Abax 278 Acanthoscelides Obtectus 311 Acentria (= Acentropus) 173

Total Page:16

File Type:pdf, Size:1020Kb

Abax 278 Acanthoscelides Obtectus 311 Acentria (= Acentropus) 173 INDEX Generic and specific names are in italics. Synonyms are indicated by a cross-reference (e.g. Calandra see Sitophilus). Page numbers in bold type denote illustrations. Abax 278 Aeshna (=Aeschna), larval excretion 236 abdomen 13, »-5, 33, 78 Agaonidae 211, 212 appendages of 30, 31, 33; in embryo 101, Agathiphaga 172 102; musculature 41, 42; segmentation 30, Agathtphagidae 172 101; viscera 78 Ageniaspis }ilscicollis, polyembryony 95 abdominal artery 78 Aglossata 172 abdominal ganglia 45, 47 Agriotes 250 Acanthoscelides obtectus 311 larva 153 accessory glands 88 Agriotes lineatus 299 of female 89, 91; of male 91, 92, 93 Agriotes obscurus 299 accessory hearts 79 Agriotes sputator 299 Acentria (= Acentropus) 173 Agromyza 201 acephalous larva 109, 166 Agromyza sonchi, mine 202 Acephate 327, 328 Agromyzidae 204 Acerentomon 121 calcium excretion 84; host specificity 197; Acerentulus 120 as leaf-miners 201-3, 202 acetylcholine 44, 330 Agrotis 303, 337 acetylcholine esterase 44 Agrotis segetum 303 acetyldopamine 8 air-sac 72, 73 acetylglucosamine 7 alarm pheromone 54, 55, 145 Acheta alary muscles see aliform muscles auditory organ 51; tegmen 51 alder-fly see Sialis Acheta domesticus 133, 134 Aldicarb 327, 328, 331 Achroia grisella, sex attractant 55 Aleyrodes proletella 148 Acidia see Euleia Aleyrodidae 148 Aconitum pollination 209 metamorphosis 108 Acrididae 292 Aleyrodoidea, 148 air sacs 72; hearing 51; respiration 75; alienicolae 146 stridulation 51, 52; tympanum 51 aliform muscles 77, 79 Acridoidea 132, 134 alimentary canal 61, 62-5 acron 13, 103 of Archotermopsis 217; of Calliphora 64; acrotergite 19 development 98, 103; excretory role 65, 84; acrotrophic ovariole 90 of Nemobius 63; of Periplaneta 63 activation centre 99 alkaline gland 34, 35 Aculata 180 allantoic acid 83 ovipositor 180, see also sting allantoin 83 Acyrthosiphon pisum 295 allometric growth 104 adaptive radiation 195-6 allomone 54 adecticous pupa 110 allopatric speciation 287 Adelges abietis 205 alternation of generations 206 Adelges cooleyi 207 Altica 298 Adelgidae 146, 207 alveolus 8 adenosine triphosphate 29, 37 Alysia 224 Adephaga 154 Amauris 241 adhesive organ, in Rhodnius 21 amber, insects in 191 aedeagus 31, 32, 91, 92 ambrosia beetles 306, 307 Aedes 317, 318, 319, 320 amino acids, in nutrition 67 medical importance 313,319; tracheal end­ -y-amino butyric acid 44 cell 71 ammonia 83,84,236-7 Aedes aegypti 317, 320 amnion 98, 100, 101 larva 234, 318; pupa 318 amniotic cavity 98, 101, 188 Aedes scutellaris 319 amniotic folds 98, 100, 101 aeropyle 97 Amphigerontia, venation 140 aerosol 330 amphipneustic tracheal system 73 INDEX amplexiform wing-coupling 170 Aphididae 145, 146 amplitude modulation 52 cyclical parthenogenesis 94, 145-6; life­ amylase 66 cycle 145-6, 294; viviparity 96, 145 anal furrow 22 Aphidius 224 anal lobe 22, 191-2 Aphidoidea 145, 146 anal papilla 10, 77, 234 alarm pheromone 55; gall-forming 204, anal veins 24 207; host specificity 197, 201; mycetocyte anamorphosis 30, 120 218; and virus transmission 294-5 anautogeny 232 Aphis craccivora 197 Anax, larval abdomen 129 Aphis fobae 295 Andrena life-cycle 294 as pollinator 208, 211; Stylops parasitic on Aphodius 283 156; visiting flowers 272 aphrodisiac pheromone 55 Andrena carlini, mouthparts 176 Aphytis chrysomphali 271 Andricus kollari 204, 205, 206 Aphytis lingnanensis 271 Andricus quercuscalicis 204, 206 Aphytis melinus 271 androconia 87 Apini 181, 244 Androctenes horvathi 228 Apis mellifera A!1giosperms, and insects 196 alarm pheromone 55; antennal sensilla 53; Angoumois Grain Moth see Sitotroga cerealella circulation 78; colour vision 60; form Anisoptera 128, 129, 130 perception 60; hind leg 