Single Particle Analysis of Aerosols

Total Page:16

File Type:pdf, Size:1020Kb

Single Particle Analysis of Aerosols Journal of Atmospheric Chemistry 37: 299–329, 2000. 299 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Single Particle Analysis of Aerosols, Observed in the Marine Boundary Layer during the Monterey Area Ship Tracks Experiment (MAST), with Respect to Cloud Droplet Formation L. A. DE BOCK 1,P.E.JOOS1, K. J. NOONE 2, R. A. POCKALNY 3 and R. E. VAN GRIEKEN 1 1Department of Chemistry, University of Antwerp (UIA), B-2610 Antwerp, Belgium 2Department of Meteorology, Stockholm University, S-106 91 Stockholm, Sweden 3Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, U.S.A. (Received: 10 September 1998; accepted: 12 April 2000) Abstract. The chemical composition of individual particles >0.2 µm sampled during the MAST- experiment were analysed by SEM-EDX, in combination with multivariate techniques. The objective of this experiment was to identify the mechanisms responsible for the modification of marine stra- tocumulus clouds by emissions from ships and in a wider sense to provide information on the global processes involved in atmospheric modification of cloud albedo. Aerosols were examined under different MBL pollution levels (clean, intermediately polluted and moderately polluted) in five different reservoirs: background below-cloud and above-cloud aerosol; background cloud droplet residual particles; below-cloud ship plume aerosol and ship track cloud droplet residual particles. In this study a relation was provided between the aerosol emitted from the ship’s stack to an effect in cloud. Additionally, a large fraction of the ambient aerosol was found to be composed of organic material or other compounds, consisting of low Z-elements, associated with chlorine. Their number fraction was largest in clean marine boundary layers, and decreased with increasing pollution levels. The fraction of ‘transformed sea salt’ (Na, Cl, S), on the other hand, increased with the pollution level in the MBL. Only 20% of the particles fell within the detectable range of the analysis. Key words: aerosols, cloud formation, microanalysis, ship tracks, climate change. 1. Introduction Chemical and physical processes acting in clouds are very complex, since clouds are multiphase systems in which gaseous compounds, interstitial aerosol particles and liquid droplets coexist. All of the processes occurring in clouds are mutually connected and proceed simultaneously. Among the different existing cloud types, marine stratocumulus clouds seem to play a crucial role in the control of the ra- diative budget of the earth’s atmosphere. By reflecting incoming solar radiation they are able to reduce the earth’s surface temperature. Anthropogenic activity may 300 L. A. DE BOCK ET AL. influence cloud reflectivity (albedo), perturbing the radiative balance of the earth (Kim and Cess, 1993). The objective of the Monterey Area Ship Tracks Experiment (MAST), which took place in June 1994 off the coast of central California, U.S.A., was to acquire a better understanding of the mechanisms responsible for the modification of marine stratocumulus clouds by emissions from ships (Durkee et al., 1997). Ever since the launching of the first TIROS satellites, the anomalous cloud lines (or ship tracks) in satellite images have been suspected to be induced by additional aerosol particles produced by ships (Conover, 1966; Twomey, 1968). Moreover, recent evidence for this correlation was provided by King et al. (1993), Radke et al. (1989), Platnick and Twomey (1994), Ferek et al. (1997) and Hindman and Bodowski (1996). The overall objective of the MAST project was to provide information on the processes involved in anthropogenic modification of cloud albedo. For a long time the char- acterisation of aerosols and cloud droplets in the cloud multiphase systems was approached, like several other environmental topics, by bulk analysis techniques. The single particle analysis approach (SPA) is presently recognised as a powerful tool to reveal detailed information, inaccessible by bulk techniques, concerning the particle origin, formation, reactivity, transformation reactions and their environ- mental impact (De Bock et al., 1996). In this study, scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM-EDX, one of the most commonly used micro-analytical techniques in SPA) was applied to determine the composition and size of individual cloud droplet residual particles and ship track and ship plume aerosol particles, with diameters down to 0.2 µm. Droplet residual particles are those particles remaining after cloud droplets have been sampled and evaporated. Compositional differences found between particles collected in these different reservoirs will help to link the aerosol produced by ships to that present in clouds, and to identify the processes by which ship tracks are formed and become recognisable on satellite images. SEM-EDX was considered to be a particularly ap- propriate technique since the instrument is strongly computerised and automated, offering the possibility to analyse several hundreds of particles in a few hours time. In combination with multivariate techniques, the analysed particles can be assigned to specific sources and classified in different types from which the abundances can reveal the source strength. 