The Prime Number Theorem: an Examination of Part 5 by Sebastian Augusthy

Total Page:16

File Type:pdf, Size:1020Kb

The Prime Number Theorem: an Examination of Part 5 by Sebastian Augusthy The Prime Number Theorem: An Examination of Part 5 by Sebastian Augusthy 1) Background on the prime number theory A Prime number is any natural number that is divisible by itself and the number 1. For example 2; 3; 5; 7; 11; 13; 19 are just a few of the numbers. Prime numbers are useful because all integers can be written as products of 2 or more prime numbers. Ancient Greek mathematicians rst studied prime numbers and their properties extensively. There are no real patterns to prime numbers. Some unique prime numbers are ascending primes and palindromic primes. Ascending prime, for example, is 1234567801234567891. Palindromic primes are primes that are the same backwards and forward. For example, 111191111 and 919191919 are palindromic primes. The Fundamental Theorem of Arith- metic states that any natural number that is greater than one is the product of a unique set of prime numbers. The sequence of the numbers can be rear- ranged in the list, but an ordered set would be unique. Two examples that explain this concept are: 7 = 7, since 7 is prime. 84 = 2 ∗ 2 ∗ 3 ∗ 7 is the unique decomposition of 84 into primes, ordered by increasing value of the primes. One could also write 84 = (22) ∗ 3 ∗ 7. There are many types of prime numbers. Two main prime numbers are Mersenne prime numbers, which are in the format 2n − 1 for example, 22 − 1 = 3 and Fermat primes which are in the format 2(2n) + 1 For example 2(20) + 1 = 2 + 1 = 3 is a Fermat prime. There are many other kinds of prime numbers such as the Wieferich primes, Wall-Sun-Sun primes, Wilson primes and Wolstenholme primes. Mathematicians of Pythagora's school were interested in numbers for their mystical and numerological properties. They understood the idea of primality and were interested in perfect and amicable numbers. A perfect number is one whose proper divisors sum to the number itself. For example, the number 6 has proper divisors 1; 2 and 3 and 1 + 2 + 3 = 6; 28 has divisors 1; 2; 4; 7 and 14 and 1 + 2 + 4 + 7 + 14 = 28 A pair of amicable numbers is a pair of numbers like 220 and 284 such that the proper divisors of one number sum to the other and vice versa. By the time Euclid's Elements appeared in about 300 BC, several important results about primes had been proved. In Book IX of the Elements, Euclid proves that there are innitely many prime numbers. This is one of the rst proofs known, which uses the method of contradiction to establish a result. Euclid also provided proof of the Fundamental Theorem of Arithmetic: Every integer can be written as a product of primes in an essentially unique way. Euclid also showed that if the number 2n1 is prime, then the number 2n − 1(2n − 1) is a perfect number. The fact that prime numbers have no real pattern and there are many types of primes makes them really useful. One use of prime numbers familiar to many in the elds of cryptology and of computer security is to multiply a pair of large numbers for date encryption. Because it is dicult to determine factors of a large number, this is a fairly secure way of encrypting computer data. Cryptologists use prime numbers to come up with ways to break codes. Prime numbers are used to keep messages hidden. Banks use prime numbers to make computer keys for people. These keys are made by multiplying two prime numbers together to make a new number C. The bank keeps the prime numbers hidden for their use and gives the C number out to the public. Prime number encryption works as soon as a consumer inputs a credit card number online. The RSA (Rivest-Shamir-Adelman) algorithm uses a public key and a private key to hide information from possible thieves. The public key is available to the public, but it is hard to break because it is a product of two smaller prime numbers. The reason this RSA algorithm works is because the number used to encrypt the data with a public key is a very large number that is very hard to factor into prime numbers. The University of California at Berkeley states that it is simple to multiply two very large prime numbers together, but very dicult to break that gure down unless done with the help of a very powerful computer. The overall encryption program works using the example x=yz where x is the public key, while y and z are private keys. These private keys are very large prime numbers multiplied together, sometimes to the order of 100 or 200 numeric places. The two private keys unlock the public key and decode the information sent through the transmission. Whether faster algorithms or quantum computing will ever make this approach obsolete are questions that remain unsolved. Many mathematicians have made contributions to the eorts to understand prime numbers. To begin with, lets start with Gauss. Gauss was born on April 30, 1777 in Braunschweig, Germany. He was a child prodigy who was able to nd a discrepancy in his father's paycheck. Later on in Gauss's life he would do great things. One of the great things that Gauss did was to graph the density of prime numbers up to a certain number. He found out that the more prime numbers he placed on the graph, the more dense they spread of prime numbers were. This was important because he was able to show that prime numbers will always be increasing. This makes him a highly regarded German mathematician whose works included contributions to the number theory, geometry, probability