CapXon - Manufacturer for professional aluminum electrolytic, and hybrid electrolytic as well etched and formed aluminum foil • Conductive Polymer Capacitors • Hybrid Polymer Capacitors • Summary Conductive 1 Polymer Capacitors Conductive Polymer R&D has specific requirements on E-cap Motivation for polymer capacitors

Electronic market Therefore ▪ High capacitance & high ripple has a need for new current electronic products ▪ Low ESR/impedance ▪ Small size & low height ▪ Strong heat resistibility

▪ Robust & long life ▪ Environmental friendly As a ▪ Low energy-consuming Conductive Polymer result ▪ Smaller, lighter, lower cost

▪ Long life & high reliability ▪ Low ESR & high ripple current ▪ High temperature up to 125°C ▪ Miniature size (SMD) ▪ Excellent high frequency characteristics ▪ Nonflammable Conductive Polymer

Liquid Electrolyt Conductive Polymer Hybrid Polymer

Dielectric Paper Paper Dielectric Paper

) ) ) Cathode ) Cathode

- - -

(+) (+) Anode (+) Anode (+)

( ( (

Liquid Liquid Electrolyte Solid Polymer Solid Polymer Electrolyte 4 to 650 V 2.5 to 400 V 16 to 100 V

Lowest cost Highest ripple current Similar ESR as conductive polymer capacitor

Reduced performance at low temperature Stable for high and low temperature More stable than liquid type Lower current than conductive Limited life@high temperature Very stable life polymer capacitor Conductive Polymer Element

Solid capacitor with ▪ Roughly the same construction as liquid aluminum electrolytic capacitors ▪ Conductive polymer as electrolyte ▪ Excellent performance due to better conductivity and heat-resistibility + _ Rubber AL foil AL foil Rubber Conductive polymer

Element

Separator sheet

Adhesive tape Al2O3 Separator sheet Aluminum case AL foil AL foil Conductive Polymer Construction

Untreated (flat) anodized surface area SEM photo of the section of solid capacitor

Electrolyte

Anode foil Anode Cathode plate plate Conductive polymer Cathode foil

Dielectric Conductive (Anodized polymer Film) Conductive Polymer Characteristics of

Conductive Polymer with ▪ Better conductivity ▪ Higher heat-resistibility Conductive

polymer Conductivity has excellent performance in Conductivity ~ 3000mS/cm electronic devices! TCNQ complex Decomposing temp. > 260°C Conductivity ~ 300mS/cm Melting temp. < 220°C

Liquid Conductivity < 3mS/cm electrolyte Vaporize temp. < 200°C

Reliability Conductive Polymer Polymer vs. liquid electrolyte

What is the difference between Conductive Polymer and Liquid Electrolyte? Conductive Polymer Liquid Electrolyte Electron moves on molecules FAST Ion moves in solution SLOW (low resistance) (high resistance)

O O O O O O

S S

S S S

O O O O

Conductivity index: 10,000 !!!! Conductivity index: 1 Conductive Polymer Polymerization

Chemical polymerization and conductive equation of PEDOT

EDOT PEDOT

O O O O + 2Fe (OTs)3 + 2Fe (OTs)3 + 2HOTs (1) H H * * S S n Polymerization process

O O O O O O O O O O O O + Fe (OTs)3 + Fe (OTs)2 (2) * * * * S S S n S S+ S n - Doped process OTs Conductive Polymer Aluminum etching foil Forming Manufacturing process Foil slitter Lead wire Separator sheet Winding

Forming and carbonization Polymerized organic semiconductor Immersion and polymerization Rubber case Rubber sealing (curl)

Aging and inspection

Forming and marking

Finishing • Impedance characteristics • Impedance vs. frequency • Impedance vs. temperature • Capacitance characteristics • Capacitance change vs. temperature • Capacitance change vs. operating voltage • Capacitance change vs. frequency • Allowable ripple current • Long life • Self healing • Applications Conductive Polymer

Polymer Impedance vs. frequency Al E cap. Ta cap. Al E cap. Al E cap.

