Total Harmonics Distortion Reduction Using Adaptive, Weiner, and Kalman Filters

Total Page:16

File Type:pdf, Size:1020Kb

Total Harmonics Distortion Reduction Using Adaptive, Weiner, and Kalman Filters Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-2016 Total Harmonics Distortion Reduction Using Adaptive, Weiner, and Kalman Filters Liqaa Alhafadhi Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Electrical and Computer Engineering Commons Recommended Citation Alhafadhi, Liqaa, "Total Harmonics Distortion Reduction Using Adaptive, Weiner, and Kalman Filters" (2016). Master's Theses. 737. https://scholarworks.wmich.edu/masters_theses/737 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. TOTAL HARMONICS DISTORTION REDUCTION USING ADAPTIVE, WEINER, AND KALMAN FILTERS by Liqaa Alhafadhi A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical) Electrical and Computer Engineering Western Michigan University June 2016 Thesis Committee: Johnson Asumadu, Ph.D., Chair Massood Atashbar, Ph.D. Christopher Cho, Ph.D. TOTAL HARMONICS DISTORTION REDUCTION USING ADAPTIVE, WEINER, AND KALMAN FILTERS Liqaa Alhafadhi, M.S.E. Western Michigan University, 2016 Total harmonics distortion is one of the main problems in power systems due to its effects in generating undesirable issues in power quality. These effects include heating (in transformers, capacitors, motors, and generators), disoperation of electronic equipment, incorrect readings on meters, disoperation of protective relays, and communication interference. Besides these problems, harmonics affect the power quality in both transmission and distribution systems. Different techniques have been used to mitigate the effects of harmonics. These techniques include; passive filters, active power filter, artificial intelligent, and adaptive selective harmonics reductions. Each method has some advantage and disadvantage. This thesis presented new models of total harmonics distortion reduction using adaptive, Weiner, and Kalman filters. In order to test the performance of the presented methods, the output current of a single phase inverter circuit was used as a study case. The new models reduced the total harmonics distortion from by more than 50% however Kalman filters give the best performance as compared to adaptive and Weiner filters. Copyright by Liqaa Alhafadhi 2016 ACKNOWLEDGEMENTS I would like to express my deepest thanks for my supervisor Dr. Asumadu, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. Also, I would like to thank my committee members, Dr. Atashbar and Dr. Cho for their time and effort. I am heartily thankful to my parents who gave me the moral support I need. I also would like to express my gratitude to my husband for his encouragement and support. Liqaa Alhafadhi ii TABLE OF CONTENTS ACKNOWLEDGEMENTS.....................................................................................ii LIST OF FIGURES ............................................................................................... vi CHAPTER 1 ........................................................................................................... 1 BACKGROUND AND MOTIVATION ................................................................ 1 1.1 Introduction ............................................................................................... 1 1.2 Thesis Goals .............................................................................................. 3 1.3 Thesis Structure ......................................................................................... 3 CHAPTER 2 ........................................................................................................... 4 HARMONICS REDUCTIONS IN POWER AND POWER ELECTRONICS ..... 4 2.1 Harmonics ................................................................................................. 4 2.2 Harmonics Reduction Techniques ............................................................ 5 2.2.1 Frequency Domain Techniques ........................................................... 5 2.2.2 Time Domain Techniques ................................................................... 7 2.2.3 Artificial Intelligent Techniques ....................................................... 14 2.2.4 Current Control Techniques .............................................................. 17 2.2.5 Adaptive Selective Harmonic Elimination Technique ...................... 18 CHAPTER 3 ......................................................................................................... 20 ADAPTIVE FILTERING TECHNIQUES AND ALGORITHMS ...................... 20 iii Table of Contents- continued 3.1 DC-to-AC Converters (Inverters)............................................................ 20 3.1.1 Single-Phase Inverters ....................................................................... 21 3.1.2 Three-Phase Inverters ........................................................................ 22 3.1.3 Multi-Level Inverters ........................................................................ 23 3.2 Adaptive Filtering Algorithms ................................................................ 24 3.2.1 Least Mean Square Algorithm .......................................................... 26 3.2.2 Normalized Least Mean Square Algorithm ...................................... 28 3.2.3 Leaky Least Mean Square Algorithm ............................................... 