COLUMBIFORMES Color Variations Have Been Developed Via Mutations and Recombinations Throughout the Millennia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trad Biocontrol Pigeons and Doves
WINTER 2017 Issue 74 Pittwater Natural Heritage Association - thinking locally, acting locally Trad Biocontrol Pigeons and Doves Trad, formerly Wandering Jew, is a nightmare weed of bush- What’s the difference? Nothing really, as the two terms are land and gardens. But maybe help is coming. often used interchangeably. A subspecies of the Rock Dove is the A biocontrol agent Kordyana brasiliensis for Trad Tradescantia Feral or Domestic Pigeon. In general “dove” is used for smaller fluminensis has been tested by CSIRO and an application for re- birds than “pigeon”. They belong to the bird family Columbidae. lease has been submitted to the Australian Government . Trad is native to Brazil. The biocontrol agent is a leaf smut fungus Crested Pigeon also native to Brazil. Host specificity testing of the fungus is on- going in the CSIRO Canberra quarantine facility. This is to ensure that Trad is the only plant the fungus will survive on, therefore safe to release. Initial results are highly promising and it is hoped this fungus will eventually get permission to be released in Australia. If success- ful it may be available for release in about a year. Requirements for release sites are likely to include Stopping other forms of Trad control (i.e. weeding) Monitoring Support of land manager (possibly small financial contribution to help fund supply of the fungus). References: Louise Moran, Using pathogens to biologically con- To feed their nestlings both male and females produce “crop trol environmental weeds – updates. Plant Protection Quarterly. milk” to feed their young; only flamingos and some penguins also 2015;30(3):82-85 feed their young this way. -
Sari Et Al. 2012 J. Biogeography.Pdf
Journal of Biogeography (J. Biogeogr.) (2012) ORIGINAL Tracking the origins of lice, haemospo- ARTICLE ridian parasites and feather mites of the Galapagos flycatcher (Myiarchus magnirostris) Eloisa H. R. Sari1*, Hans Klompen2 and Patricia G. Parker1,3 1Department of Biology and Whitney R. ABSTRACT Harris World Ecology Center, University of Aim To discover the origins of the lice, haemosporidian parasites and feather Missouri-St. Louis, St Louis, MO, 63121, 2 mites found on or in Galapagos flycatchers (Myiarchus magnirostris), by testing USA, Department of Evolution, Ecology and Organismal Biology, The Ohio State whether they colonized the islands with the ancestors of M. magnirostris or if University, Columbus, OH, 43212, USA, they were acquired by M. magnirostris after its arrival in the Galapagos Islands. 3 Saint Louis Zoo WildCare Institute, St Louis, Location The Galapagos Islands (Ecuador) and north-western Costa Rica. MO, 63110, USA Methods We collected lice, feather mites and blood samples from M. magni- rostris on seven of the Galapagos Islands (n = 254), and from its continental sister species, M. tyrannulus, in Costa Rica (n = 74), and identified them to species level using traditional taxonomy and DNA sequencing. Results The blood parasites from the two bird species were different: Plasmo- dium was found only in M. tyrannulus, while a few individuals of M. magnirostris were infected by Haemoproteus multipigmentatus from Galapagos doves (Zenaida galapagoensis). Myiarchus tyrannulus was parasitized by three louse species, two of which (Ricinus marginatus and Menacanthus distinctus) were also found on Myiarchus magnirostris. We also collected one louse specimen from M. magnirostris, which was identified as Brueelia interposita, a species commonly found on finches and yellow warblers from the Galapagos, but never recorded on M. -
(Insecta: Phthiraptera) Reinforce Population Genetic and Cophylogenetic Patterns*
