8-Methoxypsoralen

Total Page:16

File Type:pdf, Size:1020Kb

8-Methoxypsoralen NATIONAL TOXICOLOGY PROGRAM Technical Report Series NQ. 359 TOXICOLOGY AND CARCINOGENESIS STUDIES OF 8-METHOXYPSORALEN (CAS NO. 298-81-7) IN F344/N RATS (GAVAGE STUDIES) U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agen- cies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a comprehensive audit before being pre- sented for public review. This Technical Report has been reviewed and approved by the NTP Board of Scientific Counselors' Peer Review Panel in public session; the interpretations described herein rep- resent the official scientific position of the NTP. These studies are designed and conducted to characterize and evaluate the toxicologic potential, in- cluding carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Anyone who is aware of related ongoing or published studies not mentioned in this report, or of any errors in this report, is encouraged to make this information known to the NTP. Comments and ques- tions about these Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-5722). These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). A list- ing of printed NTP Technical Reports appears on the inside back cover. Single copies of this Tech- nical Report are available without charge while supplies last from the NTP Public Information Office, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3991). 8-Methoxypsoralen, NTP TR 359 NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF 8-METHOXYPSORALEN (CAS NO. 298-81-7) IN F344/N RATS (GAVAGE STUDIES) June K. Dunnick, Ph.D., Study Scientist NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 1989 NTP TR 359 NIH Publication No. 89-2814 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health CONTENTS PAGE ABSTRACT ................................................................ 3 EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY .................. 6 CObTRIBUTORS ............................................................ 7 PEERREVIEWPANEL ........................................................ 8 SUMMARY OF PEER REVIEW COMMENTS ......................................... 9 I. INTRODUCTION ........................................................ 11 II. MATERIALS AND METHODS .............................................. 17 III. RESULTS ............................................................. 33 RATS ............................................................. 34 GENETICTOXICOLOGY ............................................... 46 IV. DISCUSSION AND CONCLUSIONS ........................................... 51 V. REFERENCES ......................................................... 55 APPENDIXES APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF8-METHOXYPSORALEN ......................................... 63 APII’ENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDYOF8-METHOXYPSORALEN ................................... 91 APPENDIX C SENTINEL ANIMAL PROGRAM ...................................... 111 APPENDIX D INGREDIENTS. NUTRIENT COMPOSITION. AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION ................................... 113 APPENDIX E TOXICITY OF 8.METHOXYPSORALEN. 5.METHOXYPSORALEN. 3.CARBETHOXYPSORALEN. OR 5-METHYLISOPSORALEN WITH ULTRAVIOLET RADIATION IN THE HAIRLESS (HRA/Skh) MOUSE ........................ 119 APPENDIX F AUDIT SUMMARY ............................................... 129 8.hfethoxypsoralen. NTP TR 359 2 OCH3 I 8-METHOXYPSORALEN CAS NO. 298-81-7 Cl2b04 Molecular weight 216.2 Synonyms: 9-methoxy-7H-furo[3,2-g]benzopyran-7-one;6-hydroxy-7-methoxy-5-benzofuranacrylic acid &lactone; 8-MP; 8-MOP; 8-methoxy-(furano-3',2':6,7-coumarin);8-methoxy-4',5':6,7- furocoumarin; 9-methoxypsoralen; 8-methoxypsoralene; methoxsalen; oxypsoralen Trade Names: Ammoidin; Meladinin (VAN); Meladinine; Meladoxen; Meloxine; Methoxa-Dome; Mopsoralen; Oxsoralen; Soloxsalen; Trioxun; Xanthotoxin; Xanthotoxine ABSTRACT Oral administration of 8-methoxypsoralen followed by exposure to longwave ultraviolet light (pri- marily ultraviolet A, 320-400 nm) is used in the treatment of vitiligo and psoriasis. 