29 3.2.4 Sign LMS and Sign NLMS Algorithms ............................................ 29 3.3 Weiner Filter ........................................................................................... 30 3.4 Kalman Filter........................................................................................... 32 CHAPTER 4 ......................................................................................................... 37 SIMULATION AND RESULTS .......................................................................... 37 4.1 DC-AC Converter in MATLAB SIMULINK ......................................... 37 4.2 Distortion Reduction Using New Adaptive Filtering Models ................. 39 4.3 Distortion Reduction Using Weiner Filter .............................................. 46 4.4 Distortion Reduction Using Kalman Filter ............................................. 49 iv Table of Contents- continued CHAPTER 5 ......................................................................................................... 54 CONCLUSIONS AND FUTURE WORKS ......................................................... 54 5.1 Conclusions ............................................................................................. 54 5.2 Future Works ........................................................................................... 55 BIBLIOGRAPHY ................................................................................................. 56 v LIST OF FIGURES 2. 1: Single Phase Representation of Nonlinear Load and Passive Shunt Filter. ................ 8 2. 2: Single Phase Passive Filter with Shunt Configuration. ............................................ 10 2. 3: Single Phase Passive Filter with Series Configuration. ............................................ 10 2. 4: Three Phase, Three Wire Passive Filter for Shunt Configuration. ........................... 11 2. 5: Three Phase, Three Wire Passive Filter for Series Configuration. ........................... 11 2. 6: Shunt Passive Filter. ................................................................................................. 12 2. 7: Series Passive Filter. ................................................................................................. 12 2. 8: Single Phase Active Filter, Shunt Configuration. ..................................................... 13 2. 9: Single Phase Active Filter, Series Configuration. .................................................... 14 2. 10: ADALINE Block Diagram by Zouidi. ................................................................... 15 2. 11: MLP Neural Network Architecture by Chen. ......................................................... 16 2. 12: Structure of a Single Frequency Adaptive Selective Elimination technique. ......... 19 3. 1: Single Phase Inverter. ............................................................................................... 21 3. 2: Three Phase Inverter. ................................................................................................ 22 3. 3: Multi Level inverter. ................................................................................................. 24 3. 4: Adaptive filter as a noise canceller. .......................................................................... 25 3. 5: Block Diagram of Wiener Filter. .............................................................................. 30 3. 6: A discrete Time system with Process w and Measurement Noise v. ....................... 35 vi List of Figures- continued 3. 7: Block Diagram of Kalman Filter. ............................................................................. 36 4. 1: Single Phase Inverter. ............................................................................................... 38 4. 2: Simulated Inverter in MATLAB..............................................................................
Recommended publications
  • Lossless Audio Coding Using Adaptive Linear Prediction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS LOSSLESS AUDIO CODING USING ADAPTIVE LINEAR PREDICTION SU XIN RONG (B.Eng., SJTU, PRC) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2005 ACKNOWLEDGEMENTS First of all, I would like to take this opportunity to express my deepest gratitude to my supervisor Dr. Huang Dong Yan from Institute for Infocomm Research for her continuous guidance and help, without which this thesis would not have been possible. I would also like to specially thank my supervisor Assistant Professor Nallanathan Arumugam from NUS for his continuous support and help. Finally, I would like to thank all the people who might help me during the project. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................................................................................. ii TABLE OF CONTENTS ................................................................................................. iii SUMMARY ........................................................................................................................vi LIST OF TABLES .......................................................................................................... viii LIST OF FIGURES ...........................................................................................................ix CHAPTER 1 INTRODUCTION.........................................................................................................