Comparison impedance – frequency characteristics (25°C) The Solid Polymer Al cap offers 100 Polymer Al cap. 47µF 16V 105°C (Ø6.3 x 7.7) ▪ High frequency and low impedance Al E cap. (low impedance) 47µF 16V 105°C (Ø6.3 x 5.5) ▪ It‘s similar to the ideal capacitor Ta cap. (low impedance) 47µF 35V 85°C (7.3 x 4.3)

impedance frequency curve 10 Al E cap. (low impedance) 1000µF 16V 105°C (Ø16 x 17) )

▪ Allowed to pass the large ripple current Ω ▪ Discharges quickly 1 ▪ It is particularly suitable for coupling

capacitor to remove the ripple in the Impedance ( Impedance circuit, pulse, electrostatic and other 0.1 various kinds of

0.01 Frequency Impedance 1K 10K 100K 1M 10M 20M Frequency (Hz) Conductive Polymer

Liquid Solid Polymer ESR vs. temperature Ceramic Al E cap. Ta. Cap. Al E cap.

Comparison impedance – temperature characteristics

The Solid Polymer Al offers 100 ▪ ESR hardly changes with temperature 10

Liquid Al

1 ) Ω Solid Ta

ESR ( ESR 0.1

Polymer Al 0.01 Ceramic

0.001 Stable ESR over temperature -55 -20 0 20 85 105 Temperature (°C) Conductive Polymer

Liquid Solid Polymer Capacitance change vs. temperature Ceramic Al E cap. Ta. Cap. Al E cap.

Comparison capacitance – temperature characteristics

The Solid Polymer Al offers 20 Capacitance change at 120 Hz 10µF Polymer Al ▪ Low temperature – stable capacitance 10 Solid Ta ▪ Stable capacitance in a wide 0 temperature range -10 Ceramic

-20

-30 Liquid Al

-40 Capacitance change (%) change Capacitance

-50

Much better „C“ on low temperature -55 -20 0 20 85 105 Temperature (°C) Conductive Polymer

Polymer DC bias Polymer vs. MLCC Ceramic Al E cap.

Comparison capacitance – voltage characteristics

The Solid Polymer Al offers 10 ▪ Stable capacitance over the whole voltage range -10 ▪ Smaller dimensions and less pcb area MLCC 1206 100µF 6.3V X5R

-30 Polymer 100µF 6.3V C/C (%) C/C

Δ -50

-70

-90 Much better „C“ on high voltage 1 2 3 4 5 6 7 DC Bias (V) 6.3 Conductive Polymer

Polymer Worst case Polymer vs. MLCC Ceramic Al E cap.

Max. Impedance Category Series Capacitance Voltage Comment Type Price per pcs Temperature at 100kHz Ceramic Low impedance 100 µF 6.3V 85 °C 50 mΩ X5R ceramic CL31A107MQHNNNE € 0.1100 Al Polymer Low impedance 100 µF 6.3V 105 °C 30 mΩ PM101M6R3C055PTR € 0.0950

One Al polymer replaces five MLCC’s Worst case Al Polymer MLCC 100 µF 6.3V ±20% 100 µF 6.3V ±20% X5R Nominal value 100 µF 100 µF Nominal Polymer: -20% 80 µF 80 µF tolerance MLCC: -20% CapXon ΔC/C (DC Bias) Polymer: 0 100 80 µF 20 µF at 6.3V MLCC: -75% 6.3 ΔC/C (Temp.) Polymer: +5% PM647 84 µF 17 µF at 85°C MLCC: -15% Result 84 µF 17 µF Price (EUR/pcs) 0.095 0.11 Total amount 0.095 ∙ 1 = 0.095 0.11 ∙ 5 = 0.55 Conductive Polymer

Capacitance change vs. frequency – Polymer vs. Solid Polymer Ta. Cap. Al E cap.

Capacitance change vs. frequency (220 µF 10 V) Test condition: 1500 µF at 100 kHz 250 Conductive Polymer 220 µF 10 V 200 220 µF 10 V

F) Capacitance μ 125 µF 206 µF 150 at 100 kHz

Quantity 12 pcs 8 pcs 100

Capacitance ( Capacitance Price (EUR/pcs) 0.79100 0.1562 50 Tantalum Cap.(220/10) Polymer Cap.(220/10) Total amount 0.791 ∙ 12 = 0.1562 ∙ 8 = (EUR) 9.49 1.25 0 100 1000 10000 100000 1000000 Frequency (Hz) Much better „C“ on high frequency Conductive Polymer

Capacitance change vs. frequency – Polymer vs. Tantalum Solid Polymer Ta. Cap. Al E cap.