International Journal for Parasitology 34 (2004) 1113–1119 www.parasitology-online.com Differences in straggling rates between two genera of dove lice (Insecta: Phthiraptera) reinforce population genetic and cophylogenetic patterns* Noah Kerness Whitemana,*, Diego Santiago-Alarcona, Kevin P. Johnsonb, Patricia G. Parkera aDepartment of Biology, International Center for Tropical Ecology, University of Missouri-Saint Louis, Research Building 223, 8001 Natural Bridge Road, Saint Louis, MO 63121, USA bIllinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820-6970, USA Received 19 April 2004; received in revised form 15 June 2004; accepted 15 June 2004 Abstract Differences in dispersal abilities have been implicated for causing disparate evolutionary patterns between Columbicola and Physconelloides lice (Insecta: Phthiraptera). However, no study has documented straggling (when lice are found on atypical hosts) rates within these lineages. We used the fact that the Galapagos Hawk, Buteo galapagoensis (Gould) (Falconiformes) feeds on the Galapagos Dove Zenaida galapagoensis Gould (Columbiformes) within an ecologically simplified setting. The Galapagos Dove is the only typical host of Columbicola macrourae (Wilson) and Physconelloides galapagensis (Kellogg and Huwana) in Galapagos. We quantitatively sampled and found these lice on both bird species. A DNA barcoding approach confirmed that stragglers were derived from Galapagos doves. We also collected a Bovicola sp. louse, likely originating from a goat (Capra hircus). On hawks, C. macrourae was significantly more prevalent than P. galapagensis. On doves, the two lice were equally prevalent and abundant. Differences in prevalence on hawks was a function of differences in straggling rate between lice, and not a reflection of their relative representation within the dove population. -
Andaman and Nicobar Common Name Scientific Name
Andaman and Nicobar Common name Scientific name ANSERIFORMES: Anatidae Lesser Whistling-Duck Dendrocygna javanica Knob-billed Duck Sarkidiornis melanotos Ruddy Shelduck Tadorna ferruginea Cotton Pygmy-Goose Nettapus coromandelianus Mandarin Duck Aix galericulata Garganey Spatula querquedula Northern Shoveler Spatula clypeata Eurasian Wigeon Mareca penelope Indian Spot-billed Duck Anas poecilorhyncha Mallard Anas platyrhynchos Northern Pintail Anas acuta Green-winged Teal Anas crecca Andaman Teal Anas albogularis Red-crested Pochard Netta rufina Ferruginous Duck Aythya nyroca Tufted Duck Aythya fuligula GALLIFORMES: Megapodiidae Nicobar Scrubfowl Megapodius nicobariensis GALLIFORMES: Phasianidae Indian Peafowl Pavo cristatus Blue-breasted Quail Synoicus chinensis Common Quail Coturnix coturnix Jungle Bush-Quail Perdicula asiatica Painted Bush-Quail Perdicula erythrorhyncha Chinese Francolin Francolinus pintadeanus Gray Francolin Francolinus pondicerianus PODICIPEDIFORMES: Podicipedidae Little Grebe Tachybaptus ruficollis Andaman and Nicobar COLUMBIFORMES: Columbidae Rock Pigeon Columba livia Andaman Wood-Pigeon Columba palumboides Eurasian Collared-Dove Streptopelia decaocto Red Collared-Dove Streptopelia tranquebarica Spotted Dove Streptopelia chinensis Laughing Dove Streptopelia senegalensis Andaman Cuckoo-Dove Macropygia rufipennis Asian Emerald Dove Chalcophaps indica Nicobar Pigeon Caloenas nicobarica Andaman Green-Pigeon Treron chloropterus Green Imperial-Pigeon Ducula aenea Nicobar Imperial-Pigeon Ducula nicobarica Pied Imperial-Pigeon -
Notes on the Nesting Behaviour of Yellow Footed Green Pigeon Treron Phoenicoptera at Jeypore Reserve the Dilli Rivers Form a Part of the Reserve Boundary