    [Show full text]
  • One-Dimensional Processing for Adaptive Image Restoration
    DOCUMENT OFFICE 36-412 JRESEARCH LABORATORY OF ELECTRONtCS *l MASSACHUSETTS INSTITUTE OF TECHNOLOGY ~~~~~~~~~IllLf llii One-Dimensional Processing for Adaptive Image Restoration Philip Chan tl 1; 4 eo'p ON// Technical Report 501 June 1984 Massachusetts Institute of Technology Research Laboratory of Electronics Cambridge, Massachusetts 02139 _ ___I __ _ __ __I_L *1 One-Dimensional Processing for Adaptive Image Restoration Philip Chan Technical Report 501 June 1984 Massachusetts Institute of Technology Research Laboratory of Electronics Cambridge, Massachusetts 02139 This work has been supported in part by the Advanced Research Projects Agency monitored by ONR under Contract N00014-81-K-0742 NR-049-506 and in part by the National Science Foundation under Grant ECS80-07102. _ __YLII··_I__IIL____yll_·ll-... -____. -- 1~ - - -- 1-~· 1 --- I I - ---·---- -- - _I __I __I UNCLASSIFTED SECUNITY CLASSIFICATION OF rIS PAGE REPORT OOCUMENTATION PAGE l& RPICORT SECURITY CLASSFPlCATION 1I RISTRlCTIVI MARKINGS 2& SICURITY C1ASSIFICATION AUTHORITY 3. OISTrIUUTIONIAVAILA6I1UTY OF RIPORT Approved for public release: distribution =6 O0CLAIf CATNoOWNGrAOlING sc.eout.a unlimited A. PRAFORMING ORGANIZATION IrEPoRTHMUSll(S) S. MONITORING ORGANIZATION REPORT NUM6EE(S) G. NAMIE OF PRFORlOMING ORGcANIZATION . OFICI( SYMKOL 7 NAM_ OF MONITORING ORGANIZATION Research Laboratory of Elec to mehe, Office of Naval Research Massachusetts Institute of Te:hnology Mathematical and Information Scien. Div. 6. A^OORSS (Ct. Saw emd ZIP Code) 7b. AOORESS =Ct. 31w .nJi ZIP Come 77 Massachusetts Avenue 800 North Quincy Street Cambridge, MA 02139 Arlington, Virginia 22217 &L NAM OF IINOIN(OWSPONSORING a OFICE SYMh t.oL L Ps1OCUtEMENT INSTRUMENT OENTIltCATION NUMllR ORGANIZATION (If WIawieal Advanced Research Projects .gency N00014-8 1-K-0742 Se.
    [Show full text]
  • Adaptive Filtering and Change Detection Fredrik Gustafsson Copyright © 2000 John Wiley & Sons, Ltd Isbns: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)
    Adaptive Filtering and Change Detection Fredrik Gustafsson Copyright © 2000 John Wiley & Sons, Ltd ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic) Adaptive Filtering and Change Detection Adaptive Filtering and Change Detection Fredrik Gustafsson Linkoping University, Linkoping, Sweden JOHN WILEY & SONS, LTD Chichester Weinheim NewYork Brisbane Singapore Toronto Copyright 0 2000 by John Wiley & Sons Ltd Baffins Lane, Chichester, West Sussex, PO 19lUD, England National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): [email protected] Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved.No part of this publication may be reproduced, storedin a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the termsof the Copyright Designs and PatentsAct 1988 or under the termsof a licence issuedby the Copyright Licensing Agency,90 Tottenham Court Road, London, W1P 9HE,UK, without the permissionin writing of the Publisher, with the exceptionof any material supplied specifically for the purposeof being entered and executed on a computer system, for exclusive use by the ofpurchaser the publication. Neither the authors nor John Wiley& Sons Ltd accept any responsibility or liability for loss or damage occasioned to any person or property through using the material, instructions, methods or ideas contained herein, or acting or refraining from actingas a result of such use. The authors and Publisher expressly disclaim all implied warranties, including merchantabilityof fitness for any particular purpose. There will be no duty on the authorsof Publisher to correct any errorsor defects in the software.