177; larva 108; larva 129; larval respiration 77 mouthparts 176; parthenogenesis 94, 243, Annelida 186 247; as pollinator 208, 213; population Anobiidae, as pests 309,310,311 density 245,251; population growth 254; Anobium punctatum 309, 310 pretarsus 21; pupa 110; queen substance 56, Anopheles 316-20 87, 244, 246; regulation in embryo 100; biology 316-17,318--19; larva 234; medical social life 241; sting 34; tarsal receptors 53; importance 313,316,317-18; mouthparts thermoregulation 82; thorax 177; tracheal 163-4,317; oenocytes 86 system 72; venation 176; wax glands 86 Anopheles albimanus 318 apneustic tracheal system 73 Anopheles arabiensis 318 Apocrita 180 Anopheles cla viger 318 larval gut 65; ovipositor 180, 181 Anopheles culiJacies 318 apodeme 11, 36, 37 Anopheles funestus 318 in Dipteran mouthparts 160, 161, 163 Anopheles gambiae 318 apodous larva 108, 109 Anopheles leucosphyrus 318 Apoidea 243 Anopheles maculipennis as pollinators 208 complex 318; larval palmate hair 234 apolysis 104 Anopheles plumbeus 319 apomorphic character 182 Anopheles punctulatus 318 apophyseal pit 19 Anopheles stephensi 318, 319 aposematic coloration 198, 239 Anoplura 142, see also Siphunculata appendages 13 antenna 15 of abdomen 102; development of98, 102; musculature 38 embryonic 98, 101, 102; of head 15, 102 antennal artery 78 Apple Blossom Weevil see Anthonomus antennal lobe 46 pomorum antennal segment 102 Apple Capsid see Plesiqcoris rugicollis anterior cubitus 24 apposition image 59, 60 anterior media 23, 24 Apterygota, a para phyletic group 194 anterior tentorial pit 14 Apterygotes 117 Anthocoridae 218, 334 affinities 188; characteristics 117; fate maps Anthocoris nemorum 218 100; moulting 106; ovariole 90; sperm Anthomyiidae, as leaf-miners 201 transfer 94 Anthonomus grandis 155, 299, 340 Aptinothrips rufus, population density 250 Anthonomus pomorum 300 aquatic life Anthophora 208 adaptations to 76, 84, 233, 234; in Anthrenus 311 Heteroptera 145, 233; in insects 232-7; in antifeedant 198 Lepidoptera 173, 233 Antirrhinum, pollination 209 Arachnida see Chelicerata ant-lion see Myrmeleontidae arboviruses 320 anus 61,65 Archaeognatha 32, 122, 123 Aonidiella aurantii 271 affinities 124, 188--9; characteristics 122-3; aorta 46, 78, 79 literature on 355; moulting 106; thoracic Aphaniptera see Siphonaptera gland 87 Aphelinidae 224, 225 Archips see Choristoneura Aphelocheirus, respiration 76 Architipula 191 385 INDEX Archostemata 154 Belostoma, nervous system 45 Archotermopsis wroughtoni, gut 217 Belostomatidae 145 arista 167 benzene hexachloride see Gamma-HCH Aristolochia grandiflora, pollination 210 benzoylphenylurea 326 Arixenia 135, 136 BHC see Gamma-HCH Arixenia esau 136 Bibionidae 207 armyworm see Spodoptera binomial nomenclature 116 arolium 20, 21 biological control 335-41 Arthropleona 122 biological equilibrium 262--6 Arthropoda Biorhiza pallida 204, 205, 206 characteristics 183; classification 183-5; biotype 197, 285, 288, 341 phylogeny 185, 186 biramous limb 13 Artona catoxantha 336 bird lice see Phthiraptera Arum maculatum, pollination 210 Biston betularia 239 Ascalaphidae 151 Biting house-fly see Stomoxys Asilidae 21, 167 biting lice see Phthiraptera predatory habits 219, 221 Black Arches Moth see Lymantria monacha Asilus barbarus 219 black-flies see Simuliidae Asilus crabroniformis, pretarsus 21 blastoderm 97, 98, 100 Asparagus Beetle see Crioceris asparagi blastokinesis 103 Aspidiotus, fungal association 217 Blastophaga psenes 181, 211 Aspidiotus destructor 297 Blatta 137 association neuron 43 circulation 78, 81; fat-body 67; male asynchronous flight-muscle 27, 37 reproductive system 92, 93; nervous Athous haemorrhoidalis 299 system 45; oenocytes 86 Atlas Moth see Attacus Blattaria 137 Atopatelura, abdomen 125 circulation 78; ootheca 91 A TP see adenosine triphosphate Blattella 137 atrium Blephariceridae 233 