotrimerization of aldehydes2: Catalyzed by an acidic ionic liquid with no addition of any organic solvent [(CH2)4SO3HMIm] [CF3SO3] O O 3 O 25°C, 1 h O 2, 4, 6-triisopropyl-1, 3, 5-trioxane Isobutyraldehyde Conversion = 93% Selectivity = 100% The Isobutyraldehyde (60 mol) is catalyzed by the 1-(4-sulfobutyl)-3-methylimidazolium trifluoromethanesulfonate (1 mol) in only one hour at room temperature. The product from the reaction is isolated by liquid-liquid extraction with hexane ant the acidic ionic liquid is easily recycled without any loss of activity (at the 5th recycling, Conversion=93% and Selectivity=100%). -
Opportunities for Catalysis in the 21St Century
Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations.................................................. -
Dehydrogenation by Heterogeneous Catalysts
Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts. -
Sustainable Catalysis
Green Process Synth 2016; 5: 231–232 Book review Sustainable catalysis DOI 10.1515/gps-2016-0016 Sustainable catalysis provides an excellent in-depth over- view of the applications of non-endangered elements in Michael North (Ed.) all aspects of catalysis from heterogeneous to homogene- Sustainable catalysis: with non-endangered metals ous, from catalyst supports to ligands. The Royal Society of Chemistry, 2015 Four volumes of the book series are divided into RSC Green Chemistry series nos. 38–41 two sub-topics devoted to (i) metal-based catalysts and Part 1 (ii) catalysts without metals or other endangered ele- Print ISBN: 978-1-78262-638-1 ments. Each sub-topic comprises of two books due to the PDF eISBN: 978-1-78262-211-6 detailed analysis of catalytic applications described. All Part 2 chapters are written by the world-leading researchers in Print ISBN: 978-1-78262-639-8 the area; however, covering far beyond the scope of their PDF eISBN: 978-1-78262-642-8 immediate research interests, which makes the book par- ticularly valuable for a wide range of readers. Sustainable catalysis: without metals or other Sustainable catalysis: with non-endangered metals endangered elements begins with a very brief chapter which describes the Part 1 concept of elemental sustainability, overviewing the Print ISBN: 978-1-78262-640-4 abundance of the critical elements and perspectives on PDF eISBN: 978-1-78262-209-3 sustainable catalysts. The chapters follow the groups of EPUB eISBN: 978-1-78262-752-4 the periodic table from left to right, from alkaline metals to Part 2 lead spanning 22 chapters. -
Download Article
Volume 10, Issue 3, 2020, 5412 - 5417 ISSN 2069-5837 Biointerface Research in Applied Chemistry www.BiointerfaceResearch.com https://doi.org/10.33263/BRIAC103.412417 Original Research Article Open Access Journal Received: 26.01.2020 / Revised: 02.03.2020 / Accepted: 03.03.2020 / Published on-line: 09.03.2020 Obtaining salts of resin acids from Cuban pine by metathesis reactions Olinka Tiomno-Tiomnova 1 , Jorge Enrique Rodriguez-Chanfrau 2 , Daylin Gamiotea-Turro 2 , Thayná Souza Silva 3 , Carlos Henrique Gomes Martins 3 , Alexander Valerino-Diaz 2 , Yaymarilis Veranes-Pantoja 4 , Angel Seijo-Santos 1 , Antonio Carlos Guastaldi 2 1Center of Engineering and Chemical Investigations. Havana. CP 10600, Cuba 2Group of Biomaterials, Department of Physical Chemistry, Institute of Chemistry, Sao ~ Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil 3Laboratory of Research on Antimicrobial Trials (LaPEA), Institute of Biomedical Sciences – ICBIM, Federal University of Uberlândia, Uberlândia, Brazil 4Biomaterials Center. University of Havana. Havana. CP 10600, Cuba *corresponding author e-mail address: [email protected] | Scopus ID 7801488065 ABSTRACT The resin acids obtained from the Cuban pine rosin are the starting material for the development and application of metathesis reactions. These reactions allow the obtaining of salts with high added value which could be used in the development of biomaterials for dental use. The objective of this work was to obtain calcium, magnesium and zinc resinates from the resin acid obtained from the Cuban pine resin by metathesis reaction for possible use in the development of biomaterials. The products obtained were evaluated by elemental analysis, X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy associated with electron dispersion spectroscopy, nuclear magnetic resonance and biological tests (antibacterial activity). -
The Early History of Catalysis