theory, geodesy, planetary astronomy, the theory of functions and potential theory (including electromagnetism). Gauss proved 1 that π(x) ≈ li(x) (the principal value of integral of for u from u = 0 to log u = x). Another mathematician who studied prime numbers was Chebyshev. He was born on May 16, 1821 in Okatovo, Russia. Chebyshev became assistant professor of mathematics at the University of St. Petersburg. He is remem- bered primarily for his work on the theory of prime numbers. Chebyshev proved one of Joseph Bertrand's conjectures which state that for any n > 3 there must be a prime between n and 2n. This was important because he said that between two numbers there must be primes. In 1845 Bertrand conjec- tured that there was always at least one prime between nand 2n for n > 3. While proving Bertrand's conjecture in 1850, Chebyshev also came close to (π(n) log n) proving the Prime Number Theorem, proving that if (with π(n) n the number of primes ≤ n had a limit as n ! 1 then that limit is 1. The proof of this result was only completed two years after Chebyshev's death. Euler was another mathematician who studied prime numbers. Euler was a Swiss mathematician who was famous for his work in innitesimal calculus and graph theory. During his lifetime he worked on prime numbers. In 1772, Euler noticed that p(n) = n2 + n + 41 was prime for all natural numbers less than 40. This was a great formula to have because it was another formula that was able to gure out prime numbers in a given set. He was a Swiss mathematician and physicist, and one of the founders of pure mathematics. He not only made decisive and formative con- tributions to the subjects of geometry, calculus, mechanics, and number theory but also developed methods for solving problems in observational astronomy and demonstrated useful applications of mathematics in technology and public aairs. Similarly, another similar mathematician was Fermat. He was born on August 17, 1601 or 1607 (there is a dispute as to the year of his birth). He is known for his work in analytic geometry, probability, and optics. While working on prime numbers, Fermat came up with the formula 22n + 1 in order to nd prime numbers. This was an important formula because it helped in nding more prime numbers. Fermat is known to have collaborated with various mathematicians to decipher many concepts and theories. Along with Rene Descartes, Fermat was considered one of the two leading mathe- maticians of the rst half of the 17th century. They collaborated on many mathematical ideas, which continue to be used in today's world. Indepen- dently of Descartes, Fermat discovered the fundamental principle of analytic geometry. His methods for nding tangents to curves and their maximum and minimum points led him to be regarded as the inventor of the dierential cal- culus. His relationship with Blaise Pascal he became the co-founder of the theory of probability. One of the most elegant of these had been the theorem that every prime of the form 4n + 1 is uniquely expressible as the sum of two squares. A more important result, now known as Fermat's lesser theorem, asserts that if p is a prime number and if a is any positive integer, then ap - a is divisible by p. Fermat rarely gave demonstrations of his results, and in this case proofs were provided by Gottfried Leibniz, the 17th-century Ger- man mathematician and philosopher, and Leonhard Euler, the 18th-century Swiss mathematician. For occasional demonstrations of his theorems Fermat used a device that he called his method of innite descent, an inverted form of reasoning by recurrence or mathematical induction. Another mathematician who studied prime numbers was Marin Mersenne. He created his own way of nding primes called Mersenne primes. Mersenne primes were prime numbers calculated using the formula 2n − 1 He is credited with nding yet another way to nd prime numbers.
Recommended publications
  • Introduction to Abstract Algebra “Rings First”
    Introduction to Abstract Algebra \Rings First" Bruno Benedetti University of Miami January 2020 Abstract The main purpose of these notes is to understand what Z; Q; R; C are, as well as their polynomial rings. Contents 0 Preliminaries 4 0.1 Injective and Surjective Functions..........................4 0.2 Natural numbers, induction, and Euclid's theorem.................6 0.3 The Euclidean Algorithm and Diophantine Equations............... 12 0.4 From Z and Q to R: The need for geometry..................... 18 0.5 Modular Arithmetics and Divisibility Criteria.................... 23 0.6 *Fermat's little theorem and decimal representation................ 28 0.7 Exercises........................................ 31 1 C-Rings, Fields and Domains 33 1.1 Invertible elements and Fields............................. 34 1.2 Zerodivisors and Domains............................... 36 1.3 Nilpotent elements and reduced C-rings....................... 39 1.4 *Gaussian Integers................................... 39 1.5 Exercises........................................ 41 2 Polynomials 43 2.1 Degree of a polynomial................................. 44 2.2 Euclidean division................................... 46 2.3 Complex conjugation.................................. 50 2.4 Symmetric Polynomials................................ 52 2.5 Exercises........................................ 56 3 Subrings, Homomorphisms, Ideals 57 3.1 Subrings......................................... 57 3.2 Homomorphisms.................................... 58 3.3 Ideals.........................................