in Dipteran larva 166; in spiracle 69 Blepharidopterus angulatus 334 Attacus, size 3, 173 Blissus leucopterus 144 Attagenus pellio 311 blister beetles see Meloidae Atta sextens, population growth 254 blood 77, 79-82 Attini 216 circulation 80-2, 81; respiratory function 79 attractant gland 86-7 blood cells 7'J, 80, 112 auditory organ 48, 50, 51 blood gills 77 Aulacaspis tegalensis 297 blood meal identification 280 Australentulus 120 bloodsucking insects 162, 163-4, 230--2, 231 autogeny 232 blood-worm see Chironomidae Autographa gamma, parasite of 95, 96 blowfly see Callirhora axillary sclerite 26, 27 Blue Swallowtai Butterfly see Battus philenor axon 43 body·cavity 102, see also haemocoel Aysheaia pedunculata 186 Body Louse see Pediculus humanus azadirachtin 198 bollworms see Diparopsis; Earias; Heliothis; Azinphos-methy\ 327, 328 Platyedra Bombini 181 Bacillus popilliae 338 social life 244 Bacillus thuringiensis 338 Bombus 208, 209, 213, 241 backswimmer see Notonectidae population density 251; thermoregulation Baculovirus 337-8 82 baits, insecticidal 330 Bombycidae 173 bark beetles see Scolytidae bombykal55 basalar sclerite 41 bombykol55 basement membrane 8 Bombyliidae 207, 221, 224, 227 basiconic sensillum 48, 53, 56 Bombyx mori 172, 173 basisternum 18, 19 diapause 114; sex attractant 55 Batesian mimicry 238, 240 book lice see Psocoptera bats (Chiroptera) Boopidae 229 commensals 135; ectoparasites 228 Borellia recurrentis 315 and sound perception 171 Boreus 157 Battus philenor 198, 240 bot-flies see Oestridae bed-bugs see Cimex Brachycera 165, 167 bedeguar gall 206 Braconidae 224, 225 bee see Apis, Apoidea, Bombus, Colletes, etc. brain 45,46 bee purple 60 development of 45, 103; functions of 46; beetle see Coleoptera neurosecretion in 46 386 INDEX brain hormone see thoracotropic hormone species 1; predatory adaptations 221; branchia see gill venation 152 branchial chamber, in Ephemeropteran larva Caraboidea 154 128 Caraphractus, swimming 236 Brassolinae 240 Carausius morosus 135 Brevicoryne
Recommended publications
  • Erection of a New Family in the Lepidopterous Suborder Dacnonypha
    Entomologiske M eddelelser 35 (1967) 341 Erection of a New Family in the Lepidopterous Suborder Dacnonypha. By N. P. Kristensen Zoological Institute, University of Copenhagen. The homoneurous moth genus Jlgathiphaga was described by Dumbleton in 1952. The genus comprises two species, occuring in Queensland (Australia) and on Fiji, respectively; the larvae of both feed in the seeds of Kauri pines (Agathis). The adult ana­ tomy indicated affinities to both Micropterygidae and Eriocranii­ dae; Dumbleton decided however, that the weight of evidence was for considering Agathiphaga as a specialized genus of Micropte­ rygidae. On the other hand Hinton (1958) after examining the Agathiphaga-larvae found these to possess several apomorph characters characteristic of Dacnonypha and higher Lepidoptera and to be devoid of any of the features characteristic of the Micropterygid larvae. He therefore concluded that the genus belongs to the Eriocraniidae or a closely related family. The correctness of the transferring of Agathiphaga to the suborder Dacnonypha cannot be doubted; however, in the adult anatomy the genus differs from the Eriocraniidae as well as from the other dacnonyphous families (Mnesarchaeidae, Neopseustidae) in many important features, and consequently has to be regarded as con­ stituting a separate family, which is defined below. Agathiphagidae fam. nov. Type-genus: Agathiphaga Dumbleton, 1952. D i a g no si s. Adult: Articulated mandibles present, galeae nol haustellate, lobular lacinia present, tibia 2 and 3 with paired subapical and apical spurs, forewing with closed cell between M and Cu, d -genitalia with long and simple, dorsally curved valvae, phallus with short posteriorly directed ventral apodeme. 22* 342 N.
