Detecting Topological Properties of Boundaries of Hyperbolic Groups

Total Page:16

File Type:pdf, Size:1020Kb

Detecting Topological Properties of Boundaries of Hyperbolic Groups Detecting topological properties of boundaries of hyperbolic groups Benjamin Barrett Department of Pure Mathematics and Mathematical Statistics University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Trinity College November 2018 Detecting topological properties of boundaries of hyperbolic groups Benjamin Barrett In general, a finitely presented group can have very nasty properties, but many of these properties are avoided if the group is assumed to admit a nice action by isometries on a space with a negative curvature property, such as Gromov hyperbolicity. Such groups are surprisingly common: there is a sense in which a random group admits such an action, as do some groups of classical interest, such as fundamental groups of closed Riemannian manifolds with negative sectional curvature. If a group admits an action on a Gromov hyperbolic space then large scale properties of the space give useful invariants of the group. One particularly natural large scale property used in this way is the Gromov boundary. The Gromov boundary of a hyperbolic group is a compact metric space that is, in a sense, approximated by spheres of large radius in the Cayley graph of the group. The technical results contained in this thesis are effective versions of this statement: we see that the presence of a particular topological feature in the boundary of a hyperbolic group is determined by the geometry of balls in the Cayley graph of radius bounded above by some known upper bound, and is therefore algorithmically detectable. Using these technical results one can prove that certain properties of a group can be computed from its presentation. In particular, we show that there are algorithms that, when given a presentation for a one-ended hyperbolic group, compute Bowditch’s canonical decomposition of that group and determine whether or not that group is virtually Fuchsian. The final chapter of this thesis studies the problem of detecting Cechˇ cohomological features in boundaries of hyperbolic groups. Epstein asked whether there is an algorithm that computes the Cechˇ cohomology of the boundary of a given hyperbolic group. We answer Epstein’s question in the affirmative for a restricted class of hyperbolic groups: those that are fundamental groups of graphs of free groups with cyclic edge groups. We also prove the computability of the Cechˇ cohomology of a space with some similar properties to the boundary of a hyperbolic group: Otal’s decomposition space associated to a line pattern in a free group. Declaration I hereby declare that this dissertation is the result of my own work and includes nothing that is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text Benjamin Barrett November 2018 Acknowledgements First and foremost I would like to express my deep gratitude to my supervisor, Henry Wilton, whose guidance, encouragement, positivity and patience have made these four years a rewarding and (mostly) enjoyable experience. I could not have hoped for more dedicated supervisor. I also thank the many other people in the geometric group theory community, in Cambridge and more broadly, who have taken the time to discuss my work with me, including but certainly not limited to Martin Bridson, Brian Bowditch, Daniel Groves, Panos Papasoglu, Alan Logan, John Mackay and Alex Margolis. I am grateful to the organisers of Geometric Group Theory in the South East and of the Young Geometric Group Theory conference series: these events have broadened my understanding of geometric group theory and made me a better mathematician. I thank the EPSRC for funding this PhD. I also thank Trinity College for being my home in Cambridge for seven years and Churchill College for welcoming me into its community. I thank my friends from my time as an undergraduate and graduate student at Cam- bridge, including James Munro, Fiona Hamey, David Mestel, Jack Smith, Jo Evans, Tom Berrett, Lawrence Barrott, James Kilbane, Nigel Burke and Nicolas Dupré, for their conver- sation both mathematical and (especially) non-mathematical. Living with James Munro and Fiona Hamey has made writing this thesis a more pleasant experience, and I am particularly grateful to them. I am also grateful to my friends outside the mathematical community, whose friend- ship has enriched my life and provided often-needed distraction from mathematics. I thank Cambridge Labour Party, and in particular George Owers, Dan Ratcliffe, Dan Swain and Ashley Walsh. Finally I thank my family, and in particular my parents, to whom this thesis is dedicated. It is thanks to their early encouragement and support that I have reached this point. Table of contents 1 Introduction1 1.1 Detecting connectedness properties of the boundary . .3 1.2 Computing splittings and JSJ decompositions . .4 1.3 Decomposition spaces . .8 2 Group actions on hyperbolic spaces 11 2.1 Word hyperbolicity . 