8-Methoxypsora- len also occurs naturally in a variety of vegetables. Toxicology and carcinogenesis studies of 8-meth- oxypsoralen without ultraviolet A were conducted by administering USP-grade 8-methoxypsoralen (99% pure) in corn oil by gavage to groups of F344/N rats once or for 16 days, 13weeks, or 2 years. In vitro genetic toxicology tests were performed with bacteria and mammalian cells. Single-Administration, Sixteen-Day, and Thirteen-Week Studies: In the single-administration stud- ies, the chemical was administered at doses of 0 and 63-1,000 mg/kg. Four of five male rats and 5/5 fe- male rats that received 1,000 mg/kg 8-methoxypsoralen died within 2 days. In the 16-day studies, the chemical was administered at doses of 0 and 50-800 mg/kg. All rats re- ceiving 800 mg/kg died within 5 days, and one male and one female at 400 mg/kg and one female at 200 mg/kg also died before the end of the studies. The final mean body weights of animals at 200 or 400 mg/kg were 14% or 30% lower than those of vehicle controls. No compound-related effects were observed at necropsy. In the 13-week studies, the chemical was administered at doses of 0 and 25-400 mg/kg. Six of 10 male rats and 8/10 female rats that received 400 mg/kg died before the end of the studies. The final mean body weight of male rats that received 100,200, or 400 mg/kg was 12%, 22%, or 45% lower than that of vehicle controls. The final mean body weight of female rats that received 200 or 400 mg/kg was 15% or 35% lower than that of vehicle controls. The liver weight to body weight ratios for all dosed groups of rats except the lowest (25 mg/kg),were greater than those for vehicle controls. Compound- related effects included fatty change in the liver in males and females and atrophy of the testis, semi- nal vesicles, and prostate. Based on these results, 2-year studies were conducted by administering 0, 37.5, or 75 mg/kg 8-meth- oxypsoralen in corn oil by gavage, 5 days per week for 103 weeks, to groups of 50 F344/N rats of each sex. 3 8-MethoxypsoralenI NTP TR 359 Body Weight and Survival in the Two-year Studies: The mean body weights of dosed male rats were generally 3%-14% lower than those of vehicle controls, and the mean body weights of high dose female rats were 5%-17% lower. The survival of both the low and the high dose groups of male rats was lower than that of the vehicle controls (male: vehicle control, 30/50; low dose, 16/50; high dose, 16/50; female: 39/50; 33/50; 36/50), likely because of kidney toxicity and neoplasia. Nonneoplastic and Neoplastic Effects in the Two-year Studies: Mineralization of the renal papilla was observed in high dose male rats (vehicle control, 0/50; low dose, 0/50; high dose, 31/49). The se- verit,y of nephropathy was increased in dosed male rats. Focal hyperplasia of renal tubular cells was observed in dosed male rats (0/50; 8/50; 8/49). The incidences of tubular cell adenomas (1/50; 11/50; 8/49], adenocarcinomas (0/50; 1/50; 3/49), and adenomas or adenocarcinomas (combined) (1150; 12/50; 11/49) were increased in dosed male rats. Hyperplasia of the parathyroid glands (2/49; 22/47; 18/48) and fibrous osteodystrophy (2/50; 10/50; 12/49) in male rats were secondary to chronic nephropathy. The incidences of carcinomas or squamous cell carcinomas (combined) of the Zymbal gland were in- creased in dosed male rats (1/50; 7/50; 4/49). The mean historical incidence for carcinomas or squa-
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Phototoxicity of 7-Oxycoumarins with Keratinocytes in Culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E
    Bioorganic Chemistry 89 (2019) 103014 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Phototoxicity of 7-oxycoumarins with keratinocytes in culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E. Heckc, Thomas M. Marianob, Robert D. Rappa, Michele Jettera, Keith Kardosa, Marilyn Whittemored, Eric Akyeaa, Ivan Jabine, Jeffrey D. Laskinb, Ned D. Heindela a Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA b Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA c Department of Environmental Science, New York Medical College, Valhalla, NY 10595, USA d Buckman Laboratories, 1256 N. McLean Blvd, Memphis, TN 38108, USA e Laboratoire de Chimie Organique, Université Libre de Bruxelles, B-1050 Brussels, Belgium ARTICLE INFO ABSTRACT Keywords: Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit 7-hydroxycoumarins growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced 7-oxycoumarins lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of Furocoumarins the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also Psoralens on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the Methoxsalen pyrone ring. Coumarins with electron withdrawing moieties – cyano and fluoro at C – were considerably less 8-MOP 3 Phototoxicity active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were PAM212 keratinocytes found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • The Limitations of DNA Interstrand Cross-Link Repair in Escherichia Coli