Max. Impedance Category Series Capacitance Voltage Comment Type Price per pcs Temperature at 100kHz Low Max. permissible voltage 10VDC Ta-cap 220 µF 16 V 85 °C 100 mΩ TR3E227K010C0100 € 0.7910 impedance output filter or 6VDC input filter Low Al Polymer 220 µF 10 V 105 °C 25 mΩ PM221M010E058PTR € 0.1562 impedance Low Ta Polymer 220 µF 10 V 105 °C 25 mΩ Max. permissible voltage 8VDC T55D227M010C0025 € 0.5019 impedance

8 Al polymer vs. 12 Tantalum Conductive Polymer

Capacitance change vs. frequency – Polymer vs. Liquid Liquid Polymer Al E cap. Al E cap.

Capacitance change vs. frequency Test condition: 100 µF and 10 µF between 100 kHz and 1 MHz 1000 Liquid Aluminum 100µF 50V Polymer Aluminum 10µF 50V 100

10

Capacitance(µF) 1

0.1 100 1,000 10,000 100,000 1M 10M Frequency (Hz)

Much better „C“ on high frequency Conductive Polymer

Polymer Organic Liquid Allowable ripple current Ta cap. Al E cap. solid cap. Al E cap.

Ripple current ▪ ESR of polymer capacitor is so small that it can allow far more ripple ▪ Especially for smoothing in SMPS, the allowable ripple current of the capacitor is one of the standard selections Allowable ripple current (100 kHz 45°C) Allowable ripple current (100 kHz 85°C)

4,00 3,74 4,00 3,74 3,37 3,50 3,50 3,00 3,00 2,67 2,67 2,67 2,36 2,50 2,50 1,80 1,87 2,00 1,80 1,83 2,00 1,39 1,28 1,39 1,37 1,50 1,50 1,15 1,10 1,15 1,10 0,96 0,84 0,84

1,00 0,74 1,00 0,74 Ripple current (Arms)current Ripple Ripple current (Arms)current Ripple 0,49 0,45 0,45 0,45 0,49 0,45 0,45 0,45 0,50 0,50 0,00 0,00 33 µF 16 V 47 µF 16 V 100 µF 10 V 220 µF 10 V 33 µF 16 V 47 µF 16 V 100 µF 10 V 220 µF 10 V

Conductive polymer capacitor Organic solid capacitor Conductive polymer capacitor Organic solid capacitor

Low ESR liquid Alu capacitor Solid Ta capacitor Low ESR liquid Alu capacitor Solid Ta capacitor Higher ripple current than other technologies Conductive Polymer Lifetime

Arrhenius law for Polymer e-caps says

Lx : Expected life period (hrs) at actual application 푇0 + ∆푇0 − 푇푥−∆푇푥 temperature 퐿 = 퐿 ∙ 퐾 ∙ 퐾 ∙ 퐾 = 퐿 ∙ 10 20퐾 ∙ 1 L0 : Specified life period (hrs) at maximum allowed 푥 0 푇 푅 푉 0 capacitor temperature, ripple current and voltage (datasheet) ℃ ▪ T0 : Maximum allowed capacitor temperature ( ) Reduction of temperature by 20 K decoubles the lifetime of (datasheet)

Polymer-cap e.g. 2000h@105°C and 20000h@85°C Tx : Actual application temperature (℃) KT : Temperature impact (ambient temperature) Extended lifetime (e.g. 2,000h nominal lifetime): KR : Ripple current impact (self-heating) Polymer E-Cap Liquid E-Cap KV : Operating voltage impact = 1 for small e-caps 105 °C → 2,000 h 105 °C → 2,000 h 95 °C → 6,300 h 95 °C → 4,000 h ΔT0: Core temperature increase (℃) by internal heating 85 °C → 20,000 h 85 °C → 8,000 h due to rated maximum permissible ripple current 75 °C → 63,000 h 75 °C → 16,000 h ΔTx: Core temperature increase (℃) by internal heating due to actual operating ripple current I : Actual applied ripple current 2 x 퐼 I0 : Rated maximum ripple current (datasheet) 푇 = 푇 + ∆푇 with 푥 푥 표 푥 ∆푇푥 = ∆푇0 ∙ Kf : Multiplier for ripple current vs. frequency (datasheet) 퐼0 ∙ 퐾푓 Conductive Polymer Self healing

Dielectric Paper

) ) Cathode

-

(+) Anode (+) (

Solid Polymer

Hotspot with Isolated hotspot Normal operating condition short circuit current „Self healing“ Conductive Polymer