2. Experimental 2.1. SAMPLING As part of the MAST sampling campaign, 12 research flights with the University of Washington’s C131 aircraft were flown off the coast of central California, U.S.A. In addition to its normal payload, the aircraft was equipped with a number of addi- tional instruments to investigate the nature of the particulate and gaseous emissions from ships and the chemistry and microphysics of clouds. Particle measurements included a continuous-flow cloud condensation nuclei (CCN) spectrometer (Hud- SINGLE PARTICLE ANALYSIS OF AEROSOLS 301 son, 1989), to investigate CCN properties; a radial differential mobility analyser (Zhang et al., 1995) to determine aerosol size distributions, and a counterflow virtual impactor (CVI; Noone et al., 1988; Orgen et al., 1985) to collect residual aerosol particles. This paper will discuss the chemical analysis of particles sampled with the CVI. The chemical composition of droplet residual particles will reflect the com- position of the particles on which the cloud droplets actually formed, plus any non-volatile material produced in the droplets during their lifetime in the cloud. By comparing the composition of cloud droplet residual particles with the composition of particles in (a) the background below-cloud aerosol, (b) the ship plume aerosol, and (c) the aerosol above the subsidence inversion, we can determine the contri- bution of the aerosol in each of these reservoirs to the number of cloud droplets formed in the clouds we sampled. Perturbations in cloud albedo are dependent on the number of additional cloud droplets formed; SPA gives us a particularly powerful tool to determine the source of these additional droplets, since it is a number-based analysis technique. The major disadvantage of the technique in this regard is that the smallest particle which can be analysed is 0.2 µm in size. Öström et al. (1997) stated in a study of residual particle distributions observed in clouds forming in boundary layers of varying degrees of pollution, that typically, only 20% of the number of residual particles found in the cloud droplets are larger than 0.2 µm. While the composition of the particles controlling cloud droplet number can not be definitively determined with SPA in this case, the relative contribution of various different particle classes to the droplet population can nonetheless be determined. It is known that for the small particles, i.e., smaller than 0.2 µm, sulfate is very important. However, these particles are, as said before, not measurable with SPA. Another unavoidable limit- ation in this work is that highly volatile particles might disappear in the vacuum of the SEM-instrument. 2.2. INSTRUMENTATION – ANALYSIS A total of 71 aerosol samples were analysed using a JEOL JSM 6300 SEM (JEOL, Tokyo, Japan). The instrument is equipped with a PGT (Princeton Gamma Tech, Princeton, NJ, U.S.A.) energy dispersive X-ray detector. The PA6300 program was applied for the automated analysis of 500 individual particles per sample at an acceleration voltage of 20 kV and a beam current of 1 nA. This number of particles is statistically (Poisson distribution) sufficient enough to get a reasonable view about the presence of a certain class of compounds. The average total particle number concentration during exactly the time of the sampling for single particle analysis is not known, but the total particle concentration results during the MAST experiment are discussed in Noone et al. (2000). For every sample, 500 particles are analysed; a number concentration of detected particles cannot be given. The X-ray accumulation time was fixed at 20 s. When the PA6300 program is run, 302 L. A. DE BOCK ET AL. the area of the sample to be analysed is subdivided in different fields and the particle analysis starts with the collection of a backscattered electron image of the field. Based on this image, the area, perimeter and diameter of the particles in the field are calculated and compared with a selection criterion. The X-ray spectrum is accumulated by rastering the electron beam on 40 points within the particle’s contour. Spectrum evaluation is performed by a tophat filter and storage on optical disk of images and spectra allows a re-evaluation of the acquired data. Clear drawbacks of SEM-EDX are the poor detection limits (about 0.1%) and the limitation to detect only elements with Z > 10, due to the presence of a Be- window in front of the Si-Li detector in a conventional SEM instrument. The X-rays of elements, like C, O and N are too low in energy to penetrate this window. Therefore, in SEM-EDX a particle group is classified as organic mater- ial, if no characteristic X-rays are collected or, in other words, when the sum of characteristic X-ray peak intensities in this group is very low.