11 2.1.1 The word metric and the Švarc-Milnor Lemma . 11 2.1.2 Hyperbolic geometry . 13 2.1.3 Hyperbolic groups . 16 2.2 The Gromov boundary . 17 2.2.1 Definition and topology . 18 2.2.2 The visual metric . 21 2.2.3 Local connectedness . 22 2.3 Relative hyperbolicity . 22 2.3.1 A dynamical characterisation . 23 2.3.2 The cusped space . 24 2.3.3 The Bowditch boundary . 26 3 Splittings and JSJ decompositions 27 3.1 Amalgams and HNNs . 27 3.2 More general splittings . 28 3.2.1 Graphs of groups . 28 3.2.2 Graphs of spaces . 29 3.2.3 Domination and refinement . 31 3.3 Group actions on trees . 32 3.4 Splittings over finite subgroups . 34 3.5 JSJ decompositions . 35 x Table of contents 3.5.1 Guirardel and Levitt . 36 3.5.2 Bowditch’s canonical decomposition . 37 3.5.3 Peripheral splittings . 40 3.5.4 Cut pairs in the relative setting . 41 3.6 Detecting splittings over finite groups . 42 3.6.1 The double dagger condition . 43 3.6.2 The computability of ‡ . 48 4 Cut points and cut pairs 49 4.1 Cylinders, cut points and cut pairs . 50 4.1.1 Spaces and constants . 50 4.1.2 Cylinders in the cusped space . 51 4.2 Cylinders in the thin part of the cusped space . 59 4.3 The geometry of finite balls in the cusped space . 61 4.3.1 Cut points . 62 4.3.2 Cut pairs . 62 4.3.3 Circular boundaries . 66 4.4 Generalisations . 70 5 Algorithmic consequences 71 5.1 Detecting cut points, cut pairs and circular boundaries . 72 5.1.1 Computing the constants . 72 5.1.2 Algorithms . 74 5.2 Computing splittings . 75 5.2.1 Virtually cyclic subgroups . 76 5.2.2 Enumerating the splittings . 78 5.3 Splittings of groups with circular boundary . 80 5.3.1 Groups with circular boundary . 80 5.3.2 Orbifolds . 82 5.3.3 Splittings of fundamental groups of orbifolds . 85 5.3.4 Detecting whether or not an orbifold is small . 86 5.4 Maximal splittings . 87 5.4.1 Boundaries with cut pairs . 88 5.4.2 Boundaries without cut points or pairs . 90 5.4.3 Computing a maximal splitting . 91 5.5 JSJ decompositions . 92 5.5.1 Virtually cyclic edge groups and Bowditch’s decomposition . 93 Table of contents xi 5.5.2 Z edge groups . 96 5.5.3 Zmax edge groups . 98 5.6 Generalisations . 99 6 The cohomology of decomposition spaces 101 6.1 Whitehead graphs and open covers . 102 6.2 Computing Hˇ 0(D).................................. 105 6.3 Computing Hˇ 1(D).................................. 109 6.4 The cohomology of hyperbolic graphs of free groups . 111 6.4.1 Boundaries of fundamental groups of graphs of groups . 111 6.4.2 Computing the cohomology . 113 Bibliography 119 Chapter 1 Introduction Geometric group theory has its roots in the idea that one can learn about a group from the geometric properties of its Cayley graph, or more generally the geometry of other spaces on which the group admits a nice action. Fundamental to this idea is the Švarc-Milnor Lemma, which tells us that, given a group G acting nicely on a metric space X , the large scale geometry of X depends only on G, and so large scale properties of X can be powerful invariants of the group G. This raises the following question. Question 1.0.1. On how large a scale does one need to look at a space to see its large scale features? To what extent does the geometry of a ball of large but bounded radius in the Cayley graph of a group determine the large scale geometry of that group? In this thesis we answer this question for certain large scale properties of groups satisfying an important curvature condition, called Gromov hyperbolicity. This property was introduced by Gromov [Gro87] as a coarse notion of negative curvature. Groups that act on these spaces are well behaved in very many ways, and share many nice properties with free groups, but the definition is not narrow: many groups of classical interest—such as fundamental groups of hyperbolic manifolds—are hyperbolic, as are most finitely presented groups.
Recommended publications
  • Hyperbolic Manifolds: an Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More Information
    Cambridge University Press 978-1-107-11674-0 - Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More information HYPERBOLIC MANIFOLDS An Introduction in 2 and 3 Dimensions Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters, and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heav- ily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of Exercises and Explorations that both challenge the reader to prove assertions made in the text, and suggest fur- ther topics to explore that bring additional insight. There is an extensive index and bibliography. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-11674-0 - Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions Albert Marden Frontmatter More information [Thurston’s Jewel (JB)(DD)] Thurston’s Jewel: Illustrated is the convex hull of the limit set of a kleinian group G associated with a hyperbolic manifold M(G) with a single, incompressible boundary component. The translucent convex hull is pictured lying over p. 8.43 of Thurston [1979a] where the theory behind the construction of such convex hulls was first formulated.