Radial style

+ PH PS PL PU High Low Ultra 105°C voltage 105°C ESR 105°C low ESR 105°C 2000h 2000h 2000h 2000h 35-400V 2.5-25V 2.5-16V 2.5-10V 6.8-330µF 39-3500µF 18-3500µF 180-3900µF Conductive-Polymer

Low profile Down size

C C °

PT 125 PW PE PF Long life Long 125°C guaranteed 105°C 105°C 105°C 2000h 2000h 2000h 5000h 2.5-50V 2.5-25V 2.5-6.3V 2.5-35V 22-2700µF 39-3500µF 470-820µF 22-2700µF

Low profile PX 105°C 2000h 2.5-25V 10-820µF ESR (100 kHz) Conductive Polymer 14000 13000 12000 HV Polymer vs. Liquid – ESR and I 10000 R )

Ω 8000 ESR

6000 ESR (m ESR 4000 3500

2000 PH series High Voltage/High Reliability 110 350 0 • High voltage and high reliability 4,7 µF 250 V 2,2 µF 400V • Large permissible ripple current • Low ESR at high frequency range Liquid E-cap Conductive polymer capacitor

Allowable ripple current (100 kHz 105°C) Maximum permissible W.V. Cap Size ESR Technology Part number ripple 1000 900 (V) (µF) ø DxL(mm) (mΩ, 100kHz) current (mA, RMS) E-cap KF4R7M250F115ETD 3500 85 800 250 4.7 8 x 11.5 Polymer PH4R7M250F115PTD 110 900 600 E-cap KF2R2M400F115ETD 13000 65 400 2.2 8 x 11.5 Ripple 400 Polymer PH2R2M400F115PTD 350 400 current 400 200 85 65 ▪ Lifetime of Polymer is prolonged 10 times by 20°C reduction (mArms) current Ripple 0 ▪ 250V and 400V Polymer offers ultra low ESR and highest ripple currents 4,7 µF 250 V 2,2 µF 400V Liquid E-cap Conductive polymer capacitor PH series Conductive Polymer PH series High Voltage/High Reliability

• High voltage and high reliability 250V and 400V – PH series • Large permissible ripple current • Low ESR at high frequency range

Item Performance Characteristics Operating Temp. Range -55°C ~ +105°C Rated Voltage Range 250 ~ 400V DC Capacitance Range 1.2 ~ 8.2 µF Capacitance Tolerance ±20% (120Hz, +20°C) Capacitance Change Within ±20% of the value before test Endurance Leakage Current Not to exceed the value specified 105°C, 2000h, at rated voltage ESR Not to exceed 150% of the value specified Dissipation Factor Not to exceed 150% of the value specified W.V. Size L.C. tg δ ESR Maximum permissible ripple Cap (µF) (V) ø DxL(mm) (µA, 2min) (120Hz, 20°C) (mΩ, 100kHz) current (mA, RMS) 2.7 8 x 8 135 0.12 130 700 3.3 8 x 8 165 0.12 130 700 4.7 8 x 11.5 235 0.12 110 900 250 5.6 10 x 12.5 280 0.12 100 1000 6.8 10 x 12.5 340 0.12 100 1000 8.2 10 x 12.5 410 0.12 100 1000 1.2 8 x 8 96 0.16 400 320 1.8 8 x 8 144 0.16 400 320 2.2 8 x 11.5 176 0.16 350 400 400 2.7 10 x 12.5 216 0.16 300 500 3.3 10 x 12.5 264 0.16 300 500 4.7 10 x 12.5 376 0.16 300 500 Conductive Polymer

SMD style

+ PM PD PV PR PG Low Low Ultra Higher 105°C profile 105°C height 105°C low ESR 105°C reliability 125°C 2000h 2000h 2000h 5000h 2000h 2.5-100V 2.5-100V 2.5-100V 6.3-50V 6.3-50V 4.7-560µF 10-3300µF 6.8-2500µF 10-1500µF 10-1500µF Conductive-Polymer Conductive Polymer Product list

Radial type SMD type

Operating Working Operating Working Capacitance Endurcance Capacitance Endurcance Category Series Type Feature Temperature Voltage Category Series Type Feature Temperature Voltage Range (µF) (hrs) Range (µF) (hrs) Range (°C) Range (V) Range (°C) Range (V)

