High Maltose Syrup

Total Page:16

File Type:pdf, Size:1020Kb

High Maltose Syrup Global Supplier Of Plant Based Ingredients High Maltose Syrup Applications Specifications Brewery industry Appearance DE value Viscous and transparent 40-50 Beverages industry liquid Food industry Taste pH Bakery, dairy products, jams, sauces, canned food Sweet medium and pure 3.5-6.6 and meat products Dry solids Confectionery industry 79.5-83.0% Hard boiled candies, fondants, toffees and chewing gum Specifications Packaging & Shelf life Sugar profile • 300 kg drums Dextrose (DP1) 0-6% • Flexibags • IBC Totes Maltose (DP2) 46-60% Maltotriose (DP3) 15-25% Minimum of 6 months after date Higher saccharides 23-32% of production, in closed packing. Sulphur Dioxide (SO2) max 10 ppm Best before expiration date on packaging. Contact Meelunie B.V. - Viñoly Tower, 18th floor, Claude Debussylaan 40, 1082 MD Amsterdam P.O. Box 10102, 1001 EC Amsterdam, The Netherlands +31.20.530.6530 | [email protected] | www.meelunie.com Global Supplier Of Plant Based Ingredients Your eye on the market since 1867 General information Our services Meelunie was founded in The Netherlands in 1867. • Competitive prices Since then we have become a key global supplier in • Consistent quality & guaranteed supply starches, sweeteners and proteins in more than 90 • Multiple origins sourcing countries. Our brands are internationally recognised as • Local support a standard of excellence and reliability. With supply and • Market intelligence advisory distribution networks around the world, we are • Multiple logistic solutions "Your eye on the market". • Custom made financial solutions • NON-GMO, GMP+ and Organic available Processing Growing Packaging Supplying Delivering Our products Starches Sweeteners Proteins Other ingredients • Potato • Glucose Syrup • Potato • Potato Flakes • Tapioca • High Maltose Syrup • Wheat • Potato Granules • Wheat • Maltodextrin • Corn • Potato Blends • Corn • Dextrose • Soy • Sweet potato meal • Pea • Sorbitol • Pea • Sugar beet pulp • Sunflower • Rapeseed The information contained in this leaflet is subject to change without notice and it should not be construed as any type of legal obligation. Contact Meelunie B.V. - Viñoly Tower, 18th floor, Claude Debussylaan 40, 1082 MD Amsterdam P.O. Box 10102, 1001 EC Amsterdam, The Netherlands +31 20 530 6530 | [email protected] | www.meelunie.com.
Recommended publications
  • BREWERS' CRYSTALS® High Maltose Corn Syrup Solids
    BREWERS’ CRYSTALS® High Maltose Corn Syrup Solids Advantages • Good match for all malt wort • Gluten free • Consistent purity and quality while adding flexibility and capacity Ingredion understands that brewery is an art as well as a science; our brewing adjunct portfolio is based on more What is it? than 100 years of service to the industry with a variety of ingredients. We take pride in our quality and ISO 9001 and BREWERS’ CRYSTALS High Maltose Corn Syrup Solids are FSSC 22000 systems certifications and our reliability one fermentable carbohydrates from corn, specially produced of the strongest supply chains in the industry. to obtain a profile close to an all-barley malt wort (Figure 1). Easy to use in powder form, they can be added directly to the brew kettle to create beers with crisper lighter flavor, or later How do I use it? in the process to add more complex character in priming. Ingredion BREWERS’ CRYSTALS HM Corn Syrup Solids can be easily added as an adjunct directly to the brewing kettle BREWERS’ CRYSTALS HM Corn Syrup Solids provide 100% or before filtration steps to add crisp and light character- total extract and 80% fermentable extract allowing the istics to lagers, ales and special beer recipes, or in priming Brew Master the flexibility of including them in a broad for added notes to complex beers. range of formulation and thus a wider spectrum of beers. Why should I use it? FIGURE 1: CARBOHYDRATE PROFILES COMPARISON 60 The benefits of BREWERS’ CRYSTALS HM Corn Syrup Solids: 56 • Packaged in convenient 25 kg (55 lb) multiwall poly-lined 52 BREWERS’ 50 CRYSTALS bags, they are easy to handle and store without the need for Wort* additional liquid handling systems.
