Cleveland State University EngagedScholarship@CSU Mathematics Faculty Publications Mathematics Department 11-15-2015 Closed Range Composition Operators on Hilbert Function Spaces Pratibha Ghatage Cleveland State University,
[email protected] Maria Tjani University of Arkansas Follow this and additional works at: https://engagedscholarship.csuohio.edu/scimath_facpub Part of the Mathematics Commons How does access to this work benefit ou?y Let us know! Repository Citation Ghatage, Pratibha and Tjani, Maria, "Closed Range Composition Operators on Hilbert Function Spaces" (2015). Mathematics Faculty Publications. 285. https://engagedscholarship.csuohio.edu/scimath_facpub/285 This Article is brought to you for free and open access by the Mathematics Department at EngagedScholarship@CSU. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact
[email protected]. Closed range composition operators on Hilbert function spaces Pratibha Ghatage, Maria Tjani 1. Introduction Let φ be an analytic self-map of the unit disk D. The composition operator with symbol φ is defined by for any function f that is analytic on D. Littlewood in 1925 proved a subordination principle, which in operator theory language, says that composition operators are bounded in the Hardy space H2, the Hilbert space of analytic functions on D with square summable power series coefficients. This is the first setting by which many properties of the composition operator such as boundedness, compactness, and closed range have been studied. It is natural to study these properties on other function spaces. Let H be a Hilbert space of analytic functions on D with inner product {·, ·}.