    [Show full text]
  • Arxiv:1606.08690V5 [Math.NT] 27 Apr 2021 on Prime Factors of Mersenne
    On prime factors of Mersenne numbers Ady Cambraia Jr,∗ Michael P. Knapp,† Ab´ılio Lemos∗, B. K. Moriya∗ and Paulo H. A. Rodrigues‡ [email protected] [email protected] [email protected] [email protected] paulo [email protected] April 29, 2021 Abstract n Let (Mn)n≥0 be the Mersenne sequence defined by Mn = 2 − 1. Let ω(n) be the number of distinct prime divisors of n. In this short note, we present a description of the Mersenne numbers satisfying ω(Mn) ≤ 3. Moreover, we prove that the inequality, (1−ǫ) log log n given ǫ> 0, ω(Mn) > 2 − 3 holds for almost all positive integers n. Besides, a we present the integer solutions (m, n, a) of the equation Mm+Mn = 2p with m,n ≥ 2, p an odd prime number and a a positive integer. 2010 Mathematics Subject Classification: 11A99, 11K65, 11A41. Keywords: Mersenne numbers, arithmetic functions, prime divisors. 1 Introduction arXiv:1606.08690v5 [math.NT] 27 Apr 2021 n Let (Mn)n≥0 be the Mersenne sequence defined by Mn = 2 − 1, for n ≥ 0. A simple argument shows that if Mn is a prime number, then n is a prime number. When Mn is a prime number, it is called a Mersenne prime. Throughout history, many researchers sought to find Mersenne primes. Some tools are very important for the search for Mersenne primes, mainly the Lucas-Lehmer test. There are papers (see for example [1, 5, 21]) that seek to describe the prime factors of Mn, where Mn is a composite number and n is a prime number.
    [Show full text]
  • Primitive Indexes, Zsigmondy Numbers, and Primoverization
    Primitive Indexes, Zsigmondy Numbers, and Primoverization Tejas R. Rao September 22, 2018 Abstract. We define a primitive index of an integer in a sequence to be the index of the term with the integer as a primitive divisor. For the sequences ku + hu and ku − hu, we discern a formula to find the primitive indexes of any composite number given the primitive indexes of its prime factors. We show how this formula reduces to a formula relating the multiplicative order of k modulo N to that of its prime factors. We then introduce immediate consequences of the formula: certain sequences which yield the same primitive indexes for numbers with the same n n unique prime factors, an expansion of the lifting the exponent lemma for ν2(k + h ), a simple formula to find any Zsigmondy number, a note on a certain class of pseudoprimes titled overpseudoprime, and a proof that numbers such as Wagstaff numbers are either overpseudoprime or prime. 1 The Formula A primitive index of a number is the index of the term in a sequence that has that number as a primitive divisor. Let k and h be positive integers for the duration of this paper. We u u u u N denote the primitive index of N in k − h as PN (k, h). For k + h , it is denoted P (k, h). Note that PN (k, 1) = ON (k), where ON (k) refers to the multiplicative order of k modulo N. Both are defined as the first positive integer m such that km ≡ 1 mod N.
    [Show full text]
  • WHEN IS an + 1 the SUM of TWO SQUARES?
    WHEN IS an + 1 THE SUM OF TWO SQUARES? GREG DRESDEN, KYLIE HESS, SAIMON ISLAM, JEREMY ROUSE, AARON SCHMITT, EMILY STAMM, TERRIN WARREN, AND PAN YUE Abstract. Using Fermat's two squares theorem and properties of cyclotomic polynomials, we prove assertions about when numbers of the form an + 1 can be expressed as the sum of two integer squares. We prove that an + 1 is the sum of two squares for all n 2 N if and only if a is a perfect square. We also prove that for a ≡ 0; 1; 2 (mod 4); if an +1 is the sum of two squares, then aδ + 1 is the sum of two squares for all δjn; δ > 1. Using Aurifeuillian factorization, we show that if a is a prime and a ≡ 1 (mod 4), then there are either zero or infinitely many odd n such that an + 1 is the sum of two squares. When a ≡ 3 (mod 4); we define m to be the a+1 n least positive integer such that m is the sum of two squares, and prove that if a + 1 is the m n sum of two squares for any odd integer n; then mjn, and both a + 1 and m are sums of two squares. 1. Introduction Many facets of number theory revolve around investigating terms of a sequence that are inter- n esting. For example, if an = 2 − 1 is prime (called a Mersenne prime), then n itself must be prime (Theorem 18 of [5, p. 15]). In this case, the property that is interesting is primality.