    [Show full text]
  • Sugar: the Many Names Used in Processed Foods
    Sugar: the Many Names Used in Processed Foods Both glucose and fructose are common, but they affect the body very differently. Glucose can be metabolized by nearly every cell in the body. Fructose is metabolized almost entirely in the liver. Fructose has harmful effects on the body, including insulin resistance, metabolic syndrome, fatty liver, and type 2 diabetes. It is especially important to minimize the intake of high fructose sugars. Many processed foods will have a combination of sugars. Because the ingredient are listed in order of quantities, using several different sugar names presents the illusion that sugars are less prominent in the ratio of ingredients. Sugar / Sucrose Agave Nectar Sugar with Glucose & Fructose Also knows as table, granulated, or Produced from the agave plant in Various Amounts white sugar, occurring naturally in 79-90% fructose, 10-30% glucose Beet Sugar fruits and plants, added to many Blackstrap Molasses processed foods. Sugar with Fructose Only Brown Sugar, Dark or Light Brown 50% glucose, 50% fructose Crystalline Sugar Fructose Buttered Syrup High Fructose Corn Syrup, HFCS Cane Juice Crystals Sugar without Glucose or HFCS 55 – the most common type Fructose Cane Syrup of HRCS. 55% fructose, 45% D-Ribose, Ribose Cane Sugar glucose, composition is similar to Galactose Caramel sucrose Caramel Color HFCS90 – 90% fructose, 10% Names for Hidden Sugars Carob Syrup glucose Aguamiel Castor Sugar All-natural sweetener Coconut Sugar Names Used to Denote Hight Barbados Molasses Confectioner’s Sugar (Powdered Fructose
    [Show full text]
  • The Relationship Between Fructose, Glucose and Maltose Content With
    stry: Cu i rre em n t Moussa et al., Organic Chem Curr Res 2012, 1:5 h R C e c s i e n a DOI: 10.4172/2161-0401.1000111 a r Organic Chemistry c g r h O ISSN: 2161-0401 Current Research ResearchResearch Article Article OpenOpen Access Access The Relationship between Fructose, Glucose and Maltose Content with Diastase Number and Anti-Pseudomonal Activity of Natural Honey Combined with Potato Starch Ahmed Moussa1*, Djebli Noureddine2, Aissat Saad1 and Salima Douichene2 1Institute of Veterinary Sciences University Ibn-Khaldoun, Tiaret, Algeria 2Departments of Biology, Faculty of Sciences, Mostaganem University, Algeria Abstract Honey whose medicinal uses date from ancient times has been lately rediscovered as therapy for burns. Objective: To evaluate the additive action of potato starch on the antipseudomonal activity of natural honey. Methods: Physicochemical parameters of 6 samples of Algerian honeys were analysed; four parameters were measured, including Diastase, glucose, fructose and maltose. The antibacterial activity was tested using the well-agar diffusion assay. Results: Six honey samples with initial diastase activity between 22.1 and 7.3 Schade units were tested. Glucose, fructose and maltose values range between 21, 45-30, 95%, 25, 20-37, 81% and 4, 72-78, 45% respectively. The zone inhibition diameter (ZID) for the six honey samples without starch against P. aureogenosa ranged between 26 and 31 mm. When starch was mixed with honey and then added to well, a zone inhibition increase diameter (ZIID) 27 and 32 mm. The percentage increase (PI %) was noticed with each variety and it ranged between 3, 57 and 18, 75%.
    [Show full text]
  • Invert Sugar Determination by Polarimeter
    Invert Sugar Determination by Polarimeter Invert sugar (IS) contains fructose and glucose in roughly equal proportions. The Invert sugar is greater in demand than pure glucose as food and drink sweeteners, because fructose is sweeter than glu- cose. Main consumers of Invert Sugar are the baking, beverages, canning, confectionery and dairy industries. In addition, high fructose syrup is used in many other processed foods like jams and jellies. However, it is being used only in biscuits and soft drinks. A manufacturer of IS expecting to supply it in next couple of years to the confectionery, fruit canning, processed foods and dairy products industries also. Fructose, also known as fruit sugar, is the sweetest natural sugar and is found in fruits, vegeta- bles, and honey. The body responds to fructose in a different way than to glucose and sucrose. Fructose is more satiating, and it is up to 1.8 times sweeter than sucrose, making it useful in foods and bever- ages for the health conscious. Fructose is also ideal for use in diabetic foods as it has very little effect on blood glucose and only a negligible effect on the secretion of insulin. Enzymatic treat- ments are a now a major way of producing sweeteners, including syrups derived from sucrose derived from sucrose or starch th at contain mixtures of glucose, maltose, fructose, and other sugars. Glucose has 70-75% the sweetening strength of beet sugar (sucrose), but fructose is twice as sweet as sucrose. Thus, processes for the manufacture of fructose are of considerable value. Invertase enzyme is used traditionally in the production of inverted sugars for industry, espe- cially in the manufacture of candies and preserves, production of lactic acid and ethanol pro- duction from fermentation of cane sugar molasses.