Conductive Conductive PL Polymer-Radial Very low ESR -55 to 105 2.5 to 16 180 to 3500 2000 PM Polymer-SMD SMD type, low profile -55 to 105 2.5 to 100 4.7 to 560 2000 Polymer Polymer

Conductive Conductive SMD type, PS Polymer-Radial Standard Product -55 to 105 2.5 to 25 39 to 3500 2000 PD Polymer-SMD -55 to 105 2.5 to 100 10 to 3300 2000 Polymer Polymer large capacitance

Conductive Conductive PU Polymer-Radial Ultra low ESR ≤ 7mΩ -55 to 105 2.5 to 10 180 to 3500 2000 PV Polymer-SMD SMD type, low height -55 to 105 2.5 to 100 6.8 to 2500 2000 Polymer Polymer

Conductive Conductive SMD type & long life PX Polymer-Radial Low Profile -55 to 105 2.5 to 25 10 to 820 2000 PR Polymer-SMD -55 to 105 6.3 to 50 10 to 1500 5000 Polymer Polymer to 5,000 hrs new Conductive Ultra low ESR, Down Conductive SMD type & 125°C PE Polymer-Radial -55 to 105 2.5 to 6.3 470 to 820 2000 PG Polymer-SMD -55 to 125 6.3 to 50 10 to 1500 2000 Polymer side to 6.3Øx8mm Polymer new guaranteed

Conductive PW Polymer-Radial Low height -55 to 105 2.5 to 25 39 to 2500 2000 Polymer

Conductive High voltage, PT Polymer-Radial -55 to 105 35 to 100 6.8 to 330 2000 Polymer High reliabilty

Conductive PF Polymer-Radial 125°C guaranteed -55 to 125 2.5 to 50 22 to 2700 2000 Polymer

Conductive PF Polymer-Radial Long life -55 to 105 2.5 to 35 22 to 2700 5000 Polymer Applications

Backup capacitor Smoothing capacitor Noise reduction capacitor

VCC

+ + + V V + CPU IN OUT

Prevents backflow of harmonics Backup capacitor Smoothing capacitor in I/O LC circuit or only C via the supply line Stable capacitance even if voltage Improvement of low temperature Allowing large ripple current Able to deliver energy quickly is applied characteristic Able to discharge rapidly Extemly long life Reduction of component cost Sufficiently large capacitance Optimally usable at very low Very low ESR Reduction of pcb space Very low impedance temperatures Applications

Why choose Polymer capacitors for back up circuits? Example CPU board

▪ Liquid Aluminum E-caps, also low ESR types, cannot respond to high speed load change in large current because of the ESR ▪ ESR prevents fast electrical charge and discharge

The solution

▪ Polymer capacitors have extremely low ESR up to 7mΩ ▪ Capable of responding to large current transistions at high speed ▪ Polymer supports stable operation of the load Applications

Why choose Polymer capacitors for smoothing circuits? Example Solar Inverter

▪ Usually ceramic capacitors MLCC or liquid Aluminum e- caps are used as output capacitor of the for the control unit (15V DC side) DC DC DC AC DC voltage characteristic Extended lifetime (e.g. 2,000h nominal lifetime): Polymer E-Cap Liquid E-Cap 105 °C → 2,000 h 105 °C → 2,000 h 95 °C → 6,300 h 95 °C → 4,000 h 85 °C → 20,000 h 85 °C → 8,000 h 75 °C → 63,000 h 75 °C → 16,000 h Control unit with digital signal processor (DSP)

Example X7R, 0.1µF, rated voltage 50VDC According Lifetime Formula (rule by thumb) PM100M025E058PTR

470µH The solution DC 330V DC 15V ▪ Polymer capacitors capacitance doesn’t decrease if + + voltage is applied -> MLCC capacitance decrease VIN VOUT ▪ Lifetime of Polymer is prolonged 10 times by 20°C reduction Power supply for control unit Applications

Why choose Polymer capacitors for filter circuits? Example Amplifier

▪ Initial version ▪ coil with 25mVpp ▪ two liquid Aluminum e-cap

▪ Two Aluminum e-caps 470µF/16V/105°C 1 20mV/div - 100µs/div SMD type e.g. CapXon RV471M016F105ETR ▪ High noise due to high ESR of the capacitors