    [Show full text]
  • Arxiv:1206.0606V1 [Math.NT]
    OVERPSEUDOPRIMES, AND MERSENNE AND FERMAT NUMBERS AS PRIMOVER NUMBERS VLADIMIR SHEVELEV, GILBERTO GARC´IA-PULGAR´IN, JUAN MIGUEL VELASQUEZ-SOTO,´ AND JOHN H. CASTILLO Abstract. We introduce a new class of pseudoprimes-so called “overpseu- doprimes to base b”, which is a subclass of strong pseudoprimes to base b. Denoting via |b|n the multiplicative order of b modulo n, we show that a composite n is overpseudoprime if and only if |b|d is invariant for all divisors d> 1 of n. In particular, we prove that all composite Mersenne numbers 2p − 1, where p is prime, are overpseudoprime to base 2 and squares of Wieferich primes are overpseudoprimes to base 2. Finally, we show that some kinds of well known numbers are overpseudoprime to a base b. 1. Introduction First and foremost, we recall some definitions and fix some notation. Let b an integer greater than 1 and N a positive integer relatively prime to b. Throughout, we denote by |b|N the multiplicative order of b modulo N. For a prime p, νp(N) means the greatest exponent of p in the prime factorization of N. Fermat’s little theorem implies that 2p−1 ≡ 1 (mod p), where p is an odd prime p. An odd prime p, is called a Wieferich prime if 2p−1 ≡ 1 (mod p2), We recall that a Poulet number, also known as Fermat pseudoprime to base 2, is a composite number n such that 2n−1 ≡ 1 (mod n). A Poulet number n which verifies that d divides 2d −2 for each divisor d of n, is called a Super-Poulet pseudoprime.
    [Show full text]
  • Factorization Techniques, by Elvis Nunez and Chris Shaw
    FACTORIZATION TECHNIQUES ELVIS NUNEZ AND CHRIS SHAW Abstract. The security of the RSA public key cryptosystem relies upon the computational difficulty of deriving the factors of a partic- ular semiprime modulus. In this paper we briefly review the history of factorization methods and develop a stable of techniques that will al- low an understanding of Dixon's Algorithm, the procedural basis upon which modern factorization methods such as the Quadratic Sieve and General Number Field Sieve algorithms rest. 1. Introduction During this course we have proven unique factorization in Z. Theorem 1.1. Given n, there exists a unique prime factorization up to order and multiplication by units. However, we have not deeply investigated methods for determining what these factors are for any given integer. We will begin with the most na¨ıve implementation of a factorization method, and refine our toolkit from there. 2. Trial Division p Theorem 2.1. There exists a divisor of n; a such that 1 > a ≤ n. Definition 2.2. π(n) denotes the number of primes less than or equal to n. Proof. Suppose bjn and b ≥ p(n) and ab = n. It follows a = n . Suppose p p p p b pn b = n, then a = n = n. Suppose b > n, then a < n. By theorem 2.1,p we can find a factor of n by dividing n by the numbers in the range (1; n]. By theorem 1.1, we know that we can express n as a productp of primes, and by theorem 2.1 we know there is a factor of npless than n.