    [Show full text]
  • Nutritive Sweeteners from Corn Have Become America’S Premier Sweeteners
    NutritiveNutritive SweetenersSweeteners FromFrom CornCorn CONTENTS Member Companies and Plant Locations ....................................... 2 Foreword .......................................................................................... 3 Historical Perspective ...................................................................... 4 Research and development orientation ....................................... 5 Technology aimed at needs .......................................................... 7 Growth, Development and Diversity ............................................. 7 CONTENTS Classification and Nutrition ............................................................ 9 Classification ................................................................................. 9 Corn sweeteners in nutrition ..................................................... 10 Technical Background ................................................................... 11 Corn starch ................................................................................. 11 Starch hydrolysis ........................................................................ 13 Crystalline dextrose .................................................................... 14 Dextrose isomerization .............................................................. 15 Manufacture ................................................................................... 17 Corn syrups ................................................................................ 17 Dried corn syrups ......................................................................
    [Show full text]
  • Glucose Syrup the Chef’S Magic Ingredient! CENTURIES of GASTRONOMIC TRADITION
    Glucose syrup The chef’s magic ingredient! CENTURIES OF GASTRONOMIC TRADITION A product with a proud heritage which plays a significant role in European gastronomy, glucose syrup is used in gourmet foods by pâtissiers, confectioners and chefs alike. This high- quality, plant-based product has been produced in Europe for over a century. In the EU, with its grain-based agriculture, glucose syrup is derived from wheat and maize; EU starch manufacturers source their products exclusively from conventional (non-GMO) crops. Glucose syrup is a sugar made from the hydrolysis (breaking down) of starch. It is available in liquid, solid and transparent form (similar to honey). It was discovered in the 9th century in Japan, and originally derived from sweet potatoes; the glucose syrup manufacturing process was developed in the 19th century by the German scientist, Kirchhoff. A number of culinary specialities benefit from the unique qualities of this ingredient. Bakery products: e.g. pastries, macaroons, cakes etc. Confectionery products: e.g. sweets, lozenges, nougat etc. Glucose syrup plays a vital role in these delicacies... A delight to the eyes and taste buds alike. Still have questions about starch and starch-based ingredients in food? VISIT WWW.STARCHINFOOD.EU TO LEARN MORE. GLUCOSE SYRUP AND DIET EFSA (The European Food Safety Authority)) recommends that carbohydrates should form 45- 60% of our overall energy intake, stating that “enjoyed occasionally and in reasonable quantity, sweetened products are compatible with a balanced diet”. Glucose syrups are part of the simple carbohydrate family, with the same calorific value as all other sugars (sucrose or white sugar, lactose, etc.) i.e.
    [Show full text]
  • Brewing Sugars and Syrups
    Brewing Sugars and Syrups Subcommittee Members: Lydia Marinelli, Chairman; E. Austin, R. 2. It is recommended that the Subcommittee on Brewing Sugars Bogenrief, K. M. Brobsl, M. E. Cieslak, W. A. Davis, P. Fallen, M. Gray, and Syrups be retired. R. Hagy, A. M. Jamieson, K. Long, M. A. Mohs, P. M. Olinger, T. Otterson, A. F. Pomes, D. Schooley, H. D. Scobell, D. Stubbs, J. Whitt, and J. R. Helbert (ex officio). The evaluation of instrumental methods for determining CONCLUSIONS fermentable carbohydrates in brewing syrups was assigned to this Subcommittee in 1975. A collaborative study was undertaken in 1. The total laboratory error was lowest for glucose and maltose 1975-76 to evaluate two gas chromatographic methods and a high- using method 2, gas-liquid chromatography (GLC) of pressure liquid chromatographic method for determining glucose, trimethylsilyl (TMS) derivatives, when considering data for maltose, and triose concentrations in a pair of corn syrup samples. both types of syrups. The collaborative results (1) indicated that the least total error 2. The total laboratory error was lowest for maltotriose (triose) resulted from the use of the HPLC method. The highest error for all three methods was associated with the determination of triose using method 3, high-pressure liquid chromatography (HPLC), concentration. when considering data for both types of syrups. Based on recommendations evolving from the first collaborative 3. The total laboratory error was lowest using method 3, HPLC, study, a second collaborative study was initiated to include the when considering a combination of all three sugars and both following: types of syrups.
