The TCP/IP Protocol Suite Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

The TCP/IP Protocol Suite Tutorial The TCP/IP Protocol Suite Tutorial December 20, 2006 Trademarks and Copyrights Microsoft®, Windows®, Outlook®, and Internet Explorer® are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. AOL®, AOL® Instant messenger™ and AIM® are trademarks or registered trademarks of America Online, Incorporated. Yahoo!® and the Yahoo! logo are registered trademarks of Yahoo, Inc. Acrobat® and Acrobat Reader® are a registered trademarks of Adobe Systems, Incorporated. All other products or services mentioned in this document are identified by the trademarks, service marks, or product names as designated by the companies that market those products or services or own those marks. Inquiries concerning such products, services, or marks should be made directly to those companies This document and its contents are provided by Fujitsu Network Communications, Inc. (FNC) for guidance purposes only. This document is provided “as is” with no warranties or representations whatsoever, either express or implied, including without limitation the implied warranties of merchantability and fitness for purpose. FNC does not warrant or represent that the contents of this document are error free. Furthermore, the contents of this document are subject to update and change at any time without notice by FNC, since FNC reserves the right, without notice, to make changes in equipment design or components as progress in engineering methods may warrant. No part of the contents of this document may be copied, modified, or otherwise reproduced without the express written consent of FNC. Unpublished work and only distributed under restriction. Copyright © Fujitsu Network Communications, Inc. All Rights Reserved. TCP/IP Protocol Suite Tutorial Table of Contents Introduction...............................................................................1-1 Objectives.............................................................................1-1 Standards .............................................................................1-1 Distribution Method ..............................................................1-1 Optional Reading..................................................................1-1 The OSI Reference Model........................................................1-3 Purpose ................................................................................1-3 The TCP/IP Protocol Suite........................................................1-5 Before We Begin.......................................................................1-7 The Application Layer...............................................................1-8 Application Layer Examples .................................................1-8 The Transport Layer .................................................................1-9 User Datagram Protocol.......................................................1-9 Transmission Control Protocol ...........................................1-10 The Internet Layer ..................................................................1-14 The Internet Protocol ..............................................................1-15 IP Routing...............................................................................1-19 Address Resolution Protocol ..................................................1-20 The Network Access Layer.....................................................1-21 Point-to-Point Protocol............................................................1-23 Ethernet ..................................................................................1-25 A TCP/IP Networking Example...............................................1-29 Wireless Fidelity......................................................................1-36 Worldwide Interoperability for Microwave Access ..................1-40 Frame Relay ...........................................................................1-44 Asynchronous Transfer Mode.................................................1-47 Multiprotocol Label Switching .................................................1-52 Tutorial Review.......................................................................1-55 Review Answers .....................................................................1-59 Glossary Release 1.0, December 20, 2006 Fujitsu and Fujitsu Customer Use Only i TCP/IP Protocol Suite Tutorial List of Figures Figure 1-1: The OSI Reference Model..................................... 1-2 Figure 1-2: Comparing the OSI and TCP/IP Models ............... 1-4 Figure 1-3: Encapsulation........................................................ 1-6 Figure 1-4: The UDP Packet Structure.................................... 1-9 Figure 1-5: TCP Packet Structure.......................................... 1-12 Figure 1-6: Classful Addressing............................................. 1-15 Figure 1-7: NAT ..................................................................... 1-16 Figure 1-8: The IP Packet Structure ...................................... 1-18 Figure 1-9: The Point-to-Point Protocol Frame...................... 1-22 Figure 1-10: Ethernet Frame Formats ................................... 1-24 Figure 1-11: PPP Encapsulated in an Ethernet Frame.......... 1-28 Figure 1-12: TCP/IP Example................................................ 1-29 Figure 1-13: Communicating at the Application Level ........... 1-29 Figure 1-14: Using TCP to Transport HTTP Messages......... 1-30 Figure 1-15: Using DNS to Resolve Hostnames ................... 