    [Show full text]
  • Unique Factorization of Ideals in OK
    IDEAL FACTORIZATION KEITH CONRAD 1. Introduction We will prove here the fundamental theorem of ideal theory in number fields: every nonzero proper ideal in the integers of a number field admits unique factorization into a product of nonzero prime ideals. Then we will explore how far the techniques can be generalized to other domains. Definition 1.1. For ideals a and b in a commutative ring, write a j b if b = ac for an ideal c. Theorem 1.2. For elements α and β in a commutative ring, α j β as elements if and only if (α) j (β) as ideals. Proof. If α j β then β = αγ for some γ in the ring, so (β) = (αγ) = (α)(γ). Thus (α) j (β) as ideals. Conversely, if (α) j (β), write (β) = (α)c for an ideal c. Since (α)c = αc = fαc : c 2 cg and β 2 (β), β = αc for some c 2 c. Thus α j β in the ring. Theorem 1.2 says that passing from elements to the principal ideals they generate does not change divisibility relations. However, irreducibility can change. p Example 1.3. In Z[ −5],p 2 is irreduciblep as an element but the principal ideal (2) factors nontrivially: (2) = (2; 1 + −5)(2; 1 − −p5). p To see that neither of the idealsp (2; 1 + −5) and (2; 1 − −5) is the unit ideal, we give two arguments. Suppose (2; 1 + −5) = (1). Then we can write p p p 1 = 2(a + b −5) + (1 + −5)(c + d −5) for some integers a; b; c, and d.
    [Show full text]
  • 3.1 Prime Numbers
    Chapter 3 I Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocks in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime if its only positive integer multiplicative factors are 1 and n. Furthermore, every integer can be expressed as a product of primes, and this expression is unique up to the order of the primes in the product. This important insight into the multiplicative structure of the integers has become known as the fundamental theorem of arithmetic . Beneath the simplicity of the prime numbers lies a sophisticated world of insights and results that has intrigued mathematicians for centuries. By the third century b.c.e. , Greek mathematicians had defined prime numbers, as one might expect from their familiarity with the division algorithm. In Book IX of Elements [73], Euclid gives a proof of the infinitude of primes—one of the most elegant proofs in all of mathematics. Just as important as this understanding of prime numbers are the many unsolved questions about primes. For example, the Riemann hypothesis is one of the most famous open questions in all of mathematics. This claim provides an analytic formula for the number of primes less than or equal to any given natural number. A proof of the Riemann hypothesis also has financial rewards. The Clay Mathematics Institute has chosen six open questions (including the Riemann hypothesis)—a complete solution of any one would earn a $1 million prize. Working toward defining a prime number, we recall an important theorem and definition from section 2.2.
    [Show full text]
  • ED065335.Pdf
    DOCUMENT RESUME ED 065 335 SE 014 398 TITLE Mathematics for Elementary School Teachers: The Rational Numbers. INSTITUTION National Council of Teachers of Mathematics, Inc., Washington, D.C. PUB DATE 72 NOTE 453p. AVAILABLE FROMNCTM, 1201 Sixteenth Street, N.W., Washington, D.C. 20036 ($6.00) EDRS PRICE MF-$0.65 HC Not Available from EDRS. DESCRIPTORS Arithmetic; *Elementary School Mathematics; Elementary School Teachers; *Fractions; Mathematics Education; *Rational Numbers; *Teacher Education; Textbooks IDENTIFIERS Film Supplements ABSTRACT This book is an extension of the 1966 film/text series (ED 018 276) from the National Council of Teachers of Mathematics and was written to accompany 12 new teacher-education films. It is strong enough, however, to also serve alone as a text for elementary school teachers for the study of rational numbers. The 12 chapters corresponsing to the films were written separately by committee members with various methods of presentation. Aspects of rational numbers covered include a rationale for their introduction; the four operations with positive, decimal, and negative rational numbers; measurement; and graphing. WO II 0 O O I II 0 0 I _ o -1`,---.4.77777:- sr .,- Ne.17-,r t,i',:).;..pce, ''''.?;'71rf; 1" s "77.7--77" ' .:. .",-is., .,` '',1 ,...., t;:. L, P. 1,:i.,:;),'''',,';:% :,2, iEl .1. '''.........a.......lii Mathematics for Elementary School Teachers THE RATIONAL NUMBERS NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS 1201 Sixteenth St., NW, Washington, D.C. 20036 2 "PERMISSION TO REPROD UCE THIS COPY RIGHTED MATERIAL IIY MICROFICHE ONLY HAS BEEN GRANTED BY TO ERIC AND ORGANIZATIONS OPERATING UNDER AGREEMENTS WITH THE US.
