Computational Studies Across Catalysis Carine Michel
Total Page:16
File Type:pdf, Size:1020Kb
Computational Studies Across Catalysis Carine Michel To cite this version: Carine Michel. Computational Studies Across Catalysis. Theoretical and/or physical chemistry. Ecole Normale Supérieure de Lyon, 2016. tel-01727176 HAL Id: tel-01727176 https://tel.archives-ouvertes.fr/tel-01727176 Submitted on 8 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION À DIRIGER DES RECHERCHES Présentée le 8 juin 2016 En vue d’obtenir l’Habilitation à diriger des Recherches de l’Ecole Normale Supérieure de Lyon Par Carine MICHEL Computational Studies Across Catalysis Les Membres du Jury sont : Pr. Núria López Rapporteur Pr. Anastassia Alexandrova Rapporteur Dr. Dorothée Berthomieux Rapporteur Pr. Anne Milet Membre Pr. Christophe Coutanceau Membre Dr. Philippe Marion Membre Dr. Philippe Sautet Membre 2 ∑ ABSTRACT My research activities focus on the theoretical study of chemical re- activity catalysis and green chemistry. Based on models and simu- lations and strong collaborations with experimentalists, this research aims at establishing structure/catalytic activity relationships to promote a rational and efficient development of new catalysts in homogeneous catalysis, heterogeneous catalysis and electrocatalysis. My main am- bition is to improve the models and methodologies beyond their limits to provide a better understanding. For instance, with a simple micro- solvation effect, I could rationalize the impact of the water solvent on the activity of metallic catalysts for the levulinic acid conversion into γ-valerolactone. Solvent effects are even more crucial in electrocatal- ysis as shown recently on the CO2 electroactivation. Thus, developing solvatation models for heterogeneous interfaces is a clear milestone for the coming years. Another challenge will be the constant improvement of the quality of the model of the catalyst in its steady state. i ii ∑ MERCI !THANKS! Mes recherches se sont construites au grès de rencontres marquantes qui m’ont fait progressée aussi bien scientifiquement qu’humainement. Première rencontre fondamentale, celle qui restera toujours ma chef, Pr. Anne Milet qui m’a initié à la recherche, à la chimie théorique, à l’art de la collaboration et aux arcanes du monde universitaire. Deux- ième rencontre, Pr. Evert Jan Baerends, qui m’a fait confiance en me laissant ’trouver un nouveau sujet’ et monter une collaboration. Je pense à lui à chaque article que j’écris, lui qui m’a appris à écrire pour "mes" lecteurs. Enfin, mes derniers guides, Françoise Delbecq et Philippe Sautet, qui m’ont accueillie au Laboratoire de Chimie et surtout qui m’ont accompagnée dans le monde fascinant de la Catalyse. Merci à eux deux pour leur patience, leur bienveillance, pour les échanges riches et passionnés, pour tout. Je ne sais pas travailler seule, ces travaux de recherche sont tous le fruit de collaborations, que ce soit avec d’autres théoriciens aux com- pétences complémentaires ou avec des expérimentateurs de différents domaines. A chaque collaboration, de belles rencontres, des amitiés qui se construisent. Rassembler autour d’un projet commun des collabo- rateurs est pour moi un moteur fort, et je suis très heureuse que cela se concrétise à travers le projet Tanopol. A tous mes collaborateurs, passés, présents et même futurs, merci! Et surtout, cette habilitation s’est construite grâce aux étudiants qui m’ont fait confiance et ils sont nombreux. De ma première stagiaire, Lise Morlet à Stephan Steinmann, post-doc recruté au CNRS, j’ai une pensée pour chacun, que chacun trouve sa voie! Tous m’ont appris iii iv ∑ à leur manière à accompagner, encadrer, guider sur le chemin de la Recherche. J’essaie à mon tour d’être une "bonne chef" et c’est un ap- prentissage de chaque jour! Merci à tous pour votre confiance et surtout . votre patience! Le travail de recherche ne peut se faire sans le groupe de Chimie Théorique, membres passés et présents, le Laboratoire et tous ceux en "soutien à la recherche", du pôle de gestion aux informaticiens, du Lab- oratoire de Chimie aux services de l’ENS de Lyon et du CNRS, merci à tous pour votre soutien! Pour finir, mon infinie reconnaissance à mes proches, amis, famille. Nicolas, Mathilde, Romane, merci! CONTENTS Introduction 3 1 Methodology 5 2 Single site catalysis 11 2.1 Oxidation of alkanes . 12 2.2 Oxidation of alcohols . 16 2.3 Coupling of CO2 and ethylene using Ni-Based systems 17 2.4 Amination of alcohols . 18 2.5 What’s next? . 18 3 Heterogeneous Catalysis 45 3.1 Complex reaction networks . 47 3.2 Effect of water solvent . 50 3.3 What’s next? . 55 4 Electrocatalysis 95 4.1 Computational hydrogen electrode . 96 4.2 Inclusion of the potential . 100 4.3 What’s next? . 