    [Show full text]
  • Quasi-Hyperbolic Planes in Relatively Hyperbolic Groups
    QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS JOHN M. MACKAY AND ALESSANDRO SISTO Abstract. We show that any group that is hyperbolic relative to virtually nilpotent subgroups, and does not admit peripheral splittings, contains a quasi-isometrically embedded copy of the hy- perbolic plane. In natural situations, the specific embeddings we find remain quasi-isometric embeddings when composed with the inclusion map from the Cayley graph to the coned-off graph, as well as when composed with the quotient map to \almost every" peripheral (Dehn) filling. We apply our theorem to study the same question for funda- mental groups of 3-manifolds. The key idea is to study quantitative geometric properties of the boundaries of relatively hyperbolic groups, such as linear connect- edness. In particular, we prove a new existence result for quasi-arcs that avoid obstacles. Contents 1. Introduction 2 1.1. Outline 5 1.2. Notation 5 1.3. Acknowledgements 5 2. Relatively hyperbolic groups and transversality 6 2.1. Basic definitions 6 2.2. Transversality and coned-off graphs 8 2.3. Stability under peripheral fillings 10 3. Separation of parabolic points and horoballs 12 3.1. Separation estimates 12 3.2. Embedded planes 15 3.3. The Bowditch space is visual 16 4. Boundaries of relatively hyperbolic groups 17 4.1. Doubling 19 4.2. Partial self-similarity 19 5. Linear Connectedness 21 Date: April 23, 2019. 2000 Mathematics Subject Classification. 20F65, 20F67, 51F99. Key words and phrases. Relatively hyperbolic group, quasi-isometric embedding, hyperbolic plane, quasi-arcs. The research of the first author was supported in part by EPSRC grants EP/K032208/1 and EP/P010245/1.
    [Show full text]
  • EMBEDDINGS of GROMOV HYPERBOLIC SPACES 1 Introduction
    GAFA, Geom. funct. anal. © Birkhiiuser Verlag, Basel 2000 Vol. 10 (2000) 266 - 306 1016-443X/00/020266-41 $ 1.50+0.20/0 I GAFA Geometric And Functional Analysis EMBEDDINGS OF GROMOV HYPERBOLIC SPACES M. BONK AND O. SCHRAMM Abstract It is shown that a Gromov hyperbolic geodesic metric space X with bounded growth at some scale is roughly quasi-isometric to a convex subset of hyperbolic space. If one is allowed to rescale the metric of X by some positive constant, then there is an embedding where distances are distorted by at most an additive constant. Another embedding theorem states that any 8-hyperbolic met­ ric space embeds isometrically into a complete geodesic 8-hyperbolic space. The relation of a Gromov hyperbolic space to its boundary is fur­ ther investigated. One of the applications is a characterization of the hyperbolic plane up to rough quasi-isometries. 1 Introduction The study of Gromov hyperbolic spaces has been largely motivated and dominated by questions about Gromov hyperbolic groups. This paper studies the geometry of Gromov hyperbolic spaces without reference to any group or group action. One of our main theorems is Embedding Theorem 1.1. Let X be a Gromov hyperbolic geodesic metric space with bounded growth at some scale. Then there exists an integer n such that X is roughly similar to a convex subset of hyperbolic n-space lHIn. The precise definitions appear in the body of the paper, but now we briefly discuss the meaning of the theorem. The condition of bounded growth at some scale is satisfied, for example, if X is a bounded valence graph, or a Riemannian manifold with bounded local geometry.