1-30 Figure 1-16: Establishing a TCP/IP Connection .................... 1-31 Figure 1-17: Invoking the IP Protocol .................................... 1-31 Figure 1-18: Using ARP to Determine MAC Addresses ........ 1-32 Figure 1-19: Using Ethernet to Transmit an IP Datagram ..... 1-32 Figure 1-20: Sending the Frame to the Default Gateway ...... 1-33 Figure 1-21: Routing the Frame to the Final Destination....... 1-34 Figure 1-22: The 802.11 MAC Frame Format ....................... 1-35 Figure 1-23: WiMAX MAC PDU Format ................................ 1-39 Figure 1-24: Frame Relay Packet Structure .......................... 1-43 Figure 1-25: ATM Cell Structure............................................ 1-46 Figure 1-26: Mixed Service Types on an MPLS Core ........... 1-51 Figure 1-27: The MPLS Label Stack...................................... 1-54 ii Fujitsu and Fujitsu Customer Use Only Release 1.0, December 20, 2006 Tutorial The TCP/IP Protocol Suite Introduction This self-study tutorial satisfies the prerequisite for Transmission http://www.fujitsu.com/us/services/telecom/training/ Control Protocol/Internet Protocol (TCP/IP) networking edservtcpip.pdf knowledge that is required for attendance at Fujitsu Network The tutorial can be viewed using Acrobat® Reader®. Communications Inc. (FNC) Educational Services data networking product training classes. Optional Reading Objectives FNC-500-0005-010, Guide to ATM After completing this lesson, the student should be able to: ATM Tutorial • Describe the OSI 7-layer networking model Ethernet Tutorial • Describe the TCP/IP networking model The referenced optional reading can be downloaded by going to the following URL: • Define basic networking terminology http://www.fujitsu.com/us/services/telecom/training/ • Understand the various TCP/IP networking components • Identify the relationships between the components of the TCP/IP protocol suite Standards The student can complete the tutorial and take the self evaluation at the end of the tutorial. If the student passes the tutorial, the FNC prerequisite qualification for data networking is complete. If the student does not pass the tutorial, sections in the tutorial relating to questions missed should be reviewed. Each student should be familiar with concepts and terms of the tutorial prior to attending class. Distribution Method The data networking tutorial is available at the following Internet address: Release 1.0, December 20, 2006 Fujitsu and Fujitsu Customer Use Only 1-1 The TCP/IP Protocol Suite Tutorial Figure 1-1: The OSI Reference Model 1-2 Fujitsu and Fujitsu Customer Use Only Release 1.0, December 20, 2006 Tutorial The TCP/IP Protocol Suite The OSI Reference Model As many networking tutorials do, this one begins with an Session Layer introduction to the Open Systems Interconnection (OSI) The session layer controls the connections (sessions) between Reference Model (OSI Model). The OSI model is a layered, computers. It establishes, manages and terminates the abstract description for communication and computer network connections between the local and remote application. protocol design, developed as part of the Open Systems Interconnection initiative. It is also called the OSI 7-layer model. Transport Layer Purpose The transport layer provides transparent transfer of data between end users, thus relieving the upper layers from transfer concerns The OSI model divides the functions of a protocol into a series of while providing reliable data transfer. The transport layer controls layers. Each layer has the property that it only uses the functions the reliability of a given link through flow control, segmentation/ of the layer directly below, and only exports functionality to the desegmentation, and error control. layer directly above. A system that implements protocol behavior Network Layer consisting of a series of these layers is known as a protocol stack or simply stack. Protocol stacks can be implemented either in The network layer provides the means
Recommended publications
  • DE-CIX Academy Handout
    Networking Basics 04 - User Datagram Protocol (UDP) Wolfgang Tremmel [email protected] DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | [email protected] | www.de-cix.net Networking Basics DE-CIX Academy 01 - Networks, Packets, and Protocols 02 - Ethernet 02a - VLANs 03 - the Internet Protocol (IP) 03a - IP Addresses, Prefixes, and Routing 03b - Global IP routing 04 - User Datagram Protocol (UDP) 05 - TCP ... Layer Name Internet Model 5 Application IP / Internet Layer 4 Transport • Data units are called "Packets" 3 Internet 2 Link Provides source to destination transport • 1 Physical • For this we need addresses • Examples: • IPv4 • IPv6 Layer Name Internet Model 5 Application Transport Layer 4 Transport 3 Internet 2 Link 1 Physical Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link 1 Physical Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link • Examples: 1 Physical • TCP (flow control, reliability, congestion avoidance) • UDP (none of the above) Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link • Examples: 1 Physical • TCP (flow control, reliability, congestion avoidance) • UDP (none of the above) • Also may contain information about the next layer up Encapsulation Packets inside packets • Encapsulation is like Russian dolls Attribution: Fanghong. derivative work: Greyhood https://commons.wikimedia.org/wiki/File:Matryoshka_transparent.png Encapsulation Packets inside packets • Encapsulation is like Russian dolls • IP Packets have a payload Attribution: Fanghong.