17mVpp

1 2 + + Liquid Liquid 2 5mV/div – 100µs/div e-cap. e-cap. Applications

Why choose Polymer capacitors for filter circuits? Example Amplifier

▪ Improved version ▪ without coil and ▪ one Polymer capacitor instead two liquid e-caps ▪ One Polymer cap 330µF/4V/ 105°C/SMD type e.g. CapXon PM331M004E058PTR ▪ Significant reduction of noise due to very low ESR of the capacitor ▪ Reduction of components and mounting 10mVpp area 2 + + 2 5mV/div – 100µs/div Polymer cap. Applications

Why choose Polymer capacitors for decoupling circuits? Example digital IC

▪ Decoupling capacitor stores energy and 2 must be able to deliver it very quickly 1 푍 = − 휔 ∙ 퐿 + 퐸푆푅2 휔 ∙ 퐶 ▪ Must have a sufficiently large ESL ESR C capacitance and very low impedance ▪ It effectively prevents the AC component produced by the IC from ▪ Impedance Z of a real capacitor is flowing into the source composed of the capacitive (XC), resistive (ESR) and inductive (XL) DC reactance U1 1 7 VDD CS 6 VSS 12 SDO 3 13 NC SDA 11 14 V + AC N/C SCL CC C1 10 GND3 INT1 8 4 9 GND1 INT2 5 GND2 2 GND

DC Applications

Why choose Polymer capacitors for decoupling circuits? Example digital IC

Liquid electrolytic e-cap Polymer e-cap

Impedance (Z) Impedance (Z)

Capacitive reactance (XC) Capacitive reactance (XC) Inductive reactance (XL) Inductive reactance(XL) Resistance (ESR) Resistance (ESR) 1 1 휔 ∙ 퐿 휔 ∙ 퐿

휔 ∙ 퐶 퐸푆푅 휔 ∙ 퐶 퐸푆푅 Impedance Impedance High ESR Low ESR

Frequency Frequency

+ +

Ripple High impedance Ripple Low impedance causes high ripple at causes low ripple at the output the output Hybrid 2 Polymer Capacitors Hybrid Polymer Motivation for Hybrid Polymer

Hybrid Polymer offers ▪ High capacitance ▪ Higher reliability vs. Liquid Hybrid conductive polymer type Electrolytic Polymer ▪ Lower ESR vs. liquid E-cap Capacitor Capacitor Conductive Polymer

Capacitor Capacitacne (Energy density) (Energy Capacitacne

di/dt (Power density)

Low impedance / ESR Hybrid Polymer

Construction Conductive Polymer Capacitor Hybrid Polymer Capacitor

Dielectric Paper Dielectric Paper

AL foil AL foil

) ) Cathode ) Cathode

- -

(+) Anode (+) Anode (+)

( (

Adhesive Liquid Separator sheet Solid Polymer Solid Polymer tape Electrolyte 2.5 to 400V 16 to 100 V

Highest ripple current Similar ESR as conductive polymer capacitor Features Stable for high and low temperature More stable than liquid type Lower leakage current than conductive Very stable life polymer capacitor • Temperature characteristics • Capacitance change vs. temperature • ESR vs. Temperature • tan δ vs. temperature • Leakage current vs. temperature • Lifetime calculation Hybrid Polymer ΔC/C vs. temperature

ΔC/C over temperature: Total deviation over the entire temperature range of 0.5% Hybrid Polymer tan δ vs. temperature

tan δ over temperature: Stable over the entire temperature range Hybrid Polymer ESR vs. temperature

ESR over temperature: Stable over the entire temperature range Hybrid Polymer LC vs. temperature

LC vs. temperature: Stable over the entire temperature range Hybrid Polymer Lifetime

Arrhenius law for Polymer e-caps says

Lx : Expected life period (hrs) at actual application 푇0 + ∆푇0 − 푇푥−∆푇푥 temperature 퐿 = 퐿 ∙ 퐾 ∙ 퐾 ∙ 퐾 = 퐿 ∙ 2 10퐾 ∙ 1 L0 : Specified life period (hrs) at maximum allowed 푥 0 푇 푅 푉 0 capacitor temperature, ripple current and voltage (datasheet) ℃ ▪ T0 : Maximum allowed capacitor temperature ( ) Reduction of temperature by 10 K doubles the lifetime of Hybrid- (datasheet)

cap e.g. 2000h@105°C and 4000h@95°C Tx : Actual application temperature (℃) KT : Temperature impact (ambient temperature) KR : Ripple current impact (self-heating) KV : Operating voltage impact = 1 for small e-caps 퐼 2 푇 = 푇 + ∆푇 푥 ΔT : Core temperature increase (℃) by internal heating 푥 표 푥 with ∆푇푥 = ∆푇0 ∙ 0 퐼0 ∙ 퐾푓 due to rated maximum permissible ripple current ΔTx: Core temperature increase (℃) by internal heating due to actual operating ripple current