    [Show full text]
  • Arxiv:1612.03497V2 [Math.GR] 18 Dec 2017 2-Sphere Is Virtually a Kleinian Group
    BOUNDARIES OF DEHN FILLINGS DANIEL GROVES, JASON FOX MANNING, AND ALESSANDRO SISTO Abstract. We begin an investigation into the behavior of Bowditch and Gro- mov boundaries under the operation of Dehn filling. In particular we show many Dehn fillings of a toral relatively hyperbolic group with 2{sphere bound- ary are hyperbolic with 2{sphere boundary. As an application, we show that the Cannon conjecture implies a relatively hyperbolic version of the Cannon conjecture. Contents 1. Introduction 1 2. Preliminaries 5 3. Weak Gromov–Hausdorff convergence 12 4. Spiderwebs 15 5. Approximating the boundary of a Dehn filling 20 6. Proofs of approximation theorems for hyperbolic fillings 23 7. Approximating boundaries are spheres 39 8. Ruling out the Sierpinski carpet 42 9. Proof of Theorem 1.2 44 10. Proof of Corollary 1.4 45 Appendix A. δ{hyperbolic technicalities 46 References 50 1. Introduction One of the central problems in geometric group theory and low-dimensional topology is the Cannon Conjecture (see [Can91, Conjecture 11.34], [CS98, Con- jecture 5.1]), which states that a hyperbolic group whose (Gromov) boundary is a arXiv:1612.03497v2 [math.GR] 18 Dec 2017 2-sphere is virtually a Kleinian group. By a result of Bowditch [Bow98] hyperbolic groups can be characterized in terms of topological properties of their action on the boundary. The Cannon Conjecture is that (in case the boundary is S2) this topological action is in fact conjugate to an action by M¨obiustransformations. Rel- atively hyperbolic groups are a natural generalization of hyperbolic groups which are intended (among other things) to generalize the situation of the fundamental group of a finite-volume hyperbolic n-manifold acting on Hn.
    [Show full text]
  • 15 Nov 2008 3 Ust Nsmercsae N Atcs41 38 37 Lattices and Spaces Symmetric in References Subsets Graph Pants the 13
    THICK METRIC SPACES, RELATIVE HYPERBOLICITY, AND QUASI-ISOMETRIC RIGIDITY JASON BEHRSTOCK, CORNELIA DRUT¸U, AND LEE MOSHER Abstract. We study the geometry of nonrelatively hyperbolic groups. Gen- eralizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group be- ing relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. As an application, Artin groups are relatively hyperbolic if and only if freely decomposable. We also introduce a new quasi-isometry invariant of metric spaces called metrically thick, which is sufficient for a metric space to be nonhyperbolic rel- ative to any nontrivial collection of subsets. Thick finitely generated groups include: mapping class groups of most surfaces; outer automorphism groups of most free groups; certain Artin groups; and others. Nonuniform lattices in higher rank semisimple Lie groups are thick and hence nonrelatively hy- perbolic, in contrast with rank one which provided the motivating examples of relatively hyperbolic groups. Mapping class groups are the first examples of nonrelatively hyperbolic groups having cut points in any asymptotic cone, resolving several questions of Drutu and Sapir about the structure of relatively hyperbolic groups. Outside of group theory, Teichm¨uller spaces for surfaces of sufficiently large complexity are thick with respect to the Weil-Peterson metric, in contrast with Brock–Farb’s hyperbolicity result in low complexity. Contents 1. Introduction 2 2. Preliminaries 7 3. Unconstricted and constricted metric spaces 11 4. Non-relative hyperbolicity and quasi-isometric rigidity 13 5.
    [Show full text]
  • A Brief Survey of the Deformation Theory of Kleinian Groups 1
    ISSN 1464-8997 (on line) 1464-8989 (printed) 23 Geometry & Topology Monographs Volume 1: The Epstein birthday schrift Pages 23–49 A brief survey of the deformation theory of Kleinian groups James W Anderson Abstract We give a brief overview of the current state of the study of the deformation theory of Kleinian groups. The topics covered include the definition of the deformation space of a Kleinian group and of several im- portant subspaces; a discussion of the parametrization by topological data of the components of the closure of the deformation space; the relationship between algebraic and geometric limits of sequences of Kleinian groups; and the behavior of several geometrically and analytically interesting functions on the deformation space. AMS Classification 30F40; 57M50 Keywords Kleinian group, deformation space, hyperbolic manifold, alge- braic limits, geometric limits, strong limits Dedicated to David Epstein on the occasion of his 60th birthday 1 Introduction Kleinian groups, which are the discrete groups of orientation preserving isome- tries of hyperbolic space, have been studied for a number of years, and have been of particular interest since the work of Thurston in the late 1970s on the geometrization of compact 3–manifolds. A Kleinian group can be viewed either as an isolated, single group, or as one of a member of a family or continuum of groups. In this note, we concentrate our attention on the latter scenario, which is the deformation theory of the title, and attempt to give a description of various of the more common families of Kleinian groups which are considered when doing deformation theory.