    [Show full text]
  • IP Datagram ICMP Message Format ICMP Message Types
    ICMP Internet Control Message Protocol ICMP is a protocol used for exchanging control messages. CSCE 515: Two main categories Query message Computer Network Error message Programming Usage of an ICMP message is determined by type and code fields ------ IP, Ping, Traceroute ICMP uses IP to deliver messages. Wenyuan Xu ICMP messages are usually generated and processed by the IP software, not the user process. Department of Computer Science and Engineering University of South Carolina IP header ICMP Message 20 bytes CSCE515 – Computer Network Programming IP Datagram ICMP Message Format 1 byte 1 byte 1 byte 1 byte VERS HL Service Total Length Datagram ID FLAG Fragment Offset 0781516 31 TTL Protocol Header Checksum type code checksum Source Address Destination Address payload Options (if any) Data CSCE515 – Computer Network Programming CSCE515 – Computer Network Programming ICMP Message Types ICMP Address Mask Request and Reply intended for a diskless system to obtain its subnet mask. Echo Request Id and seq can be any values, and these values are Echo Response returned in the reply. Destination Unreachable Match replies with request Redirect 0781516 31 Time Exceeded type(17 or 18) code(0) checksum there are more ... identifier sequence number subnet mask CSCE515 – Computer Network Programming CSCE515 – Computer Network Programming ping Program ICMP Echo Request and Reply Available at /usr/sbin/ping Test whether another host is reachable Send ICMP echo_request to a network host -n option to set number of echo request to send
    [Show full text]
  • A Secure Peer-To-Peer Web Framework
    A Secure Peer-to-Peer Web Framework Joakim Koskela Andrei Gurtov Helsinki Institute for Information Technology Helsinki Institute for Information Technology PO Box 19800, 00076 Aalto PO Box 19800, 00076 Aalto Email: joakim.koskela@hiit.fi Email: andrei.gurtov@hiit.fi Abstract—We present the design and evaluation of a se- application, that can be deployed without investing in dedi- cure peer-to-peer HTTP middleware framework that enables cated infrastructure while addressing issues such as middlebox a multitude of web applications without relying on service traversal, mobility, security and identity management. providers. The framework is designed to be deployed in existing network environments, allowing ordinary users to create private II. PEER-TO-PEER HTTP services without investing in network infrastructure. Compared to previous work, scalability, NAT/firewall traversal and peer From its launch in the early 1990s, the HyperText Transfer mobility is achieved without the need for maintaining dedicated Protocol (HTTP) had grown to be one of the most popular servers by utilizing new network protocols and re-using existing protocols on the Internet today. It is used daily for everything network resources. from past-time activities, such as recreational browsing, gam- I. INTRODUCTION ing and media downloads, to business- and security-critical Peer-to-peer (P2P) systems have been popular within net- applications such as payment systems and on-line banking. work research during the past years as they have the potential The success of HTTP has clearly grown beyond its original to offer more reliable, fault-tolerant and cost-efficient network- design as a simple, easy to manage protocol for exchanging ing.