Recommended publications
  • Marine Cloud Brightening
    MARINE CLOUD BRIGHTENING Alan Gadian , John Latham, Mirek Andrejczuk, Keith Bower, Tom Choularton, Hugh Coe, Paul Connolly, Ben Parkes, Phillip Rasch, Stephen Salter, Hailong Wang and Rob Wood . Contents:- • Background to the philosophical approach • Some L.E.M . and climate model results • Technological issues. • Future plans and publications. Science Objectives:- • To explain the science of how stratocumulus clouds can have a significant effect on the earth’s radiation balance • To present some modelling results from Latham et al 2011 Marine Cloud Brightening, WRCP October 2011 1 Stratocumulus clouds cover more than 30% of ocean surface Stratocumulus clouds have a high reflectance, which depends on droplet number and mean droplet size. Twomey Effect .:- Smaller drops produce whiter clouds . Proposal :- To advertently to enhance the droplet concentration N in low-level maritime stratocumulus clouds, so increasing cloud albedo (Twomey, JAS, 1977 ) and longevity ( Albrecht, Science, 1989 ) Technique:- To disseminate sea-water droplets of diameter about 1um at the ocean surface. Some of these ascend via turbulence to cloud-base where they are activated to form cloud droplets, thereby enhancing cloud droplet number concentration, N (Latham, Nature 1990 ; Phil Trans Roy Soc 2008 and 2011, under review ) 2 Above:- Computed spherical albedo for increasing pollution in THIN, MEDIUM and THICK clouds. ( Twomey, JAS, 1977 ) Right:- Frequency distributions of the reflectances at 1,535 nm versus reflectances at 754 nm. From ACE-2. Isolines of geometrical thickness (H) and droplet number concentration (N): higher reflectance in polluted cloud, normalised by a similar geometrical thickness (Brenguier et al. 2000 ). 3 Figure 1. Panel (a): Map of MODIS-derived annual mean cloud droplet concentration N 0 for stratiform marine warm clouds.
    [Show full text]
  • Studying Geoengineering with Natural and Anthropogenic Analogs
    Studying Geoengineering with Natural and Anthropogenic Analogs Alan Robocka, Douglas G. MacMartinb, Riley Durenc, and Matthew W. Christensend aDepartment of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 bControl and Dynamical Systems, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 cJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 dDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523 Submitted to Climatic Change November 2012 Corresponding Author: Alan Robock Department of Environmental Sciences Rutgers University 14 College Farm Road New Brunswick, NJ 08901 Phone: 848-932-5751 Fax: 732-932-8644 E-mail: [email protected] 1 Abstract 2 Solar radiation management (SRM) has been proposed as a possible option for offsetting 3 some anthropogenic radiative forcing, with the goal of reducing some of the associated climatic 4 changes. There are clearly significant uncertainties associated with SRM, and even small-scale 5 experiments that might reduce uncertainty would carry some risk. However, there are also 6 natural and anthropogenic analogs to SRM, such as volcanic eruptions in the case of 7 stratospheric aerosol injection and ship tracks in the case of marine cloud albedo modification. It 8 is essential to understand what we can learn from these analogs in order to validate models, 9 particularly because of the problematic nature of outdoor experiments. It is also important to 10 understand what we cannot learn, as this might better focus attention on what risks would need to 11 be solely examined by numerical models. Stratospheric conditions following a major volcanic 12 eruption, for example, are not the same as those to be expected from intentional geoengineering, 13 both because of confounding effects of volcanic ash and the differences between continuous and 14 impulsive injection of material into the stratosphere.