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-12-2018 The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli Jessica Michelle Cole Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Cole, Jessica Michelle, "The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli" (2018). Dissertations and Theses. Paper 4489. https://doi.org/10.15760/etd.6373 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Limitations of DNA Interstrand Cross-link Repair in Escherichia coli by Jessica Michelle Cole A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Justin Courcelle, Chair Jeffrey Singer Rahul Raghavan Portland State University 2018 i Abstract DNA interstrand cross-links are a form of genomic damage that cause a block to replication and transcription of DNA in cells and cause lethality if unrepaired. Chemical agents that induce cross-links are particularly effective at inactivating rapidly dividing cells and, because of this, have been used to treat hyperproliferative skin disorders such as psoriasis as well as a variety of cancers. However, evidence for the removal of cross- links from DNA as well as resistance to cross-link-based chemotherapy suggests the existence of a cellular repair mechanism.
    [Show full text]
  • Phototoxicity of 7-Oxycoumarins with Keratinocytes in Culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E
    Bioorganic Chemistry 89 (2019) 103014 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Phototoxicity of 7-oxycoumarins with keratinocytes in culture T ⁎ Christophe Guillona, , Yi-Hua Janb, Diane E. Heckc, Thomas M. Marianob, Robert D. Rappa, Michele Jettera, Keith Kardosa, Marilyn Whittemored, Eric Akyeaa, Ivan Jabine, Jeffrey D. Laskinb, Ned D. Heindela a Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA b Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA c Department of Environmental Science, New York Medical College, Valhalla, NY 10595, USA d Buckman Laboratories, 1256 N. McLean Blvd, Memphis, TN 38108, USA e Laboratoire de Chimie Organique, Université Libre de Bruxelles, B-1050 Brussels, Belgium ARTICLE INFO ABSTRACT Keywords: Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit 7-hydroxycoumarins growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced 7-oxycoumarins lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of Furocoumarins the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also Psoralens on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the Methoxsalen pyrone ring. Coumarins with electron withdrawing moieties – cyano and fluoro at C – were considerably less 8-MOP 3 Phototoxicity active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were PAM212 keratinocytes found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Supplementary Tables, Figures and Other Documents
    Clinical Relevance of a 16-Gene Pharmacogenetic Panel Test for Medication Management in a Cohort of 135 Patients David Niedrig1,2, Ali Rahmany1,3, Kai Heib4, Karl-Dietrich Hatz4, Katja Ludin5, Andrea M. Burden3, Markus Béchir6, Andreas Serra7, Stefan Russmann1,3,7,* 1 drugsafety.ch; Zurich, Switzerland 2 Hospital Pharmacy, Clinic Hirslanden Zurich; Zurich Switzerland 3 Swiss Federal Institute of Technology Zurich (ETHZ); Zurich, Switzerland 4 INTLAB AG; Uetikon am See, Switzerland 5 Labor Risch, Molecular Genetics; Berne, Switzerland 6 Center for Internal Medicine, Clinic Hirslanden Aarau; Aarau, Switzerland 7 Institute of Internal Medicine and Nephrology, Clinic Hirslanden Zurich; Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41 (0)44 221 1003 Supplementary Tables, Figures and Other Documents Figure S1: Example of credit-card sized pharmacogenomic profile issued to patients 1 Table S2: SNPs analyzed by the 16-gene panel test Gene Allele rs number ABCB1 Haplotypes 1236-2677- rs1045642 ABCB1 3435 rs1128503 ABCB1 rs2032582 COMT Haplotypes 6269-4633- rs4633 COMT 4818-4680 rs4680 COMT rs4818 COMT rs6269 CYP1A2 *1C rs2069514 CYP1A2 *1F rs762551 CYP1A2 *1K rs12720461 CYP1A2 *7 rs56107638 CYP1A2 *11 rs72547513 CYP2B6 *6 rs3745274 CYP2B6 *18 rs28399499 CYP2C19 *2 rs4244285 CYP2C19 *3 rs4986893 CYP2C19 *4 rs28399504 CYP2C19 *5 rs56337013 CYP2C19 *6 rs72552267 CYP2C19 *7 rs72558186 CYP2C19 *8 rs41291556 CYP2C19 *17 rs12248560 CYP2C9 *2 rs1799853 CYP2C9 *3 rs1057910 CYP2C9 *4 rs56165452 CYP2C9 *5 rs28371686 CYP2C9 *6 rs9332131 CYP2C9