    [Show full text]
  • Inducing Maps Between Gromov Boundaries
    INDUCING MAPS BETWEEN GROMOV BOUNDARIES J. DYDAK AND Z.ˇ VIRK Abstract. It is well known that quasi-isometric embeddings of Gromov hy- perbolic spaces induce topological embeddings of their Gromov boundaries. A more general question is to detect classes of functions between Gromov hyperbolic spaces that induce continuous maps between their Gromov bound- aries. In this paper we introduce the class of visual functions f that do induce continuous maps f˜ between Gromov boundaries. Its subclass, the class of ra- dial functions, induces H¨older maps between Gromov boundaries. Conversely, every H¨older map between Gromov boundaries of visual hyperbolic spaces induces a radial function. We study the relationship between large scale prop- erties of f and small scale properties of f˜, especially related to the dimension theory. In particular, we prove a form of the dimension raising theorem. We give a natural example of a radial dimension raising map and we also give a general class of radial functions that raise asymptotic dimension. arXiv:1506.08280v1 [math.MG] 27 Jun 2015 Date: May 11, 2018. 2010 Mathematics Subject Classification. Primary 53C23; Secondary 20F67, 20F65, 20F69. Key words and phrases. Gromov boundary, hyperbolic space, dimension raising map, visual metric, coarse geometry. This research was partially supported by the Slovenian Research Agency grants P1-0292-0101. 1 2 1. Introduction Gromov boundary (as defined by Gromov) is one of the central objects in the geometric group theory and plays a crucial role in the Cannon’s conjecture [7]. It is a compact metric space that represents an image at infinity of a hyperbolic metric space.
    [Show full text]
  • Ergodic Currents Dual to a Real Tree Thierry Coulbois, Arnaud Hilion
    Ergodic currents dual to a real tree Thierry Coulbois, Arnaud Hilion To cite this version: Thierry Coulbois, Arnaud Hilion. Ergodic currents dual to a real tree. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, 36 (3), pp.745-766. 10.1017/etds.2014.78. hal- 01481866 HAL Id: hal-01481866 https://hal.archives-ouvertes.fr/hal-01481866 Submitted on 3 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ERGODIC CURRENTS DUAL TO A REAL TREE THIERRY COULBOIS, ARNAUD HILION Abstract. Let T be an R-tree with dense orbits in the boundary of Outer space. When the free group FN acts freely on T , we prove that the number of projective classes of ergodic currents dual to T is bounded above by 3N − 5. We combine Rips induction and splitting induction to define unfolding induction for such an R-tree T . Given a current µ dual to T , the unfolding induction produces a sequence of approximations converging towards µ. We also give a unique ergodicity criterion. 1. Introduction 1.1. Main results. Let FN be the free group with N generators.
    [Show full text]
  • Notes on Sela's Work: Limit Groups And
    Notes on Sela's work: Limit groups and Makanin-Razborov diagrams Mladen Bestvina∗ Mark Feighn∗ October 31, 2003 Abstract This is the first in a series of papers giving an alternate approach to Zlil Sela's work on the Tarski problems. The present paper is an exposition of work of Kharlampovich-Myasnikov and Sela giving a parametrization of Hom(G; F) where G is a finitely generated group and F is a non-abelian free group. Contents 1 The Main Theorem 2 2 The Main Proposition 9 3 Review: Measured laminations and R-trees 10 4 Proof of the Main Proposition 18 5 Review: JSJ-theory 19 6 Limit groups are CLG's 22 7 A more geometric approach 23 ∗The authors gratefully acknowledge support of the National Science Foundation. Pre- liminary Version. 1 1 The Main Theorem This is the first of a series of papers giving an alternative approach to Zlil Sela's work on the Tarski problems [31, 30, 32, 24, 25, 26, 27, 28]. The present paper is an exposition of the following result of Kharlampovich-Myasnikov [9, 10] and Sela [30]: Theorem. Let G be a finitely generated non-free group. There is a finite collection fqi : G ! Γig of proper quotients of G such that, for any homo- morphism f from G to a free group F , there is α 2 Aut(G) such that fα factors through some qi. A more precise statement is given in the Main Theorem. Our approach, though similar to Sela's, differs in several aspects: notably a different measure of complexity and a more geometric proof which avoids the use of the full Rips theory for finitely generated groups acting on R-trees, see Section 7.