Ix : Actual applied ripple current I0 : Rated maximum ripple current (datasheet) Kf : Multiplier for ripple current vs. frequency (datasheet) Hybrid Polymer

Radial style SMD style

+ AS AT AA AC High High 105°C reliability 125°C 105°C reliability 125°C 3000-10000h 2000-3000h 10000h 4000h 16-100V 16-40V 25-80V 25-80V 10-560µF 27-560µF 10-330µF 10-330µF Hybrid-Polymer Hybrid Polymer Product list

Operating Working Capacitance Endurcance Category Series Type Image Feature Temperature Voltage Range (µF) (hrs) Range (°C) Range (V) Hybrid Low ESR, Long Life, SMD type Conductive AA Polymer-SMD High Reliability, High -55 to 105 25 to 80 10 to 330 10000 Polymer new Voltage Hybrid 125°C, Low ESR, Long Conductive AC Polymer-SMD Life, High Reliability, -55 to 125 25 to 80 10 to 330 4000 Polymer new High Voltage

Operating Working Capacitance Endurcance Category Series Type Image Feature Temperature Voltage Range (µF) (hrs) Range (°C) Range (V) Hybrid Low ESR, Long Life, 3000 to Conductive AS Polymer-Radial -55 to 105 16 to 100 10 to 560 Radial type High Voltage 10000 Polymer new Hybrid 125°C, Low ESR, 2000 to Conductive AT Polymer-Radial Long Life, -55 to 125 16 to 40 27 to 560 3000 Polymer new High Voltage

150 V / 250 V on request AEC-Q200 available 3 Summary Summary Lifetime

Hybrid Conductive Liquid E-Cap Conductive Polymer Polymer

푇0 + ∆푇0 − 푇푥 −∆푇푥 푇0 + ∆푇0 − 푇푥 −∆푇푥 푇0 + ∆푇0 − 푇푥 −∆푇푥 퐿푥 = 퐿0 ∙ 2 10퐾 퐿푥 = 퐿0 ∙ 2 10퐾 퐿푥 = 퐿0 ∙ 10 20퐾

10°C lower temperature 10°C lower temperature 20°C lower temperature = = = double lifetime double lifetime 10 x lifetime

2000 hrs @ 105°C, guaranteed 2000 hrs @ 105°C, guaranteed 2000 hrs @ 105°C, guaranteed At 65°C lifetime: 32000 hrs or At 65°C lifetime: 32000 hrs or At 65°C lifetime: 200000 hrs or 3.7 years 3.7 years 22.8 years Summary Technology comparison

Liquid E-Cap Polymer E-Cap Hybrid E-Cap

Cap. Recovery @ high frequency ESR@ high frequency

Leakage current

High ripple current

High rated voltage Temperature characteristics Low temperarture characteristics Life time

Failure mode Open Short Open Excellent > inferior > > > Summary Technology comparison

Liquid E-Cap Polymer E-Cap Hybrid E-Cap Result

RV471M050J170ETR CapXon part number PR101M050G124PTR AA101M050G105PTR Low impedance type Capacity / voltage/ 470 µF / 50 V / 105 °C 100 µF / 50 V / 105 °C 100µF / 50 V / 105 °C temperature Ripple current 1,610 mA @ 100 kHz 3,650 mA @ 100 kHz 2,000 mA @100 kHz Higher ripple current

ESR 0.085 Ω @ 100 kHz 0.026 Ω @ 100 kHz 0.028 Ω @ 100 kHz Lower ESR / impedance

Dimension 16 mm x 17 mm 10 mm x 12.4 mm 10 mm x 10.5 mm Smaller sizes

Endurance 5,000 h @ 105 °C 5,000 h @ 105 °C 10,000 h @ 105 °C

Endurance @ 65 °C 80,000 h 500,000 h 160,000 h Longer lifetime

Liquid e-cap Solid e-cap

Reduce componentes → Increase performance Questions? CapXon Europe Schwalbenweg 11 72793 Pfullingen – Germany Tel. + 49 151 – 11355795 + 49 170 – 3125710 Contacts: [email protected]