    [Show full text]
  • Automated Underway Oceanic and Atmospheric Measurements from Ships
    AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM SHIPS Shawn R. Smith (1), Mark A. Bourassa (1), E. Frank Bradley (2), Catherine Cosca (3), Christopher W. Fairall (4), Gustavo J. Goni (5), John T. Gunn (6), Maria Hood (7), Darren L. Jackson (8), Elizabeth C. Kent (9), Gary Lagerloef (6), Philip McGillivary (10), Loic Petit de la Villéon (11), Rachel T. Pinker (12), Eric Schulz (13), Janet Sprintall (14), Detlef Stammer (15), Alain Weill (16), Gary A. Wick (17), Margaret J. Yelland (9) (1) Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306-2840, USA, Emails: [email protected], [email protected] (2) CSIRO Land and Water, PO Box 1666, Canberra, ACT 2601, AUSTRALIA, Email: [email protected] (3) NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115, USA, Email: [email protected] (4) NOAA/ESRL/PSD, R/PSD3, 325 Broadway, Boulder, CO 80305-3328, USA, Email: [email protected] (5) USDC/NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami, FL 33149, USA, Email: [email protected] (6) Earth and Space Research, 2101 Fourth Ave., Suite 1310, Seattle, WA, 98121, USA, Emails: [email protected], [email protected] (7) Intergovernmental Oceanographic Commission UNESCO, 1, rue Miollis, 75732 Paris Cedex 15, FRANCE, Email: [email protected] (8) Cooperative Institute for Research in Environmental Sciences, NOAA/ESRL/PSD, 325 Broadway, R/PSD2, Boulder, CO 80305, USA, Email: [email protected] (9) National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK, Emails: [email protected],
    [Show full text]
  • The Monterey Area Ship Track Experiment
    Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2000-08-15 The Monterey Area Ship Track Experiment Durkee, Philip A. Journal of the Atmospheric Sciences, Vol. 57, 15 August 2000, pp. 2523-2541. http://hdl.handle.net/10945/46745 15 AUGUST 2000 DURKEE ET AL. 2523 The Monterey Area Ship Track Experiment PHILIP A. DURKEE Department of Meteorology, Naval Postgraduate School, Monterey, California KEVIN J. NOONE Stockholm University, Stockholm, Sweden ROBERT T. B LUTH Office of Naval Research, Arlington, Virginia (Manuscript received 14 November 1996, in final form 23 February 1999) ABSTRACT In June 1994 the Monterey Area Ship Track (MAST) experiment was conducted off the coast of California to investigate the processes behind anthropogenic modification of cloud albedo. The motivation for the MAST experiment is described here, as well as details of the experimental design. Measurement platforms and strategies are explained, and a summary of experiment operations is presented. The experiment produced the largest dataset to date of direct measurements of the effects of ships on the microphysics and radiative properties of marine stratocumulus clouds as an analog for the indirect effects of anthropogenic pollution on cloud albedo. 1. Introduction ever, the upper limit of the indirect aerosol forcing es­ timate was 21.5 W m22. Clearly, reducing the uncer­ Determining the effects of atmospheric aerosol par­ tainty in, or even arriving at, a central value for the ticles on the radiative balance of the earth has been a estimates of the indirect radiative effect of aerosols is major focus of recent climate research.