    [Show full text]
  • Chewy Confections
    [Confections] Vol. 14 No. 9 September 2004 ww Chewy Confections By Peter Dea, Contributing Editor Gumdrops and lemon drops -- although both are candies, a gumdrop eats differently than a lemon drop. While you may chew on the former, you probably wouldn't the latter. Part of picking candy is based on how interactive you want it to be. That is -- at least for this discussion -- do you want to chew it? When it comes to satisfying our need for a bite-sized sweet treat that also fulfills our desire to chew, it's chewy confections that meet these requirements. Excluding chewing gums, the most common chewy confections include jellies, caramels and nougats, and taffies. Within these groups lie a wide variety of shapes, flavors, textures and sizes. In addition to their broad appeal as traditional confections, chewy treats also find popularity in additional segments as a delivery means for vitamins, minerals and other nutraceutical ingredients. And with the current trend of low-carb lifestyles, sugar-free chewy confections are enjoying new interest. The technology for producing these sweet treats has existed for a long time. But, to implement the knowledge for new applications, it's beneficial to have a good understanding of the basic formulae and processes for each type. Back to basics According to Henry Nonaka, senior technical sales support manager, Corn Products International, Bedford Park, IL: "Combinations of three sweeteners -- sucrose, 42 DE, and 63 DE corn syrups -- are the basis for about every cooked confectionery product. To a lesser extent, high-maltose and high-fructose corn syrups (HFCS) can be used." In combination with moisture content, confectioners vary the amounts of these ingredients to begin creating candies with different textures and eating characteristics.
    [Show full text]
  • Codex Standard for Sugars1 Codex Stan 212-1999 1
    CODEX STAN 212-1999 Page 1 of 5 CODEX STANDARD FOR SUGARS1 CODEX STAN 212-1999 1. SCOPE AND DESCRIPTION This Standard applies to the following sugars intended for human consumption without further processing (synonyms are in round brackets). It includes sugars sold directly to the final consumer and sugars used as ingredients in foodstuffs. The description of each of the sugars is also given below: Name Description White sugar Purified and crystallised sucrose (saccharose) with a polarisation not less than 99.7 ºZ. Plantation or mill white sugar Purified and crystallised sucrose (saccharose) with a (or any other equivalent name accepted in the polarisation not less than 99.5 ºZ. country of origin in which it is sold) Powdered sugar Finely pulverised white sugar with or without the addition (icing sugar) of an anticaking agent Soft white sugar Fine grain purified moist sugar, white in colour with a sucrose plus invert sugar content of not less than 97.0% m/m. Soft brown sugar Fine grain purified moist sugar, light to dark brown in colour with a sucrose plus invert sugar content of not less than 88.0% m/m. Dextrose anhydrous Purified and crystallised D-glucose without water of crystallisation, with a D-glucose content of not less than 99.5% m/m on a dry basis and a total solids content of not less than 98.0% m/m. Dextrose monohydrate Purified and crystallised D-glucose containing one molecule of water of crystallisation, with a D-glucose content of not less than 99.5% m/m on a dry basis and a total solids content of not less than 90.0% m/m.
    [Show full text]
  • Sweetright™ Reduced Sugar Glucose Syrup Is Part of Our Sweetright™ Line of Specialty Nutritive, Low and No Calorie Sweeteners
    RSGS Sweeten Your Label 67% by Reducing the Sugar are very/ somewhat concerned about It’s simple: you can reduce sugar by replacing your traditional corn syrup sugars & 1 with reduced sugar glucose syrup without changing functionality. sweetners ADM’s reduced sugar glucose syrup helps you reduce sugar by replacing your traditional corn syrup without sacrificing functionality. With lower percentages of mono and disaccharides (DP1 & DP2), reduced sugar 39% glucose syrup means up to 30% less sugar appears on your nutrition indicate reduced sugar is important facts label. ADM’s technical teams can help you easily swap it into your in convenience existing formulations without losing any of the key functional or sensory food, drinks & properties, delivering products consumers will love. snacks2 1,2ADM Outside VoiceSM Sweetening Study SWEETNESS DONE RIGHT SweetRight™ Reduced Sugar Glucose Syrup is part of our SweetRight™ line of specialty nutritive, low and no calorie sweeteners. The SweetRight™ portfolio was created to bring together a comprehensive lineup of offerings that go beyond sweetness – addressing the changing needs for consumer-friendly labels, calorie reduction and health & wellness trends. Unlocking Nature. Enriching Life. 800-257-5743 | [email protected] | adm.com/food RSGS Benefits Beyond Sugar Reduction FUNCTIONAL BENEFITS Reduced sugar glucose syrup offers functional benefits beyond Lowers Added Sugars on label sugar reduction, with unique advantages in target applications. Maintains corn syrup functionality, including bulking & binding FOR A STANDOUT LABEL Provides clean label flexibility Today’s consumers are focused on making better-for-you choices as “Glucose Syrup” or “Corn Syrup” and are on the lookout for labels featuring ‘less added sugars’ and Delivers viscosity comparable to ‘less total sugar’, for themselves and their families.