    [Show full text]
  • Quercus Cerris
    Quercus cerris Quercus cerris in Europe: distribution, habitat, usage and threats D. de Rigo, C. M. Enescu, T. Houston Durrant, G. Caudullo Turkey oak (Quercus cerris L.) is a deciduous tree native to southern Europe and Asia Minor, and a dominant species in the mixed forests of the Mediterranean basin. Turkey oak is a representative of section Cerris, a particular section within the genus Quercus which includes species for which the maturation of acorns occurs in the second year. Quercus cerris L., commonly known as Turkey oak, is a large fast-growing deciduous tree species growing to 40 m tall with 1 Frequency a trunk up to 1.5-2 m diameter , with a well-developed root < 25% system2. It can live for around 120-150 years3. The bark is 25% - 50% 50% - 75% mauve-grey and deeply furrowed with reddish-brown or orange > 75% bark fissures4, 5. Compared with other common oak species, e.g. Chorology Native sessile oak (Quercus petraea) and pedunculate oak (Quercus Introduced robur), the wood is inferior, and only useful for rough work such as shuttering or fuelwood1. The leaves are dark green above and grey-felted underneath6; they are variable in size and shape but are normally 9-12 cm long and 3-5 cm wide, with 7-9 pairs of triangular lobes6. The leaves turn yellow to gold in late autumn and drop off or persist in the crown until the next spring, especially on young trees3. The twigs are long and pubescent, grey or olive-green, with lenticels. The buds, which are concentrated Large shade tree in agricultural area near Altamura (Bari, South Italy).
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    EVALUATION OF Rhyzobius lophanthae (BLAISDELL) AND Cryptolaemus montrouzieri MULSANT (COLEOPTERA: COCCINELLIDAE) AS PREDATORS OF Aulacaspis yasumatsui TAKAGI (HEMIPTERA: DIASPIDIDAE) By GRETA THORSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2009 1 © 2009 Greta Thorson 2 To my family for their constant support and encouragement, as well as past and present colleagues and mentors who helped inspire me along the way 3 ACKNOWLEDGMENTS I thank my family for their enthusiasm in helping me collect insects and willingness to store countless specimens in their freezers over the years. I’d especially like to thank my major professor and committee members for lending their experience and encouragement. I’d like to also thank my past mentors who inspired me to pursue entomology as a profession. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 LIST OF ABBREVIATIONS........................................................................................................10 ABSTRACT...................................................................................................................................11
    [Show full text]
  • The Beetles Story
    NATURE The Beetles story They outshine butterflies and moths in the world of insects and are a delight for their sheer variety—from the brilliantly coloured to the abysmally dull. But they have their uses, too, such as in museums, where flesh-eating beetles are used to clean off skeletons. Text & photographs by GEETHA IYER THE GIRAFFE WEEVIL (Cycnotrachelus flavotuberosus). Weevils are a type of beetle and they are a menace to crops. 67 FRONTLINE . MARCH 31, 2017 HOW was this watery planet we so much love born? Was it created by God or born off the Big Bang? While arguments swing between science and religion, several ancient cultures had different and interesting per- spectives on how the earth came to be. Their ideas about this planet stemmed from their observations of nature. People living in close prox- imity to nature develop a certain sen- sitivity towards living creatures. They have to protect themselves from many of these creatures and at the same time conserve the very envi- ronment that nurtures them. So there is constant observation and in- teraction with nature’s denizens, es- pecially insects, the most proliferate among all animal groups that stalk every step of their lives. The logic for creation thus revolves around differ- ent types of insects, especially the most abundant amongst them: bee- WATER BEETLE. The Cherokees believed that this beetle created the earth. tles. Beetles though much detested (Right) Mehearchus dispar of the family Tenebrionidae. The Eleodes beetle of by modern urban citizens are per- Mexico belongs to this family. ceived quite differently by indige- nous cultures.