    [Show full text]
  • Part IV: Basic Considerations of the Psoralens
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector THE CHEMISTRY OF THE PSORALENS* W. L. FOWLKS, Ph.D. The psoralens belong to a group of compoundsfled since biological activity of the psoralens and which have been considered as derivatives ofangelicins has been demonstrated. They appear coumarin, the furocoumarins. There are twelveto have specific biochemical properties which different ways a furan ring can be condensed withmay contribute to the survival of certain plant the coumarin molecule and each of the resultingspecies. Specifically these compounds belong to compounds could be the parent for a family ofthat group of substances which can inhibit certain derivatives. Examples of most of these possibleplant growth without otherwise harming the furocoumarins have been synthesized; but natureplant (2, 3, 5). is more conservative so that all of the naturally It is interesting that it was this property which occurring furocoumarins so far described turnled to the isolation of the only new naturally out to be derivativesof psoralen I or angelicinoccuring furocoumarin discovered in the United II (1). States. Bennett and Bonner (2) isolated tharn- nosmin from leaves of the Desert Rue (Tham- n.osma montana) because a crude extract of this 0 0 plant was the best growth inhibitor found among /O\/8/O\/ the extracts of a number of desert plants sur- i' Ii veyed for this property, although all the extracts showed seedling growth inhibition. One could I II speculate as to the role such growth inhibition plays in the economy of those desert plants These natural derivatives of psoralen and angeli-when survival may depend upon a successful cm have one or more of the following substituentsfight for the little available water.
    [Show full text]
  • Comparison of Two Diluents of 1% Methoxsalen in the Treatment of Vitiligo
    Net Letter eye care/cosmetic products should also be tested. Though anterior chamber after instillation of 10% phenylephrine phenylephrine is widely used by ophthalmologists in India hydrochloride solution. Br J Ophthalmol 1974;55:554-9. in nonhypertensive adults as a mydriatic agent to obtain 2. Wigger-Alberti W, Elsner P, Wuthrich B. Allergic contact maximum pupillary dilatation prior to fundus examination dermatitis to phenylephrine. Allergy 1998;53:217-8. 3. Yamamoto A, Harada S, Nakada T, Iijima M. Contact and assessment of refractory errors, allergic contact dermatitis to phenylephrine hydrochloride eyedrops. Clin dermatitis has not been reported from this country so far. Exp Dermatol 2004:29;200-1. This may be partly due to a low index of suspicion or failure 4. Herbst RA, Uter W, Pirker C, Geier J, Frosch PJ. Allergic and to perform patch tests in patients with transient and self- non-allergic periorbital dermatitis: Patch test results of the healing periorbital dermatitis. Information Network of the Department of Dermatology during a 5-year period. Contact Dermatitis 2004;51:13-9. RREFERENCESEFERENCES 5. Borch JE, Elmquist JS, Bindslevjensen C, Anderson KE. Phenylephrine and acute periorbital dermatitis. Contact 1. Agarwall Jl, Beveridge B. Liberation of iris pigment in the Dermatitis 2005;53:298-9. CComparisonomparison ofof twotwo ddiluentsiluents ooff 11%% mmethoxsalenethoxsalen inin thethe ttreatmentreatment ooff vvitiligoitiligo KKiraniran VV.. GGodseodse Consultant Dermatologist, Shree Skin Center and Laboratory, Mumbai, India AAddressddress fforor ccorrespondence:orrespondence: Dr. Kiran Godse, Shree Skin Center and Laboratory, 21/22, L market, Sector 8, Nerul, Navi Mumbai - 400 706, India. E-mail: [email protected] Sir, less than 20% of the body surface area.