The Early History of Catalysis By Professor A. J. B. Robertson Department of Chemistry, King’s College, London One hundred and forty years ago it was Berzelius proceeded to propose the exist- possible for one man to prepare an annual ence of a new force which he called the report on the progress of the whole of “catalytic force” and he called “catalysis” the chemistry, and for many years this task was decomposition of bodies by this force. This undertaken by the noted Swedish chemist is probably the first recognition of catalysis J. J. Berzelius for the Stockholm Academy of as a wide-ranging natural phenomenon. Sciences. In his report submitted in 1835 and Metallic catalysts had in fact been used in published in 1836 Berzelius reviewed a num- the laboratory before 1800 by Joseph Priestley, ber of earlier findings on chemical change in the discoverer of oxygen, and by the Dutch both homogeneous and heterogeneous sys- chemist Martinus van Marum, both of whom tems, and showed that these findings could be made observations on the dehydrogenation of rationally co-ordinated by the introduction alcohol on metal catalysts. However, it seems of the concept of catalysis. In a short paper likely that these investigators regarded the summarising his ideas on catalysis as a new metal merely as a source of heat. In 1813, force, he wrote (I): Louis Jacques Thenard discovered that ammonia is decomposed into nitrogen and “It is, then, proved that several simple or compound bodies, soluble and insoluble, have hydrogen when passed over various red-hot the property of exercising on other bodies an metals, and ten years later, with Pierre action very different from chemical affinity. -
A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 4-3-2015 A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates Kuruppu Lilanthi Jayatissa Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Catalysis and Reaction Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Jayatissa, Kuruppu Lilanthi, "A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates" (2015). Dissertations and Theses. Paper 2229. https://doi.org/10.15760/etd.2226 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. A Metal-Free Approach to Biaryl Compounds: Carbon-Carbon Bond Formation from Diaryliodonium Salts and Aryl Triolborates. by Kuruppu Lilanthi Jayatissa A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Chemistry Thesis Committee: David Stuart, Chair Robert Strongin Theresa McCormick Portland State University 2015 Abstract Biaryl moieties are important structural motifs in many industries, including pharmaceutical, agrochemical, energy and technology. The development of novel and efficient methods to synthesize these carbon-carbon bonds is at the forefront of synthetic methodology. Since Ullmann’s first report of stoichiometric Cu-mediated homo-coupling of aryl halides, there has been a dramatic evolution in transition metal catalyzed biaryl cross-coupling reactions. -
Physical Organic Chemistry
CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point -
Ionic Liquids
Vol. 5 No. 6 Enabling Technologies Ionic Liquids BASIL™ BASIONICS™ Ionic Liquids for Catalysis Ionic Liquids for Electrochemical Applications Enzymatic Reactions in Ionic Liquids Task-Specific Ionic Liquids CYPHOS® Phosphonium Ionic Liquids Imidazolium-Based Ionic Liquids Pyridinium-Based Ionic Liquids Pyrrolidinium-Based Ionic Liquids Ammonium-Based Ionic Liquids Phosphonium-Based Ionic Liquids sigma-aldrich.com/chemicalsynthesis 2 Introduction Sigma-Aldrich is proud to offer a new series of ChemFiles—called The strong ionic (Coulomb-) interaction within these substances results Enabling Technologies—to our Chemistry customers. Each piece will in a negligible vapor pressure (unless decomposition occurs), a non- highlight enabling products or technologies for chemical synthesis, drug flammable substance, and in a high thermally, mechanically as well discovery, and other areas of chemistry. as electrochemically stable product. In addition to this very interesting Ionic Liquids have experienced a comet-like boost in the last few years. combination of properties, they offer other favorable properties: for In this edition of ChemFiles, we highlight some current applications example, very appealing solvent properties and immiscibility with water of this fascinating class of new materials. We present over 50 new or organic solvents that result in biphasic systems. additions to our portfolio of 130+ Ionic Liquids, ranging from well- The choice of the cation has a strong impact on the properties of known imidazolium and pyridinium derivatives to ammonium, the Ionic Liquid and will often define the stability. The chemistry and pyrrolidinium, phosphonium, and sulfonium derivatives. At Sigma- functionality of the Ionic Liquid is, in general, controlled by the choice Aldrich, we are committed to being your preferred supplier for Ionic of the anion. -
Concepts and Tools for Mechanism and Selectivity Analysis in Synthetic Organic Electrochemistry