    [Show full text]
  • Experimental Studies on Particle Emissions from Cruising Ship, Their Characteristic Properties, Transformation and Atmospheric Lifetime in the Marine Boundary Layer
    Atmos. Chem. Phys., 8, 2387–2403, 2008 www.atmos-chem-phys.net/8/2387/2008/ Atmospheric © Author(s) 2008. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer A. Petzold1, J. Hasselbach1, P. Lauer2, R. Baumann1, K. Franke3, C. Gurk4, H. Schlager1, and E. Weingartner5 1Dt. Zentrum fur¨ Luft- und Raumfahrt, Inst. fur¨ Physik der Atmosphare,¨ Oberpfaffenhofen, 82234 Wessling, Germany 2MAN Diesel SE, Stadtbachstr. 1, 86135 Augsburg, Germany 3Institute for Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany 4Max-Planck-Institute for Chemistry, Johann-Joachim-Becher-Weg 27, 55128 Mainz, Germany 5Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland Received: 9 October 2007 – Published in Atmos. Chem. Phys. Discuss.: 19 October 2007 Revised: 17 March 2008 – Accepted: 15 April 2008 – Published: 6 May 2008 Abstract. Particle emissions from ship engines and their ship exhaust particle number concentrations in an expanding atmospheric transformation in the marine boundary layer plume, a maximum plume life time of approx. 24 h is esti- (MBL) were investigated in engine test bed studies and in mated for a well-mixed marine boundary layer. airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chem- ical properties were measured in the exhaust gas of a serial 1 Introduction MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were Shipping represents a major contribution to the international complemented by airborne aerosol transformation studies in transportation sector which, however, is not well quantified the plume of a large container ship in the English Chan- in terms of global emissions and climate impacts.
    [Show full text]
  • Observations of Ship Tracks from Ship-Based Platforms
    JANUARY 1999 PORCH ET AL. 69 Observations of Ship Tracks from Ship-Based Platforms W. P ORCH,* R. BORYS,1 P. D URKEE,# R. GASPAROVIC,@ W. H OOPER,& E. HINDMAN,** AND K. NIELSEN# * Los Alamos National Laboratory, Los Alamos, New Mexico 1 Atmospheric Sciences Center, Desert Research Institute, Reno, Nevada # Department of Meteorology, Naval Postgraduate School, Monterey, California @ The Johns Hopkins University, APL, Laurel, Maryland & Naval Research Laboratory, Washington, D.C. ** Earth and Atmospheric Sciences Department, City College of New York, New York, New York (Manuscript received 17 October 1997, in ®nal form 17 February 1998) ABSTRACT Ship-based measurements in June 1994 provided information about ship-track clouds and associated atmo- spheric environment observed from below cloud levels that provide a perspective different from satellite and aircraft measurements. Surface measurements of latent and sensible heat ¯uxes, sea surface temperatures, and meteorological pro®les with free and tethered balloons provided necessary input conditions for models of ship- track formation and maintenance. Remote sensing measurements showed a coupling of ship plume dynamics and entrainment into overlaying clouds. Morphological and dynamic effects were observed on clouds unique to the ship tracks. These morphological changes included lower cloud bases early in the ship-track formation, evidence of raised cloud bases in more mature tracks, sometimes higher cloud tops, thin cloud-free regions paralleling the tracks, and often stronger radar returns. The ship-based lidar aerosol measurements revealed that ship plumes often interacted with the overlying clouds in an intermittent rather than continuous manner. These observations imply that more must be learned about ship-track dynamics before simple relations between cloud condensation nuclei and cloud brightness can be developed.
    [Show full text]
  • Contrails, Contrail Cirrus, and Ship Tracks
    214 Proceedings of the TAC-Conference, June 26 to 29, 2006, Oxford, UK Contrails, contrail cirrus, and ship tracks K. Gierens* DLR-Institut für Physik der Atmosphäre Oberpfaffenhofen, Germany Keywords: Aerosol effects on clouds and climate ABSTRACT: The following text is an enlarged version of the conference tutorial lecture on con- trails, contrail cirrus, and ship tracks. I start with a general introduction into aerosol effects on clouds. Contrail formation and persistence, aviation’s share to cirrus trends and ship tracks are treated then. 1 INTRODUCTION The overarching theme above the notions “contrails”, “contrail cirrus”, and “ship tracks” is the ef- fects of anthropogenic aerosol on clouds and on climate via the cloud’s influence on the flow of ra- diation energy in the atmosphere. Aerosol effects are categorised in the following way: - Direct effect: Aerosol particles scatter and absorb solar and terrestrial radiation, that is, they in- terfere directly with the radiative energy flow through the atmosphere (e.g. Haywood and Boucher, 2000). - Semidirect effect: Soot particles are very effective absorbers of radiation. When they absorb ra- diation the ambient air is locally heated. When this happens close to or within clouds, the local heating leads to buoyancy forces, hence overturning motions are induced, altering cloud evolu- tion and potentially lifetimes (e.g. Hansen et al., 1997; Ackerman et al., 2000). - Indirect effects: The most important role of aerosol particles in the atmosphere is their role as condensation and ice nuclei, that is, their role in cloud formation. The addition of aerosol parti- cles to the natural aerosol background changes the formation conditions of clouds, which leads to changes in cloud occurrence frequencies, cloud properties (microphysical, structural, and op- tical), and cloud lifetimes (e.g.