    [Show full text]
  • I.L. 40-614A 1 1. INTRODUCTION the Basic Interface to Remote Terminal, Or BIRT, Is an INCOM Network Master. BIRT Gives Users An
    I.L. 40-614A 1. INTRODUCTION 3. DESCRIPTION The Basic Interface to Remote Terminal, or BIRT, is 3.1. Power Requirements an INCOM Network Master. BIRT gives users an economical way of getting information from their Range: 48 Vdc to 250 Vdc and 120 Vac INCOM-compatible devices since it connects directly between a user’s external MODEM or personal com- Burden: 3.5 W @ 48 Vdc puter and the INCOM network. 9 W @ 250 Vdc 5 W @ 120 Vac BIRT can directly replace Westinghouse MINTs, talk- ing to all INCOM-based communication devices. 3.2. Temperature Range BIRTs also include a special high-speed mode for communicating with SADIs – allowing users to collect For Operation: 0˚ to +55˚ C data from other manufacturer’s relays more rapidly For Storage: -20˚ to +80˚ C than ever before. 3.3. Physical Dimensions BIRTs are built to handle the abuse of substation environment; their “hardened” RS-232 serial port can The BIRT enclosure dimensions are identical to the handle surges and sustained high voltages that ERNI and SADI, as shown in figure 1. would destroy ordinary serial ports, and BIRTs can run on a wide range of voltages, from 48 to 250 Vdc Dimensions and weight of chassis or even 120 Vac, with no jumpers or adjustments needed. Height: 5.26” (133.6) mm) Width: 3.32” (84.3) mm) Depth: 5.92” (150.4) mm) 2. FEATURES Weight: 2.0 lbs (0.9 kg) BIRT is designed to be very flexible in its RS-232 External Wiring: See figures 2 and 3.
    [Show full text]
  • The Internet in Iot—OSI, TCP/IP, Ipv4, Ipv6 and Internet Routing
    Chapter 2 The Internet in IoT—OSI, TCP/IP, IPv4, IPv6 and Internet Routing Reliable and efficient communication is considered one of the most complex tasks in large-scale networks. Nearly all data networks in use today are based on the Open Systems Interconnection (OSI) standard. The OSI model was introduced by the International Organization for Standardization (ISO), in 1984, to address this composite problem. ISO is a global federation of national standards organizations representing over 100 countries. The model is intended to describe and standardize the main communication functions of any telecommunication or computing system without regard to their underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard protocols. The OSI is a conceptual model of how various components communicate in data-based networks. It uses “divide and conquer” concept to virtually break down network communication responsibilities into smaller functions, called layers, so they are easier to learn and develop. With well-defined standard interfaces between layers, OSI model supports modular engineering and multivendor interoperability. 2.1 The Open Systems Interconnection Model The OSI model consists of seven layers as shown in Fig. 2.1: physical (Layer 1), data link (Layer 2), network (Layer 3), transport (Layer 4), session (Layer 5), presentation (Layer 6), and application (Layer 7). Each layer provides some well-defined services to the adjacent layer further up or down the stack, although the distinction can become a bit less defined in Layers 6 and 7 with some services overlapping the two layers. • OSI Layer 7—Application Layer: Starting from the top, the application layer is an abstraction layer that specifies the shared protocols and interface methods used by hosts in a communications network.