Concepts and tools for mechanism and selectivity analysis in synthetic organic electrochemistry Cyrille Costentina,1,2 and Jean-Michel Savéanta,1 aUniversité Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université–CNRS 7591, 75205 Paris Cedex 13, France Contributed by Jean-Michel Savéant, April 2, 2019 (sent for review March 19, 2019; reviewed by Robert Francke and R. Daniel Little) As an accompaniment to the current renaissance of synthetic organic sufficient to record a current-potential response but small electrochemistry, the heterogeneous and space-dependent nature of enough to leave the substrates and cosubstrates (of the order of electrochemical reactions is analyzed in detail. The reactions that follow one part per million) almost untouched. Competition of the the initial electron transfer step and yield the products are intimately electrochemical/chemical events with diffusional transport under coupled with reactant transport. Depiction of the ensuing reactions precisely mastered conditions allows analysis of the kinetics profiles is the key to the mechanism and selectivity parameters. within extended time windows (from minutes to submicroseconds). Analysis is eased by the steady state resulting from coupling of However, for irreversible processes, these approaches are blind on diffusion with convection forced by solution stirring or circulation. reaction bifurcations occurring beyond the kinetically determining Homogeneous molecular catalysis of organic electrochemical reactions step, which are precisely those governing the selectivity of the re- of the redox or chemical type may be treated in the same manner. The same benchmarking procedures recently developed for the activation action. This is not the case of preparative-scale electrolysis accom- of small molecules in the context of modern energy challenges lead to panied by identification and quantitation of products. -
THAT ARE NOT ALLOLLIKULTTUUS009958363B2 (12 ) United States Patent ( 10 ) Patent No
THAT ARE NOT ALLOLLIKULTTUUS009958363B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 , 958 ,363 B2 Smart et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) FLUOROUS AFFINITY EXTRACTION FOR (56 ) References Cited IONIC LIQUID - BASED SAMPLE PREPARATION U . S . PATENT DOCUMENTS 7 ,273 ,587 B1 9 / 2007 Birkner et al . ( 71 ) Applicant: Agilent Technologies , Inc. , Loveland , 7 ,273 ,720 B1 9 / 2007 Birkner et al. CA (US ) ( Continued ) ( 72 ) Inventors: Brian Phillip Smart, San Jose , CA (US ) ; Brooks Bond - Watts , Fremont, FOREIGN PATENT DOCUMENTS CA (US ) ; James Alexander Apffel, Jr ., WO WO2007110637 10 /2007 Mountain View , CA (US ) WO WO2011155829 12 / 2011 ( 73 ) Assignee : Agilent Technologies , Inc ., Santa Clara , OTHER PUBLICATIONS CA (US ) Yuesheng Ye , Yossef A . Elabd “ Anion exchanged polymerized ionic ( * ) Notice : Subject to any disclaimer, the term of this liquids: High free volume single ion conductors ” Polymer 52 ( 2011 ) patent is extended or adjusted under 35 1309 - 1317 , plus supplementary data ( pp . 1 - 6 ) . * U . S . C . 154 (b ) by 168 days . (Continued ) ( 21) Appl . No. : 14 /724 ,656 Primary Examiner — Christine T Mui ão( 22 ) Filed : May 28 , 2015 Assistant Examiner - Emily R . Berkeley (6565 ) Prior Publication Data (57 ) ABSTRACT US 2015 /0369711 A1 Dec . 24 , 2015 A method for removing an ionic liquid from an aqueous Related U . S . Application Data sample is provided . In some embodiments , the method includes : ( a ) combining an aqueous sample including an ( 60 ) Provisional application No . 62/ 016 ,000 , filed on Jun . ionic liquid with an ion exchanger composition including an 23 , 2014 , provisional application No . 62 /016 , 003 , ion exchanger counterion to produce a solution including a (Continued ) fluorous salt of the ionic liquid , where at least one of the ionic liquid and the ion exchanger counterion is fluorinated ; (51 ) Int . -
1 Structural Characterization of a Tetrametallic Diamine-Bis(Phenolate) Complex of Lithium and Synthesis of a Related Bismuth Co
Structural Characterization of a Tetrametallic Diamine-bis(phenolate) Complex of Lithium and Synthesis of a Related Bismuth Complex Marcus W. Drover,a Jennifer N. Murphy,a Jenna C. Flogeras,a Céline M. Schneider,a,b Louise N. Dawe,a,c and Francesca M. Kerton*a a Department of Chemistry, Memorial University of Newfoundland St. John’s, Newfoundland, Canada A1B 3X7 b NMR Laboratory, C-CART, Memorial University of Newfoundland, St. John’s, NL, A1B 3X7, Canada c C-CART X-ray Diffraction Laboratory, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X7; Current address, Department of Chemistry, Wilfrid Laurier University, Science Building, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5 * Author to whom correspondence should be addressed. Tel: +1-709-864-8089, Fax: +1-709- 864-3702, E-mail: [email protected] Contribution For Special Issue on “Modern Canadian Inorganic Chemistry” Abstract A novel lithium complex was prepared from the reaction of 1,4-bis(2-hydroxy-3,5-di-tert-butyl- BuBuIm benzyl)imidazolidine H2[O2N2] (L1H2) with n-butyllithium to provide the corresponding 7 tetralithium amine-bis(phenolate) complex {Li2[L1]}2•4THF, 1. Variable temperature Li NMR revealed that this complex is labile in solution, dissociating at elevated temperatures to afford two dilithium entities. Additionally, 7Li MAS NMR was performed on 1 to provide information regarding the lithium coordination environment in the bulk solid-state. The reactivity of 1 was assessed in the ring-expansion polymerization of ε-caprolactone (ε-CL), which was first order in ε-CL with an activation energy of 50.9 kJmol-1.