    [Show full text]
  • Marine Cloud Brightening
    MARINE CLOUD BRIGHTENING Authors:- John Latham1,4 , Keith Bower4 , Tom Choularton4 , Hugh Coe4, Paul Connelly4 , Gary Cooper7 ,Tim Craft4, Jack Foster7, Alan Gadian5, Lee Galbraith7 Hector Iacovides4 , David Johnston7 , Brian Launder4, Brian Leslie7 , John Meyer7, Armand Neukermans7, Bob Ormond7, Ben Parkes5 , Phillip Rasch3, John Rush7, Stephen Salter6, Tom Stevenson6, Hailong Wang3, Qin Wang7 & Rob Wood2 . Affiliations:- 1 National Centre for Atmospheric Research, Boulder, CO. 2 U Washington, Seattle, 3 PNNL, Richland, WA., 4 U Manchester, 5 U of Leeds, 6 U of Edinburgh, 7 Silver Lining, CA. Abstract The idea behind the marine cloud brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre seawater particles could significantly enhance the cloud droplet number concentration thus increasing the cloud albedo and longevity – thereby producing a cooling, which computations suggest could be adequate to balance the warming associated with a doubling of atmospheric carbon dioxide. We review herein recent research on a number of critical issues associated with MCB: (1) general circulation model (GCM) studies, which are our primary tools to evaluate globally the effectiveness of marine cloud brightening and to assess its climate impacts on rainfall amounts and distribution, as well as on polar sea-ice cover and thickness: (2) high resolution modeling of the effects of seeding on marine stratocumulus, which are required to understand the complex array
    [Show full text]
  • Process-Modeling Study of Ship Tracks and Marine Cloud Brightening
    Process-Modeling Study of Ship Tracks and Marine Cloud Brightening Hailong Wang Pacific Northwest National Laboratory Monitoring of Geoengineering Effects and their Natural and Anthropogenic Analogues (Part II) Workshop November 16, 2011 California Institute of Technology, Pasadena Acknowledgments Keck Institute for Space Studies Collaborators: Graham Feingold (NOAA) Phil Rasch (PNNL) Funding support: CIRES Fellowship NOAA Climate Program University of Calgary (Canada), FICER PNNL/DOE 2 Outline Introduction Simulation of shiptrack in open and closed cells (Wang and Feingold, 2009b) Marine cloud brightening by sea-salt injection (Wang, Rasch, Feingold, 2011; Wang et al., in preparation) Summary and issues for discussion 3 Introduction Geoengineering: deliberate manipulation of the Earth’s climate to counteract the effect of global warming by GHGs Solar radiation management Marine cloud albedo enhancement Seawater spray Ocean sulfur cycle enhancement Stratospheric aerosols Cool roof space shade Cirrus cloud seeding GHG removal Limiting arctic sea ice loss Ocean heat transport 4 About the seawater spray method Latham (1990, 2002) proposed injecting submicron sea-salt particles to increase marine Sc cloud albedo to offset the -2 +3.7 Wm forcing from 2xCO2 Salter et al. (2008) proposed a wind-driven sprayer that can produce sea-salt to increase CDNC by 200 cm-3 The idea was evaluated by a few global/box modeling studies (e.g., Bower et al. 2006; Latham et al. 2008; Jones et al. 2009; Rasch et al. 2009; Korhonen et al. 2010; Bala et al. 2010) Process modeling is needed to understand the transport of injected particles and interactions with clouds 5 Motivation Credit : Jeff Schmaltz Ship exhaust NASA/GSFC modifies marine Scu cloud albedo.