    [Show full text]
  • A T L a S Parazytoidów Szkodników Pierwotnych Sosny
    ATLAS JACEK HILSZCZAN´ SKI, CEZARY BYSTROWSKI parazytoidów szkodników pierwotnych sosny ATLAS parazytoidów szkodników pierwotnych sosny ISBN 978-83-61633-21-1 ATLAS parazytoidów szkodników pierwotnych sosny JACEK HILSZCZAN´ SKI, CEZARY BYSTROWSKI ATLAS parazytoidów szkodników pierwotnych sosny Wydano na zlecenie Dyrekcji Generalnej Lasów Państwowych Warszawa 2010 © Centrum Informacyjne Lasów Państwowych ul. Bitwy Warszawskiej 1920 r. nr 3, 02-362 Warszawa tel.: (22) 822-49-31, fax: (22) 823-96-79 e-mail: [email protected] www.lasy.gov.pl Recenzenci prof. dr hab. Agnieszka Draber-Mońko (Muzeum i Instytut Zoologii PAN) prof. dr hab. Tadeusz Kaźmierczak (Katedra Entomologii Leśnej Uniwersytetu Rolniczego w Krakowie) mgr inż. Piotr Gawęda (Zespół Ochrony Lasu w Gdańsku) Redakcja Aleksandra Dominiewska Autorzy zdjęć i rysunków Jacek Hilszczański, Cezary Bystrowski Zdjęcie na 4 stronie okładki: Wojciech Gil Projekt graficzny i redakcja techniczna Bożena Widłaszewska Korekta Elżbieta Kijewska ISBN 978-83-89744-88-3 Przygotowanie do druku ANTER – Poligrafia, ul. Jaracza 8 m. 18, 00-378 Warszawa Druk i oprawa Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu ul. Sienkiewicza 19, 95-020 Andrespol Spis treści Wstęp ................................................................ 7 1. Definicje i terminologia morfologii parazytoidów . 9 2. Zarys biologii i identyfikacja wybranych taksonów parazytoidów . 17 2.1. Błonkówki . 17 2.2. Muchówki . 27 3. Metody zbioru, hodowli i preparowania . 33 3.1. Błonkówki . 33 3.2. Muchówki . 35 4. Zasady używania atlasu . 37 5. Przegląd systematyczny parazytoidów . 38 Rząd: Hymenoptera – błonkówki . 38 Rząd: Diptera – muchówki . 40 6. Opisy gatunków . 43 7. Literatura . 209 Wstęp Jedną z najliczniejszych grup w świecie owadów są parazytoidy należące do rzę- dów błonkówek (Hymenoptera) i muchówek (Diptera).
    [Show full text]
  • The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
    The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1.
    [Show full text]
  • Checkered Beetles Moths (Lepidoptera: Gracillariidae) – Hazardous Phytophags of Arboreal and Shrubby Plants of Botanical Gardens and Plantings of Kiev M
    UDC 632.634.791.937 (477.75) © 2017 Checkered beetles moths (Lepidoptera: Gracillariidae) – hazardous phytophags of arboreal and shrubby plants of botanical gardens and plantings of Kiev M. Lisovyi, O. Sylchuk Natsional University of Life and Environmental Sciences of Ukraine, Heroev Oborony str., 13, Kyiv, 03041, Ukraine P. Chumak, V. Kovalchuk, Botanichny Garden of Acad. O. Fomina The purpose. To carry out probes on revealing and specification of species composition of checkered moths (Lepidoptera: Gracillariidae) in conditions of botanical gardens and plantings of Kiev. Methods. Standard methods of faunistic research in entomology, population ecology, and protection of plants. Results. It is determined that 24 kinds of checkered moths are eating 54 kinds of plants which are widely used for gardening in Kiev. For the first time the following kinds are revealed: Phyllonorycter issikii, Phyllonorycter platani, and Phyllonorycter emberizaepennella. At calculation of Palii-Kovnatski indexes they specified that in city plantings the dominant phytophags are Cameraria ohridella (94,11%), Phyllonorycter populifoliella (86,37%) and Gracillaria syringella (59,14%). They consider that in formation of the secondary areal of invasion kinds of checkered moths the great value has an areal of spread of the host-plant. Environmental analysis is carried out of checkered moths of family Gracillariidae which is spread in cities of the Europe and which are absent in fauna of cities of Ukraine. That has important theoretical and practical value for ecology, entomology and protection of plants against hazardous checkered moths. Conclusions. All the probed kinds of checkered moths by their trophic specialization may be distributed into polyphages (6 kinds), oligophages (14 kinds) and monophages (3 kinds).