    [Show full text]
  • Features & Benefits
    VERSASWEET™ 1724 Functionality: Low to moderate sweetness, texture Description: Enzyme converted 28 DE glucose syrup with low amounts of mono- and disaccharides and high levels of higher saccharides (DP3+) made from corn Features Benefits Low sugar (DP1/DP2) content Allows for sugar reduction without compromising on texture and taste. Similar processability and viscosity to DE42 glucose Allows for 1:1 replacement of DE42 glucose syrup syrup without changing the processing conditions. Clean label texturising properties Adds creaminess, body and mouthfeel to various food applications. Less hygroscopicity Improves shelf life stability for low moisture products, such as powder creamers and baked goods. Brings less stickiness on final product versus regular glucose syrup VERSASWEET™ 1724 VERSASWEET™ Clean and pleasant sweet taste Improves flavour profile without any off tastes. Low Maillard reactivity Offers stability in hot processes and acidic conditions. APPLICATION AND USAGE INFORMATION Application Summary: VERSASWEET™ 1724 is a glucose syrup with reduced DP1/DP2 content. It offers similar functionality compared to standard 42DE glucose syrup with less added sugars onto the label of the final food application. VERSASWEET™ 1724 enables manufactures to formulate a broad range of sugar reduced products in a variety of categories, including spray dried creamers, beverages and tabletop sauces. Furthermore, VERSASWEET™ 1724 improves the shelf-life stability of various applications including coated snacks, fillings, ice cream and fruit preparations. Typical applications include: Spray dried dairy products: VERSASWEET™ 1724 provides increased shelf-life stability to spray dried coffee creamers. It offers a comparable viscosity to 42DE viscosity, which might improve the spray drying efficiency in comparison to high viscous standard 28DE glucose syrup solids.
    [Show full text]
  • 19 Do Not Duplicate Functional Oligosaccharides a Trisaccharide Of
    Do not duplicate Introduction to Carbohydrates: Oligosaccharides Dr. Yuan Yao Whistler Center for Carbohydrate Research Short Course October 3, 2017 Basic Concepts 2 Do not duplicate • “Oligo-” is the prefix from Greek language “few”; Poly- “many” • Oligosaccharides: Products of glycosidic linkages of 2-20 monosaccharide units (most commonly 2-9). Polysaccharides: More than 20 units • In the disaccharides: the aglycone is a monosaccharide unit; higher order oligosaccharides are named “tri-”, “tetra-”, “penta-”, etc. • There can be α-/β-(1→2), (1→3), (1→4) or (1→6) glycosidic linkages, with different stabilities & digestibilities (as for human body) • The structures of oligosaccharides could be linear or branched. Linear: head-to-tail linkage, 1 reducing end, 1 non-reducing end Branched: 1 reducing end, multiple non-reducing ends Common Disaccharides 3 Do not duplicate • Disaccharides are the simplest oligosaccharides that are only composed of two monosaccharide units o Highly abundant in nature; or the products of incomplete hydrolysis of higher oligosaccharides or polysaccharides o Water-soluble, with sweet taste • Most Common: Sucrose, Maltose, Lactose, & Trehalose o Naturally occurring o As the main product of photosynthesis, sucrose is ubiquitous in all plants, with high abundance in sugar cane and beet, as well as fruits o Commonly known as table sugar, sucrose usually serves as a “standard” of sweetness for other sweeteners Common Disaccharides 4 Do not duplicate Sucrose • A disaccharide of one glucose and one fructose unit, connected via β-(1,2)-glycosidic linkage • The “head-to-head” linkage is unstable due to high strain, and is therefore easily hydrolyzed (acid-catalyzed, or enzymatic) • Sucrose is a non-reducing sugar α-D-glucopyranosyl-(1→2)-β-D-fructofuranoside 5 Common Disaccharides Inverted sugarDo (syrup) not duplicate • Sucrose could be readily hydrolyzed.
    [Show full text]