    [Show full text]
  • Beyond Serre's" Trees" in Two Directions: $\Lambda $--Trees And
    Beyond Serre’s “Trees” in two directions: Λ–trees and products of trees Olga Kharlampovich,∗ Alina Vdovina† October 31, 2017 Abstract Serre [125] laid down the fundamentals of the theory of groups acting on simplicial trees. In particular, Bass-Serre theory makes it possible to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. In this survey we will discuss the following generalizations of ideas from [125]: the theory of isometric group actions on Λ-trees and the theory of lattices in the product of trees where we describe in more detail results on arithmetic groups acting on a product of trees. 1 Introduction Serre [125] laid down the fundamentals of the theory of groups acting on sim- plicial trees. The book [125] consists of two parts. The first part describes the basics of what is now called Bass-Serre theory. This theory makes it possi- ble to extract information about the structure of a group from its action on a simplicial tree. Serre’s original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. These groups are considered in the second part of the book. Bass-Serre theory states that a group acting on a tree can be decomposed arXiv:1710.10306v1 [math.GR] 27 Oct 2017 (splits) as a free product with amalgamation or an HNN extension. Such a group can be represented as a fundamental group of a graph of groups.
    [Show full text]
  • Curriculum Vitae
    Curriculum vitae Kate VOKES Adresse E-mail [email protected] Institut des Hautes Études Scientifiques 35 route de Chartres 91440 Bures-sur-Yvette Site Internet www.ihes.fr/~vokes/ France Postes occupées • octobre 2020–juin 2021: Postdoctorante (HUAWEI Young Talents Programme), Institut des Hautes Études Scientifiques, Université Paris-Saclay, France • janvier 2019–octobre 2020: Postdoctorante, Institut des Hautes Études Scien- tifiques, Université Paris-Saclay, France • juillet 2018–decembre 2018: Fields Postdoctoral Fellow, Thematic Program on Teichmüller Theory and its Connections to Geometry, Topology and Dynamics, Fields Institute for Research in Mathematical Sciences, Toronto, Canada Formation • octobre 2014 – juin 2018: Thèse de Mathématiques University of Warwick, Royaume-Uni Titre de thèse: Large scale geometry of curve complexes Directeur de thèse: Brian Bowditch • octobre 2010 – juillet 2014: MMath(≈Licence+M1) en Mathématiques Durham University, Royaume-Uni, Class I (Hons) Domaine de recherche Topologie de basse dimension et géométrie des groupes, en particulier le groupe mod- ulaire d’une surface, l’espace de Teichmüller, le complexe des courbes et des complexes similaires. Publications et prépublications • (avec Jacob Russell) Thickness and relative hyperbolicity for graphs of multicurves, prépublication (2020) : arXiv:2010.06464 • (avec Jacob Russell) The (non)-relative hyperbolicity of the separating curve graph, prépublication (2019) : arXiv:1910.01051 • Hierarchical hyperbolicity of graphs of multicurves, accepté dans Algebr.
    [Show full text]
  • Arxiv:Math/9701212V1
    GEOMETRY AND TOPOLOGY OF COMPLEX HYPERBOLIC AND CR-MANIFOLDS Boris Apanasov ABSTRACT. We study geometry, topology and deformation spaces of noncompact complex hyperbolic manifolds (geometrically finite, with variable negative curvature), whose properties make them surprisingly different from real hyperbolic manifolds with constant negative curvature. This study uses an interaction between K¨ahler geometry of the complex hyperbolic space and the contact structure at its infinity (the one-point compactification of the Heisenberg group), in particular an established structural theorem for discrete group actions on nilpotent Lie groups. 1. Introduction This paper presents recent progress in studying topology and geometry of com- plex hyperbolic manifolds M with variable negative curvature and spherical Cauchy- Riemannian manifolds with Carnot-Caratheodory structure at infinity M∞. Among negatively curved manifolds, the class of complex hyperbolic manifolds occupies a distinguished niche due to several reasons. First, such manifolds fur- nish the simplest examples of negatively curved K¨ahler manifolds, and due to their complex analytic nature, a broad spectrum of techniques can contribute to the study. Simultaneously, the infinity of such manifolds, that is the spherical Cauchy- Riemannian manifolds furnish the simplest examples of manifolds with contact structures. Second, such manifolds provide simplest examples of negatively curved arXiv:math/9701212v1 [math.DG] 26 Jan 1997 manifolds not having constant sectional curvature, and already obtained
    [Show full text]