    [Show full text]
  • User Datagram Protocol - Wikipedia, the Free Encyclopedia Página 1 De 6
    User Datagram Protocol - Wikipedia, the free encyclopedia Página 1 de 6 User Datagram Protocol From Wikipedia, the free encyclopedia The five-layer TCP/IP model User Datagram Protocol (UDP) is one of the core 5. Application layer protocols of the Internet protocol suite. Using UDP, programs on networked computers can send short DHCP · DNS · FTP · Gopher · HTTP · messages sometimes known as datagrams (using IMAP4 · IRC · NNTP · XMPP · POP3 · Datagram Sockets) to one another. UDP is sometimes SIP · SMTP · SNMP · SSH · TELNET · called the Universal Datagram Protocol. RPC · RTCP · RTSP · TLS · SDP · UDP does not guarantee reliability or ordering in the SOAP · GTP · STUN · NTP · (more) way that TCP does. Datagrams may arrive out of order, 4. Transport layer appear duplicated, or go missing without notice. TCP · UDP · DCCP · SCTP · RTP · Avoiding the overhead of checking whether every RSVP · IGMP · (more) packet actually arrived makes UDP faster and more 3. Network/Internet layer efficient, at least for applications that do not need IP (IPv4 · IPv6) · OSPF · IS-IS · BGP · guaranteed delivery. Time-sensitive applications often IPsec · ARP · RARP · RIP · ICMP · use UDP because dropped packets are preferable to ICMPv6 · (more) delayed packets. UDP's stateless nature is also useful 2. Data link layer for servers that answer small queries from huge 802.11 · 802.16 · Wi-Fi · WiMAX · numbers of clients. Unlike TCP, UDP supports packet ATM · DTM · Token ring · Ethernet · broadcast (sending to all on local network) and FDDI · Frame Relay · GPRS · EVDO · multicasting (send to all subscribers). HSPA · HDLC · PPP · PPTP · L2TP · ISDN · (more) Common network applications that use UDP include 1.
    [Show full text]
  • Rudiments of Routing
    Rudiments of Routing Moving bits from the source to the destination is a major function of computer networking. On the current Internet, the Network layer is responsible for achieving this. AS 2 AS 1 Inter-domain routing OSPF and RIP Inter-domain routing OSPF and RIP Intra-domain routing BGP In general, most routing within Autonomous Systems use Routing Information Protocol (RIP), or its enhanced version Open Shortest Path First (OSPF). The current de facto Intra-domain routing standard is Border Gateway Protocol(BGP), Version 4. You need to concern yourself with these protocols if you are dealing with routers inside or between Autonomous Systems. At the host level, however, most likely you need only a static routing table. This is a table of routes that the OS kernel keeps. It is possible to add to and delete from routes in the kernel routing table relatively easily. We discuss routing tables based on RIP (RFC2453). When looking at routing tables, remember that most Unix-like operating systems use mnemonic names for their interfaces. For example, in Linux, the Ethernet interfaces on a machine are called eth0, eth1, eth2, etc. On the newer SUN/Solaris machines the interfaces are named eri0, eri1, etc. PPP interfaces are usually names ppp0, ppp1 etc. You can see all the configured interfaces on a host using the ifconfig command which is usually found in /sbin/ directory (but not always). You can see the routing table with ªnetstat -rº command. Here©s a screen shot of these commands run on matrix.newpaltz.edu which is a SUN/Solaris machine: The output from /sbin/ifconfig command shows that there are two configured interfaces, one an Ethernet and the other the loopback interface.
    [Show full text]
  • Network Connectivity and Transport – Transport
    Idaho Technology Authority (ITA) ENTERPRISE STANDARDS – S3000 NETWORK AND TELECOMMUNICATIONS Category: S3510 – NETWORK CONNECTIVITY AND TRANSPORT – TRANSPORT CONTENTS: I. Definition II. Rationale III. Approved Standard(s) IV. Approved Product(s) V. Justification VI. Technical and Implementation Considerations VII. Emerging Trends and Architectural Directions VIII. Procedure Reference IX. Review Cycle X. Contact Information Revision History I. DEFINITION Transport provides for the transparent transfer of data between different hosts and systems. The two (2) primary transport protocols in the Transmission Control Protocol/Internet Protocol (TCP/IP) suite are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). II. RATIONALE Idaho State government must be able to easily, reliably, and economically communicate data and information to conduct State business. TCP/IP is the protocol standard used throughout the global Internet and endorsed by ITA Policy 3020 – Connectivity and Transport Protocols, for use in State government networks (LAN and WAN). III. APPROVED STANDARD(S) TCP/IP Transport: 1. Transmission Control Protocol (TCP); and 2. User Datagram Protocol (UDP). IV. APPROVED PRODUCT(S) Standards-based products and architecture S3510 – Network Connectivity and Transport – Transport Page 1 of 2 V. JUSTIFICATION TCP and UDP are the transport standards for critical State applications like electronic mail and World Wide Web services. VI. TECHNICAL AND IMPLEMENTATION CONSIDERATIONS It is also important to carefully consider the security implications of the deployment, administration, and operation of a TCP/IP network. VII. EMERGING TRENDS AND ARCHITECTURAL DIRECTIONS The use of TCP/IP (Internet) protocols and applications continues to increase. Agencies purchasing new systems may want to consider compatibility with the emerging Internet Protocol Version 6 (IPv6), which was designed by the Internet Engineering Task Force to replace IPv4 and will dramatically expand available IP addresses.