    [Show full text]
  • Adaptive Filtering and Artificial Intelligence Methods on Fetal Ecg Extraction
    Journal of Critical Reviews ISSN- 2394-5125 Vol 7, Issue 7, 2020 ADAPTIVE FILTERING AND ARTIFICIAL INTELLIGENCE METHODS ON FETAL ECG EXTRACTION Dr. M. Pradeepa1,Dr. S. Kumaraperumal2 1Assistant Professor (Sr.), School of Information Technology, Vellore Institute of Technology, Vellore, India. Email: [email protected] 2Sr. Assistant Professor , Xavier Institute of Management & Entrepreneurship, Bangalore, India. Email: [email protected] Corresponding Author Email ID [email protected] Received: 11.02.2020 Revised: 19.03.2020 Accepted: 23.04.2020 Abstract Above 30 percent of infant’s death occur due to heart problem like congenital heart disease during 2004 in United States of America. Every year, one in 125 infants is born with heart imperfection. To address these problems, early identification of cardiac anomalies and consistent monitoring of fetal heart can support Pediatric Cardiologist and Obstetrics to take necessary care on time to prescribe medicines and take precautionary measures during gestation period, delivery and/or after birth. Majority of cardiac abnormalities contain some symptoms in the cardiac electrical signal morphology. Electrocardiography gives more information in measuring cardiac signals compare to sonographic measurement. However, in non-invasive heartbeat recording by fetal Electrocardiogram (ECG) application Electrocardiography has its limitation due to low signal- noise ratio where impeding bio-signals are too stronger than fetal electrocardiogram signals. Various adaptive filtering and Artificial intelligence techniques are applied to solve this complex problem. The complex real world problems need a combination of knowledge, skills, and techniques from various sources as an intelligent system. That intelligent system should possess expertise of human, adjust itself to changing environment and learn to improve on its own.
    [Show full text]
  • Image Restoration with Two-Dimensional Adaptive Filter
    Image Denoising with Two-Dimensional Adaptive Filter Algorithms M. Shams Esfand Abadi* and S. Nikbakht* Abstract: Two-dimensional (2D) adaptive filtering is a technique that can be applied to many image and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to 2D structure and the novel 2D adaptive filters are established. Based on this extension, the 2D variable step-size normalized least mean squares (2D-VSS- NLMS), the 2D-VSS affine projection algorithms (2D-VSS-APA), the 2D set-membership NLMS (2D-SM-NLMS), the 2D-SM-APA, the 2D selective partial update NLMS (2D- SPU-NLMS), and the 2D-SPU-APA are presented. In 2D-VSS adaptive filters, the step- size changes during the adaptation which leads to improve the performance of the algorithms. In 2D-SM adaptive filter algorithms, the filter coefficients are not updated at each iteration. Therefore, the computational complexity is reduced. In 2D-SPU adaptive algorithms, the filter coefficients are partially updated which reduce the computational complexity. We demonstrate the good performance of the proposed algorithms thorough several simulation results in 2D adaptive noise cancellation (2D-ANC) for image denoising. The results are compared with the classical 2D adaptive filters such as 2D-LMS, 2D-NLMS, and 2D-APA. Keywords: Two Dimensional, Adaptive Filter, Noise Cancellation, Selective Partial Update, Variable Step-Size, Set-Membership. 1 Introduction` one direction, was proposed in [7]. Also, the Adaptive filter algorithms have numerous applications development of a 2D adaptive filter using the block in electrical engineering [1], [2] and [3]. Two- diagonal LMS method was presented in [8].
    [Show full text]
  • Determination of Optimum Step Size of LMS Algorithm in De-Noising of Image
    Determination of Optimum Step Size of LMS Algorithm in De-noising of Image This Major project in partial fulfillment for the award of the degree of Bachelor of Science In Information and Communication Engineering Department of ECE, Faculty of Science and Engineering East West University, Dhaka Bangladesh Developed By Sharmin Akter Mim #ID: 2013-2-50-002 Nusrat Jahan #ID: 2012-3-50-001 Under the supervision of Dr. Mohamed Ruhul Amin Professor Dept. of Electronics and Communication Engineering East West University & Dr. Md. Imdadul Islam Professor Dept. of Computer Science and Engineering Jahangirnagar University Dept. of ECE @ EWU Page 1 DECLARATION We hereby declare that we carried out the work reported in this project in the Department ofElectronics and Communications Engineering, East West University, under the supervision ofDr. Mohamed Ruhul Amin and Dr. Md. Imdadul Islam. We solemnly declare that to the best of our knowledge, no part of this report has been submitted elsewhere for award of a degree. All sources of knowledge usedhave been duly acknowledged. Signature: ----------------------------------------- ------------------------------------------ SharminAkterMim Nusrat Jahan ID: 2013-2-50-002 ID: 2012-3-50-001 ------------------------------------- Supervisor Dr. Mohamed Ruhul Amin Professor, Dept. of Electronics and Communication Engineering East West University & ------------------------------------- Supervisor Dr. Md. Imdadul Islam Professor, Dept. of Computer Science and Engineering Jahangirnagar University Dept. of ECE @ EWU Page 2 CERTIFICATE This is to certify that the major project entitled “Determination of Optimum Step Size of LMS Algorithm in De-noising of Image” being submitted by Sharmin Akter Mim and Nusrat Jahan of Electronics and Communications Engineering Department, East West University, Dhaka in partial fulfillment for the award of the degree of Bachelor of Science in Information and Communication Engineering, is a record of major project carried out by them.