    [Show full text]
  • Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis Yasumatsui Takagi (Hemiptera: Diaspididae)
    IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae) 18 September 2005 Subgroup Members (Affiliated Institution & Location) • William Tang, Subgroup Leader (USDA-APHIS-PPQ, Miami, FL, USA) • Dr. John Donaldson, CSG Chair (South African National Biodiversity Institute & Kirstenbosch National Botanical Garden, Cape Town, South Africa) • Jody Haynes (Montgomery Botanical Center, Miami, FL, USA)1 • Dr. Irene Terry (Department of Biology, University of Utah, Salt Lake City, UT, USA) Consultants • Dr. Anne Brooke (Guam National Wildlife Refuge, Dededo, Guam) • Michael Davenport (Fairchild Tropical Botanic Garden, Miami, FL, USA) • Dr. Thomas Marler (College of Natural & Applied Sciences - AES, University of Guam, Mangilao, Guam) • Christine Wiese (Montgomery Botanical Center, Miami, FL, USA) Introduction The IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests was formed in June 2005 to address the emerging threat to wild cycad populations from the artificial spread of insect pests and pathogens of cycads. Recently, an aggressive pest on cycads, the cycad aulacaspis scale (CAS)— Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae)—has spread through human activity and commerce to the point where two species of cycads face imminent extinction in the wild. Given its mission of cycad conservation, we believe the CSG should clearly focus its attention on mitigating the impact of CAS on wild cycad populations and cultivated cycad collections of conservation importance (e.g., Montgomery Botanical Center). The control of CAS in home gardens, commercial nurseries, and city landscapes is outside the scope of this report and is a topic covered in various online resources (see www.montgomerybotanical.org/Pages/CASlinks.htm).
    [Show full text]
  • National Oak Gall Wasp Survey
    ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success .................................................................................................
    [Show full text]
  • Streszczenie Ekologiczne Aspekty Interakcji Galasotwórczych
    Streszczenie Ekologiczne aspekty interakcji galasotwórczych pryszczarków Hartigiola annulipes i Mikiola fagi z bukiem Fagus sylvatica Niniejsza praca poświęcona została ekologicznym zależnościom między bukiem zwyczajnym a owadami tworzącym galasy na liściach. Galasy jako struktury, których rozwój i wzrost indukowany jest przez wybrane grupy bezkręgowców, stanowią obciążenie dla roślinnego gospodarza. Jedną z najbogatszych w gatunki zdolne do tworzenia wyrośli grup owadów stanowią pryszczarki (Cecidomyiidae; Diptera). Dwa badane gatunki pryszczarków: garnusznica bukowa (Mikiola fagi) i hartigiolówka bukowa (Hartigiola annulipes), mimo podobnego cyklu życiowego i takiego samego gospodarza, tworzą odmienne morfologicznie galasy. W niniejszej rozprawie wykazano, że garnusznica bukowa wraz ze wzrostem długości blaszki liścia buka ma tendencję do indukcji mniejszej liczby galasów. Co więcej, im więcej galasów na liściu, tym większa szansa na wystąpienie reakcji nadwrażliwej ze strony gospodarza. Zależność ta dotyczy zarówno garnusznicy, jak i hartigiolówki, reakcja nadwrażliwa odpowiedzialna jest za odpowiednio 40% i 51% śmiertelności galasów, i nie zależy od wielkości liścia. W przypadku drugiego wymienionego gatunku, większe liście charakteryzują się nieznacznie większą liczebnością galasów. Hartigiolówka wykazuje niewielkie preferencje wobec liści zwróconych na wschód, unika zaś te o wystawie południowej, ponadto częściej indukuje galasy w środkowej części liścia, a najrzadziej w dystalnej. W zależności od wybranej strefy liścia zmienia się
    [Show full text]
  • Butlleti 71.P65