JoTT SHORT COMMUNI C ATION 4(3): 2470–2475 Notes on the nesting behaviour of Yellow-footed Green Pigeon Treron phoenicoptera (Columbidae) at Jeypore Reserve Forest, Assam, India O.S. Devi 1 & P.K. Saikia 2 1 Research Scholar, 2 Associate Professor, Animal Ecology and Wildlife Biology Lab., Department of Zoology, Gauhati University, Guwahati 781014, Assam, India Email: 1 [email protected], 2 [email protected] (corresponding author) Abstract: We surveyed five nesting colonies of Yellow-footed the sole vector for seed dispersal of certain tree species Green Pigeon at Jeypore Reserve forest to study their nesting behaviour during two breeding seasons in 2008 and 2009. We (Meehan et al. 2005). Data on their ecological and observed the birds in five closely-watched nests and studied their biological aspects is deficient as very few studies have behaviour starting from pair formation till hatching of squabs. Pair formation generally starts from the month of April followed by been conducted on the Columbidae group as a whole nest building and incubation, with ultimately, hatching of squabs (Wiley & Wiley 1979; Burger et al. 1989; Steadman during May, which continues up to the month of June. Both 1997; Bancroft et al. 2000; Strong & Johnson 2001; sexes share the duty of nest building and incubation. Breeding pairs took four shifting intervals during incubation period at a time Walker 2007). The Yellow-footed Green Pigeon is interval of about 2–5 hrs in each shift. Incubation period ranges widely distributed throughout the Indian subcontinent between 20–23 days. and is a commonly sighted frugivorous bird in the Keywords: Behaviour, Columbidae, incubation, Jeypore Reserve tropical forests of eastern Himalaya (Ali & Ripley Forest, squabs, Yellow-footed Green Pigeon. -
Koninklijk Belgisch Instituut Naturelles De Belgique Voor Natuurwetenschappen
Institut royal des Sciences Koninklijk Belgisch Instituut naturelles de Belgique voor Natuurwetenschappen BULLETIN MEDEDELINGEN Tome XXXIII, n» 3 Deel XXXIII, nr 3 Bruxelles, janvier 1957. Brussel, januari 1957. ANALYSE DU POTENTIEL MORPHOLOGIQUE ET PROJET DE CLASSIFICATION DES COLUMBIFORMES (WETMORE 1934), par René Verheyen (Bruxelles). Si l'on prend comme critères le nombre de projets de classification soumis à l'appréciation des systématiciens, l'importance et la variété des études anatomiques comparées ainsi que la périodicité des « révisions » faites à la lumière des plus récentes découvertes, on constate que les Columbiformes n'ont guère intéressé les ornithologues. Dès l'aurore de la Systématique moderne, les Gangas et les Pigeons apparaissent, dans les Classifications, soit sous forme d'ordines jumelés, soit associés dans le même ordo. Aussi la systématique de base des Columbae, sauf modifi¬ cations mineures, semble se caractériser par une stabilité rigoureuse. Rap¬ pelons-nous que la Classification proposée par Sharpe (1891) et Salvadori (1893) est fondée sur la configuration du bec, l'aspect que présente la podothèque, la formule alaire, la longueur relative des tarses et de la queue, ainsi que sur la coloration générale et la présence d'en¬ sembles décoratifs dans le plumage comme seuls critères taxonomiques. Il faut croire que leur recueil de tables dichotomiques a largement suffi aux systématiciens de notre époque, malgré l'avis éclairé de Fürbringer (1902, p. 681) que « ein gutes, natürliches System der Columbidae ist noch Desiderat » et malgré la contribution importante apportée à l'ostéo- logie des Pigeons par Martin qui, en 1904 déjà, résuma l'état des recherches de notre époque de la manière suivante : « Die vergleichend anatomische Behandlung der Tauben ist verhâltnissmâssig neu und deshalb noch wenig weit gediehen. -
Crested Barbary Dove (Streptopelia Risoria) in Pet Shop of Kushtia, Bangladesh