    [Show full text]
  • Real-Case Simulations of Aerosol–Cloud Interactions in Ship Tracks Over the Bay of Biscay
    Atmos. Chem. Phys., 15, 2185–2201, 2015 www.atmos-chem-phys.net/15/2185/2015/ doi:10.5194/acp-15-2185-2015 © Author(s) 2015. CC Attribution 3.0 License. Real-case simulations of aerosol–cloud interactions in ship tracks over the Bay of Biscay A. Possner1, E. Zubler2, U. Lohmann1, and C. Schär1 1Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland 2Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland Correspondence to: A. Possner ([email protected]) Received: 18 September 2014 – Published in Atmos. Chem. Phys. Discuss.: 24 October 2014 Revised: 21 January 2015 – Accepted: 31 January 2015 – Published: 27 February 2015 Abstract. Ship tracks provide an ideal test bed for study- could therefore help to constrain global ACI estimates, which ing aerosol–cloud interactions (ACIs) and for evaluating their strongly rely on these parameterisations. representation in model parameterisations. Regional mod- elling can be of particular use for this task, as this approach provides sufficient resolution to resolve the structure of the produced track including their meteorological environment 1 Introduction whilst relying on the same formulations of parameterisations as many general circulation models. In this work we simulate Since their discovery in satellite imagery, ship tracks have a particular case of ship tracks embedded in an optically thin been viewed as convincing evidence of aerosol–cloud inter- stratus cloud sheet which was observed by a polar orbiting actions (ACIs) occurring in shallow, marine planetary bound- satellite at 12:00 UTC on 26 January 2003 around the Bay of ary layers (PBLs). Their exclusive existence within a nar- Biscay.
    [Show full text]
  • Combustion Organic Aerosol As Cloud Condensation Nuclei in Ship Tracks Lynn M
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2000 Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks Lynn M. Russell Kevin J. Noone See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Russell, L.M., K.J. Noone, R.J. Ferek, R.A. Pockalny, R.C. Flagan, and J.H. Seinfeld, 2000: Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks. J. Atmos. Sci., 57, 2591–2606. doi: 10.1175/1520-0469(2000)0572.0.CO;2. Available at: https://doi.org/10.1175/1520-0469(2000)0572.0.CO;2 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Lynn M. Russell, Kevin J. Noone, Ronald J. Ferek, Robert Pockalny, Richard C. Flagan, and John H. Seinfeld This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/229 15 AUGUST 2000 RUSSELL ET AL. 2591 Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks LYNN M. RUSSELL Department of Chemical Engineering, Princeton University, Princeton, New Jersey KEVIN J. NOONE Meteorological Institute, Stockholm University, Stockholm, Sweden RONALD J. FEREK* Department of Atmospheric Sciences, University of Washington, Seattle, Washington ROBERT A. POCKALNY Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island RICHARD C.
    [Show full text]
  • The Appearance and Disappearance of Ship Tracks on Large Spatial Scales
    15 AUGUST 2000 COAKLEY ET AL. 2765 The Appearance and Disappearance of Ship Tracks on Large Spatial Scales J. A. COAKLEY JR.,* P. A. DURKEE,1 K. NIELSEN,1 J. P. TAYLOR,# S. PLATNICK,@ B. A. ALBRECHT,& D. BABB,** F.-L. CHANG,* W. R. TAHNK,* C. S. BRETHERTON,11 AND P. V. H OBBS11 * College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 1 Department of Meteorology, Naval Postgraduate School, Monterey, California # Meteorological Research Flight, The Met. Of®ce, Farnborough, Hampshire, United Kingdom @ NASA Goddard Space Flight Center, Greenbelt, Maryland & RSMAS/MPO, University of Miami, Coral Gables, Florida ** Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania 11 Atmospheric Science Department, University of Washington, Seattle, Washington (Manuscript received 1 October 1996, in ®nal form 10 July 1997) ABSTRACT The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be suf®ciently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks.
    [Show full text]