    Butll. Inst. Cat. Hist. Nat., 71: 83-95. 2003 ISSN: 1133-6889 GEA, FLORA ET FAUNA The life cycle of Andricus hispanicus (Hartig, 1856) n. stat., a sibling species of A. kollari (Hartig, 1843) (Hymenoptera: Cynipidae) Juli Pujade-Villar*, Roger Folliot** & David Bellido* Rebut: 28.07.03 Acceptat: 01.12.03 Abstract and so we consider A. mayeti and A. niger to be junior synonyms of A. hispanicus. Finally, possible causes of the speciation of A. kollari and The marble gallwasp, Andricus kollari, common A. hispanicus are discussed. and widespread in the Western Palaeartic, is known for the conspicuous globular galls caused by the asexual generations on the buds of several KEY WORDS: Cynipidae, Andricus, A. kollari, A. oak species. The sexual form known hitherto, hispanicus, biological cycle, sibling species, formerly named Andricus circulans, makes small sexual form, speciation, distribution, morphology, gregarious galls on the buds of Turkey oak, A. mayeti, A. burgundus. Quercus cerris; this oak, however, is absent from the Iberian Peninsula, where on the other hand the cork oak, Q. suber, is present. Recent genetic studies show the presence of two different Resum populations or races with distribution patterns si- milar to those of Q. cerris and Q. suber. We present new biological and morphological Cicle biològic d’Andricus hispanicus (Hartig, evidence supporting the presence of a sibling 1856) una espècie bessona d’A. kollari (Hartig, species of A. kollari in the western part of its 1843) (Hymenoptera: Cynipidae) range (the Iberian Peninsula, southern France and North Africa), Andricus hispanicus n. stat.. Biological and morphological differences separating these Andricus kollari és una espècie molt comuna dis- two species from other closely related ones are tribuida a l’oest del paleartic coneguda per la given and the new sexual form is described for the gal·la globular i relativament gran de la generació first time.
    [Show full text]
  • Estudi De Les Gales De La Coŀlecció Vilarrúbia Dipositada Al Museu De Ciències Naturals De Barcelona
    Butlletí de la Institució Catalana d’Història Natural, 81: 137-173. 2017 ISSN 2013-3987 (online edition): ISSN: 1133-6889 (print edition)137 GEA, FLORA ET fauna GEA, FLORA ET FAUNA Estudi de les gales de la coŀlecció Vilarrúbia dipositada al Museu de Ciències Naturals de Barcelona Maria Blanes-Dalmau*, Berta Caballero-López* & Juli Pujade-Villar** * Museu de Ciències Naturals de Barcelona. Laboratori de Natura. Coŀlecció d’artròpodes. Passeig Picasso s/n. 08003 Barcelona. A/e: [email protected] ** Universitat de Barcelona. Facultat de Biologia. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (Secció invertebrats). Diagonal, 643. 08028 Barcelona (Catalunya). A/e: [email protected] Correspondència autor: Maria Blanes. A/e: [email protected] Rebut: 05.11.2017; Acceptat: 24.11.2017; Publicat: 28.12.2017 Resum La coŀlecció de gales d’Antoni Vilarrúbia i Garet, dipositada al Museu de Ciències Naturals de Barcelona, ha estat revisada, documen- tada i fotografiada. Està representada per 884 gales que pertanyen a 194 espècies diferents d’agents cecidògens incloent-hi insectes, àcars, fongs i proteobacteris. Els hostes dels agents cecidògens de la coŀlecció estudiada es troben representats per 114 espècies diferents, agrupa- des en 36 famílies, que inclouen formes arbòries, arbustives i herbàcies, on els òrgans vegetals més afectats són les fulles i els borrons. La coŀlecció Vilarrúbia és una mostra ben clara de la diversitat de cecidis que tenim a Catalunya. Paraules clau: gales, fitocecídies zoocecídies, Vilarrúbia, MCNB. Abstract Study of the galls of the Vilarrúbia collection deposited at the Museum of Natural Sciences of Barcelona The gall collection of Antoni Vilarrúbia i Garet deposited in the Barcelona Natural History Museum was reviewed, documented and photographed.
    [Show full text]