Journal of Dairy, Veterinary & Animal Research Short Communication Open Access Crested Barbary dove (streptopelia risoria) in pet shop of kushtia, Bangladesh Short communication Volume 8 Issue 4 - 2019 Crested fancy pigeons or pigeons are very common in Bangladesh but this is rare in doves. A shop in Kushtia district of Bangladesh, Ashraful Kabir M Department of Biology, Saidpur Cantonment Public College, they collected one wild type but crested Barbary Dove from Khulna Bangladesh and another white crested form from an unknown locality. Crowned pigeons are not available in Bangladesh. Only in Chittagong, Correspondence: M Ashraful Kabir, Department of Biology, Comilla, and Dhaka there some birds were found. From the personal Saidpur Cantonment Public College, Bangladesh, communication with the rearers, they said that productivity of those Email crested pigeons is very slow. In nature, Topknot and Pheasant Pigeons Received: March 07, 2019 | Published: August 30, 2019 have tuft and occipital crest. History says, selective breeding of fancy pigeons in Egypt they produced lots of crested pigeon varieties but this was not common in dove. Crested Choiseul Pigeon was extinct and now only Australian Crested Dove have upright crest. Selective breeding may produce huge crests in dove. Pigeons have various pattern of feather which created abnormal size or position of the feathers.1 Huge feathers of head cover the head and eyes and feather Goura victoria, Western- Goura cristata and Southern- Goura in legs and feet is muff. Most of the time abnormal feathers can cause scheepmakeri) are still surviving in the world (Plates 2‒4). difficulties in feeding, perching, flying, and breeding. -
Japanese Green Pigeon Aobato (Jpn) Treron Sieboldii 142°13'E)
Bird Research News Vol.8 No.9 2011.9.28. Japanese Green Pigeon Aobato (Jpn) Treron sieboldii 142°13'E). This species ranges to the northernmost region among Morphology and classification the genus Treron (Nakamura 1980). The subspecies T. s. sieboldii is assumed to be endemic to Japan (Kiyosu 1978, Gibbs 2001, Classification: Columbiformes Columbidae Komatan 2004a). Total length: 315-348mm Wing length: ♂ 183-196mm ♀ 177-187mm ♂ Juv. 172-186mm Habitat: Tail length: ♂ 109-133mm ♀ 103-123mm ♂ Juv. 100-105mm Japanese Green Pigeons are forest-dwellers from hills to moun- Culmen length: Ad. 18-21mm ♂ Juv. 20mm tains. They rarely come123456789101112月 out to an open place, but they have a habit 繁殖期 Tarsus length: Ad. 24-28mm ♂ Juv. 20-27mm of visiting a coastal area(つがい形成〜家族期) in a flock to drink換羽期 seawater 非繁殖期 from early Weight: Ad. 217-300g summer to autumn. They spend most of the breeding period in broad-leaved deciduous forests south of Honshu, but they are less Total length after Enomoto (1941), other measurements of adults after Kiyosu (1978), abundant in Hokkaido, northern Japan (Fujimaki 1999). and those of juveniles (age approximately 1.5-2 months) after Komatan (2004b). Appearance: Life history The Japanese Green Pigeons are roughly green all over with some 123456789101112 sexual dimorphism in plumage coloration. They have pink feet and courting breeding period non-breeding soft light blue bills. The iris is two-toned with the outer red ring period period and blue inner ring (Photo 1). Males have reddish purple patch on Breeding system: the small and middle wing coverts, greenish brown patch on the Japanese Green Pigeons breed from mid-May to mid-September in greater wing coverts and grayish green long and broad shaft-stripes the Tanzawa mountains, Kanagawa Pref., central Japan. -
West Papua – Birds-Of-Paradise and Endemics of the Arfaks and Waigeo
INDONESIA: WEST PAPUA – BIRDS-OF-PARADISE AND ENDEMICS OF THE ARFAKS AND WAIGEO 03 – 14 AUGUST 2022 03 – 14 AUGUST 2023 Wilson’s Bird-of-paradise is often considered one of the best-looking birds in the world! www.birdingecotours.com [email protected] 2 | ITINERARY Indonesia: West Papua – Arfak and Waigeo New Guinea is a geographic rather than political term that refers to the main island in the region. The western half of the island of New Guinea comprises the Indonesian provinces of West Papua (Papua Barat) and Papua, collectively once called West Irian or Irian Jaya; the eastern half of the main island of New Guinea comprises the country of Papua New Guinea. We will be based in West Papua for this exhilarating, small-group birding adventure. Aside from the large landmass of New Guinea, the New Guinea