    [Show full text]
  • Transport Layer Chapter 6
    Transport Layer Chapter 6 • Transport Service • Elements of Transport Protocols • Congestion Control • Internet Protocols – UDP • Internet Protocols – TCP • Performance Issues • Delay-Tolerant Networking Revised: August 2011 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 The Transport Layer Responsible for delivering data across networks with the desired Application reliability or quality Transport Network Link Physical CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Transport Service • Services Provided to the Upper Layer » • Transport Service Primitives » • Berkeley Sockets » • Socket Example: Internet File Server » CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Services Provided to the Upper Layers (1) Transport layer adds reliability to the network layer • Offers connectionless (e.g., UDP) and connection- oriented (e.g, TCP) service to applications CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Services Provided to the Upper Layers (2) Transport layer sends segments in packets (in frames) Segment Segment CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Transport Service Primitives (1) Primitives that applications might call to transport data for a simple connection-oriented service: • Client calls CONNECT, SEND, RECEIVE, DISCONNECT • Server calls LISTEN, RECEIVE, SEND, DISCONNECT Segment CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice
    [Show full text]
  • Aerohive Configuration Guide: RADIUS Authentication | 2
    Aerohive Configuration Guide RADIUS Authentication Aerohive Configuration Guide: RADIUS Authentication | 2 Copyright © 2012 Aerohive Networks, Inc. All rights reserved Aerohive Networks, Inc. 330 Gibraltar Drive Sunnyvale, CA 94089 P/N 330068-03, Rev. A To learn more about Aerohive products visit www.aerohive.com/techdocs Aerohive Networks, Inc. Aerohive Configuration Guide: RADIUS Authentication | 3 Contents Contents ...................................................................................................................................................................................................................... 3 IEEE 802.1X Primer................................................................................................................................................................................................... 4 Example 1: Single Site Authentication .................................................................................................................................................................... 6 Step 1: Configuring the Network Policy ..............................................................................................................................................................7 Step 2: Configuring the Interface and User Access .........................................................................................................................................7 Step 3: Uploading the Configuration and Certificates ....................................................................................................................................
    [Show full text]
  • Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model.
    [Show full text]
  • Lecture: TCP/IP 2
    TCP/IP- Lecture 2 [email protected] How TCP/IP Works • The four-layer model is a common model for describing TCP/IP networking, but it isn’t the only model. • The ARPAnet model, for instance, as described in RFC 871, describes three layers: the Network Interface layer, the Host-to- Host layer, and the Process-Level/Applications layer. • Other descriptions of TCP/IP call for a five-layer model, with Physical and Data Link layers in place of the Network Access layer (to match OSI). Still other models might exclude either the Network Access or the Application layer, which are less uniform and harder to define than the intermediate layers. • The names of the layers also vary. The ARPAnet layer names still appear in some discussions of TCP/IP, and the Internet layer is sometimes called the Internetwork layer or the Network layer. [email protected] 2 [email protected] 3 TCP/IP Model • Network Access layer: Provides an interface with the physical network. Formats the data for the transmission medium and addresses data for the subnet based on physical hardware addresses. Provides error control for data delivered on the physical network. • Internet layer: Provides logical, hardware-independent addressing so that data can pass among subnets with different physical architectures. Provides routing to reduce traffic and support delivery across the internetwork. (The term internetwork refers to an interconnected, greater network of local area networks (LANs), such as what you find in a large company or on the Internet.) Relates physical addresses (used at the Network Access layer) to logical addresses.
    [Show full text]