100 5 Perspectives 123 Curriculum Vitae 127 Publication List 135 1 2 ∑CONTENTS INTRODUCTION My research activities focus on the theoretical study of chemical reac- tivity catalysis and green chemistry. Based on models and simulations and strong collaborations with experimentalists, this research aims at es- tablishing structure/catalytic activity relationships to promote a rational and efficient development of new catalysts. Nowadays, this approach is essential to ensure an efficient development of novel catalysts that are more efficient and less polluting. I applied it in homogeneous catalysis, in heterogeneous catalysis and electrocatalysis, as reported in the three corresponding chapters. 3 4 ∑CONTENTS My main interest is the development of novel catalysts in the ever- growing domain of the conversion of biomass into platform molecules needed to advance the sustainable production of fuels and base chem- icals. In this domain, solvent effects can manifest in numerous ways, such as explicit participation in the mechanism (e.g., water-mediated proton transfer) and the reaction rate constant (e.g., via electrostatics due to solvent re-organization). Solvent effects are even more crucial in electrocatalysis. This account pushed us to propose to include solvent effects based on micro-solvation and more recently on a force-field de- velopment and free energy perturbation (Music project). This manuscript is divided into chapters dedicated to Methodology and then to different kinds of catalysis (homogeneous and single site catalysts, supported metallic catalysts, electrocatalysts). Each chapter dedicated to catalysis includes a summary of my research activities and a short selection of my articles. I have co-authored the references indi- cated in blue and red, the latter being also including at the end of the chapter. The last chapter is a synthesis of my research perspectives. In appendix, my curriculum vitae and a list of my peer-reviewed publica- tions. 1 METHODOLOGY My research is focused on the modeling of catalytic cycles of various systems. The first step is to evaluate the energetic and the structures of the plausible intermediate and transition states along the catalytic cycle but also along potential side routes that could deactivate the cat- alyst. The evaluation of these reaction pathways require to make sev- eral choices: (i) choice of the model (ii) choice of the methodology to compute the energies. Those choices are intrinsically interconnected since the most accurate methods are generally not affordable for the most accurate models. I mostly use the Density Functional Theory (DFT) as a good trade-off between cost and accuracy. At the crossing point between molecular chemistry and solid state physics, the study of molecules adsorbed at metallic surfaces are challenging to describe accurately and still highly rely on the use of the Generalized Gradi- ent Approximation (GGA), now often including dispersion correction (Grimme D32, dDsC7,8 or non-local functionals3). A recent bench- mark on the adsorption of insaturated molecules on Pt(111) against single crystal adsorption calorimetry SCAC experiments demonstrates that optPBE and PBE-DdSc are the best approaches we can afford now- days for this kind of system.11 In metallic heterogeneous catalysis, the metallic nanoparticles are described using a periodic finite slab of the most compact facet (typically a p(3x3) cell of a four layers slab). The solvent is generally modeled as a continuum model9 when available1,5 and by including few water molecules in a simple micro-solvation ap- 5 6 ∑Methodology proach. More advanced models for describing the metal/water inter- face require methodological development. I have also collaborated with R. Bulo who is developing adaptive QM/MM approaches.10 However, those methods are not mature yet to tackle complex catalytic systems, especially for heterogeneous metallic systems. We are currently work- ing on development of novel strategies based on free energy perturba- tion to obtain solvation free energies, combined with the development of better force field for water/platinum interface (Music project). Once the Gibbs free energy profiles are computed, we need efficient tools to extract the predicted variations in activity or selectivity. The data could be input to a micro-kinetics model to include the effect of concentration and get the turn-over frequency and the selectivity.6 The reaction profile of a catalytic reaction can also be easily interpreted us- ing the energetic span framework that relates the energetic span of a profile to the turn over frequency (TOF) of the catalyst.4 In short, the rate-determining transition state is not necessarily the highest in energy of the reaction profile since this is not invariant with the choice of the starting point in the cycle. It is neither the one corresponding to the elementary step with the highest activation energy.