region includes numerous small islands (some part of Indonesia and others part of Papua New Guinea), and we will visit one of these areas: Waigeo, part of the Raja Ampat Archipelago in West Papua (also known as the Northwestern Islands). Approximately 680 bird species have been recorded from West Papua, from slightly more than 700 for the whole New Guinea region. Some 550 species are considered breeding residents, with 279 New Guinea endemics (found in Indonesia and/or Papua New Guinea) and at least an additional 42 endemics found only in West Papua. There are also over 115 Palearctic and Australian migrant species and a range of seabirds which spend some of their time in West Papua. This tour will begin in the town of Manokwari, situated on the north-eastern tip of West Papua's Bird's Head (or Vogelkop) Peninsula where we could get our tour started with the gorgeous Lesser Bird-of-paradise, this area is usually great for Blyth’s Hornbill and numerous fruit doves. -
(2004): Identification, Distribution, and Function of Gastroliths in Dinosaurs
IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Diplodocid sauropod accidentally ingesting gastroliths while feeding on a cycad. IDENTIFICATION, DISTRIBUTION, AND FUNCTION OF GASTROLITHS IN DINOSAURS AND EXTANT BIRDS WITH EMPHASIS ON OSTRICHES (STRUTHIO CAMELUS) Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Oliver Wings aus Sangerhausen Bonn 2004 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Referent: Privat-Dozent Dr. Martin Sander 2. Referent: Professor Dr. Jes Rust Tag der Promotion: 02.12.2004 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni- bonn.de/diss_online elektronisch publiziert This dissertation is published electronically on the ULB Bonn server for university publications: http://hss.ulb.uni-bonn.de/diss_online Dedicated to Claudia. Thanks for everything. French proverb: “Il a un estomac d’autuche!” (literally: He has the stomach of an ostrich!) means: He can tolerate everything! Geheimnisvoll am lichten Tag Läßt sich Natur des Schleiers nicht berauben, Und was sie deinem Geist -
Bird Checklists of the World Country Or Region: Myanmar
Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN®ion=mm [23/09/2021]. Make your observations count! Submit your data to ebird. -
An Alignment-Free Computational Tool for Analyzing and Visualizing DNA Sequences' Interrelationships Rallis Karamichalis the University of Western Ontario
Western University Scholarship@Western Electronic Thesis and Dissertation Repository September 2016 Molecular Distance Maps: An alignment-free computational tool for analyzing and visualizing DNA sequences' interrelationships Rallis Karamichalis The University of Western Ontario Supervisor Prof. Lila Kari The University of Western Ontario Graduate Program in Computer Science A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy © Rallis Karamichalis 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Computer Sciences Commons Recommended Citation Karamichalis, Rallis, "Molecular Distance Maps: An alignment-free computational tool for analyzing and visualizing DNA sequences' interrelationships" (2016). Electronic Thesis and Dissertation Repository. 4071. https://ir.lib.uwo.ca/etd/4071 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract In an attempt to identify and classify species based on genetic evidence, we propose a novel combination of methods to quantify and visualize the interrelationships between thousand of species. This is possible by using Chaos Game Representation (CGR) of DNA sequences to compute genomic signatures which we then compare by computing pairwise distances. In the last step, the original DNA sequences are embedded in a high dimensional space using Multi- Dimensional Scaling (MDS) before everything is projected on a Euclidean 3D space. To start with, we apply this method to a mitochondrial DNA dataset from NCBI containing over 3,000 species.