    [Show full text]
  • Adaptive Digital Filters Branko Kovacˇevic´ • Zoran Banjac Milan Milosavljevic´
    Adaptive Digital Filters Branko Kovacˇevic´ • Zoran Banjac Milan Milosavljevic´ Adaptive Digital Filters Academic Mind University of Belgrade - School of Electrical Engineering University Singidunum, Belgrade Springer-Verlag Berlin Heidelberg Branko Kovacˇevic´ Milan Milosavljevic´ University of Belgrade University of Belgrade and Singidunum Belgrade University Serbia Belgrade Serbia Zoran Banjac School of Electrical and Computing Engineering of Applied Studies Belgrade Serbia ISBN 978-3-642-33560-0 ISBN 978-3-642-33561-7 (eBook) DOI 10.1007/978-3-642-33561-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013935402 ISBN of Academic Mind : 978-86-7466-434-6 Ó Academic Mind Belgrade and Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer and Academic Mind. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
    [Show full text]
  • Implementation of Adaptive Filtering Algorithms for Noise Cancellation
    FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT Department of Electronics, Mathematics and Natural Sciences Implementation of adaptive filtering algorithms for noise cancellation Tanja Lampl 2020 Student thesis, Advanced level (Master degree), 15 HE Electronics Master Programme in Electronics/Automation (online) Supervisor: José Chilo (PhD) Examiner: Niclas Björsell (PhD) i Abstract This paper deals with the implementation and performance evaluation of adaptive filtering algorithms for noise cancellation without reference signal. Noise cancellation is a technique of estimating a desired signal from a noise- corrupted observation. If the signal and noise characteristics are unknown or change continuously over time, the need of adaptive filter arises. In contrast to the conventional digital filter design techniques, adaptive filters do not have constant filter parameters, they have the capability to continuously adjust their coefficients to their operating environment. To design an adaptive filter, that produces an optimum estimate of the desired signal from the noisy environment, different adaptive filtering algorithms are implemented and compared to each other. The Least Mean Square LMS, the Normalized Least Mean Square NLMS and the Recursive Least Square RLS algorithm are investigated. Three performance criteria are used in the study of these algorithms: the rate of convergence, the error performance and the signal-to- noise ratio SNR. The implementation results show that the adaptive noise cancellation application benefits more from
    [Show full text]
  • Analysis of Adaptive Filter Algorithms with an Application to Harmonic
    Analysis of Adaptive Filter Algorithms with an Application to Harmonic Noise Cancellation in Distribution Power Line Communications by Jin-Der Wang Center for Communications and Signal Processing Department of Electrical and Computer Engineering North Carolina State University August 1985 CCSP-TR-85/15 ABSTRACT WANG, JIN-DER. Analysis of Adaptive filter Algorithms with an Application to Harmonic Noise Cancellation in Distribution Power Line Communications. (Under the direction of Dr. Henry Joel Trussell.) Some well-known adaptive algorithms such as the least mean squares (LMS) and the recursive least squares (RLS) algorithms are reviewed, and the properties of some newly developed fast RLS algorithms such as the fast Kalman (FK), the fast a priori estimation sequential technique (FAEST), and the fast transversal filter (FTF) algorithms are investigated. These adaptive algorithms are applied to the problem of harmonic noise cancellation in distribution power line communica­ tions. The fast RLS algorithms were derived independently, from different approaches, and no connection had previously been made. They are rederived with a unified approach, and their mathematical equivalence is shown by examining certain algorithmic quantities and initial conditions. Based on this work, an improved rescue variable is then proposed which can detect the tendency of algo­ rithm divergence earlier than previously proposed rescue variables. Adaptive filters are applied to harmonic noise cancellation m distribution power line communications. It is shown that most filter taps can be constrained to zero to reduce computational complexity. The constrained LMS and RLS algo­ rithms are derived for a general constraint problem, and the constrained FK algorithm is derived for harmonic noise cancellation.
    [Show full text]