    [Show full text]
  • Prime Factorization and Cryptography a Theoretical Introduction to the General Number Field Sieve
    Prime Factorization and Cryptography A theoretical introduction to the General Number Field Sieve Barry van Leeuwen University of Bristol 10 CP Undergraduate Project Supervisor: Dr. Tim Dokchitser February 1, 2019 Acknowledgement of Sources For all ideas taken from other sources (books, articles, internet), the source of the ideas is mentioned in the main text and fully referenced at the end of the report. All material which is quoted essentially word-for-word from other sources is given in quotation marks and referenced. Pictures and diagrams copied from the internet or other sources are labelled with a reference to the web page,book, article etc. Signed: Barry van Leeuwen Dated: February 1, 2019 Abstract From a theoretical puzzle to applications in cryptography and computer sci- ence: The factorization of prime numbers. In this paper we will introduce a historical retrospect by observing different methods of factorizing primes and we will introduce a theoretical approach to the General Number Field Sieve building from a foundation in Algebra and Number Theory. We will in this exclude most considerations of efficiency and practical im- plementation, and instead focus on the mathematical background. In this paper we will introduce the theory of algebraic number fields and Dedekind domains and their importance in understanding the General Number Field Sieve before continuing to explain, step by step, the inner workings of the General Number Field Sieve. Page 1 of 73 Contents Abstract 1 Table of contents 2 1 Introduction 3 2 Prime Numbers and the Algebra of Modern Cryptography 5 2.1 Preliminary Algebra and Number Theory .
    [Show full text]
  • Elementary Number Theory WISB321
    Elementary Number Theory WISB321 = F.Beukers 2012 Department of Mathematics UU ELEMENTARY NUMBER THEORY Frits Beukers Fall semester 2013 Contents 1 Integers and the Euclidean algorithm 4 1.1 Integers . 4 1.2 Greatest common divisors . 7 1.3 Euclidean algorithm for Z ...................... 8 1.4 Fundamental theorem of arithmetic . 10 1.5 Exercises . 12 2 Arithmetic functions 15 2.1 Definitions, examples . 15 2.2 Convolution, M¨obiusinversion . 18 2.3 Exercises . 20 3 Residue classes 21 3.1 Basic properties . 21 3.2 Chinese remainder theorem . 22 3.3 Invertible residue classes . 24 3.4 Periodic decimal expansions . 27 3.5 Exercises . 29 4 Primality and factorisation 33 4.1 Prime tests and compositeness tests . 33 4.2 A polynomial time primality test . 38 4.3 Factorisation methods . 39 4.4 The quadratic sieve . 41 4.5 Cryptosystems, zero-knowledge proofs . 44 5 Quadratic reciprocity 47 5.1 The Legendre symbol . 47 5.2 Quadratic reciprocity . 48 5.3 A group theoretic proof . 51 5.4 Applications . 52 5.5 Jacobi symbols, computing square roots . 55 5.6 Class numbers . 59 1 2 CONTENTS 5.7 Exercises . 60 6 Dirichlet characters and Gauss sums 62 6.1 Characters . 62 6.2 Gauss sums, Jacobi sums . 65 6.3 Applications . 67 6.4 Exercises . 71 7 Sums of squares, Waring's problem 72 7.1 Sums of two squares . 72 7.2 Sums of more than two squares . 74 7.3 The 15-theorem . 77 7.4 Waring's problem . 78 7.5 Exercises . 81 8 Continued fractions 82 8.1 Introduction .
    [Show full text]
  • Package 'Numbers'
    Package ‘numbers’ May 14, 2021 Type Package Title Number-Theoretic Functions Version 0.8-2 Date 2021-05-13 Author Hans Werner Borchers Maintainer Hans W. Borchers <[email protected]> Depends R (>= 3.1.0) Suggests gmp (>= 0.5-1) Description Provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continuous fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc. License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2021-05-14 18:40:06 UTC R topics documented: numbers-package . .3 agm .............................................5 bell .............................................7 Bernoulli numbers . .7 Carmichael numbers . .9 catalan . 10 cf2num . 11 chinese remainder theorem . 12 collatz . 13 contFrac . 14 coprime . 15 div.............................................. 16 1 2 R topics documented: divisors . 17 dropletPi . 18 egyptian_complete . 19 egyptian_methods . 20 eulersPhi . 21 extGCD . 22 Farey Numbers . 23 fibonacci . 24 GCD, LCM . 25 Hermite normal form . 27 iNthroot . 28 isIntpower . 29 isNatural . 30 isPrime . 31 isPrimroot . 32 legendre_sym . 32 mersenne . 33 miller_rabin . 34 mod............................................. 35 modinv, modsqrt . 37 modlin . 38 modlog . 38 modpower . 39 moebius . 41 necklace . 42 nextPrime . 43 omega............................................ 44 ordpn . 45 Pascal triangle . 45 previousPrime . 46 primeFactors . 47 Primes
    [Show full text]