    [Show full text]
  • Bergamot Oil: Botany, Production, Pharmacology
    Entry Bergamot Oil: Botany, Production, Pharmacology Marco Valussi 1,* , Davide Donelli 2 , Fabio Firenzuoli 3 and Michele Antonelli 2 1 Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK 2 AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy; [email protected] (D.D.); [email protected] (M.A.) 3 CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; fabio.firenzuoli@unifi.it * Correspondence: [email protected] Definition: Bergamot essential oil (BEO) is the result of the mechanical manipulation (cold pressing) of the exocarp (flavedo) of the hesperidium of Citrus limon (L.) Osbeck Bergamot Group (synonym Citrus × bergamia Risso & Poit.), resulting in the bursting of the oil cavities embedded in the flavedo and the release of their contents. It is chemically dominated by monoterpene hydrocarbons (i.e., limonene), but with significant percentages of oxygenated monoterpenes (i.e., linalyl acetate) and of non-volatile oxygen heterocyclic compounds (i.e., bergapten). Keywords: bergamot; citrus; essential oil; production; review 1. Introduction The taxonomy, and consequently the nomenclature, of the genus Citrus, is particularly complicated and has been rapidly changing in recent years (see Table1). For over 400 years, the centre of origin and biodiversity, along with the evolution and phylogeny of the Citrus species, have all been puzzling problems for botanists and the confusing and changing Citation: Valussi, M.; Donelli, D.; nomenclature of this taxon over the years can reflect intrinsic reproductive features of Firenzuoli, F.; Antonelli, M. Bergamot Oil: Botany, Production, the species included in this genus, the cultural and geographical issues, and the rapidly Pharmacology. Encyclopedia 2021, 1, evolving techniques used to clarify its phylogeny [1].
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • The Title Is in Blue Arial 32 Bold
    Recent Developments to Detect Lemon Juice Adulteration Authors: Ramin Jahromi, Hayley Pratt, Yang Zhou, Lars Reimann: Eurofins Nutrition Analysis Center, 2200 Rittenhouse St, Suite 175, Des Moines, IA 50321, USA ([email protected]) Dr. David A Hammond : Eurofins Scientific Analytics, Rue Pierre Adolphe Bobierre, F-44323, Nantes, France. Citropten Abstract: One of the possible adulterants of lemon juice is lime. The pattern of PMFs seen in lemon and lime juices are very different, which allow a much easier identification of substitution and/or addition of lime to lemon. This poster describes the method for the polymethoxyflavones “lime” markers. Introduction Discussion: Figure 2: PMF profile for lemon juice Unfortunately there is a long history of economic adulteration of fruit juices. The first well Experts from the European juice association (AIJN) have drawn up the typical ranges for a number publicized case of juice fraud was in 1989 with Beech-nut(1). This and subsequent events (10) of important juice components in 25 fruits and vegetables , which are extremely useful in the Citropten have meant that juice packers normally have a “verification” program for their raw assessment of the quality and authenticity of these products. They also working on a reference materials to ensure that they are authentic. Although in 2009 the FDA officially recognized guide for lime at present. food fraud as an emerging risk to the consumer, in fringe industries that use juice based Lemon and lime juices are normally adulterated by substitution of some or all of the juice solids by products, this risk had not been recognized and few companies have QA programs in place.
    [Show full text]