Fortran 95 Interval Arithmetic Programming Reference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Precision in Modern Floating-Point Computing
Variable precision in modern floating-point computing David H. Bailey Lawrence Berkeley Natlional Laboratory (retired) University of California, Davis, Department of Computer Science 1 / 33 August 13, 2018 Questions to examine in this talk I How can we ensure accuracy and reproducibility in floating-point computing? I What types of applications require more than 64-bit precision? I What types of applications require less than 32-bit precision? I What software support is required for variable precision? I How can one move efficiently between precision levels at the user level? 2 / 33 Commonly used formats for floating-point computing Formal Number of bits name Nickname Sign Exponent Mantissa Hidden Digits IEEE 16-bit “IEEE half” 1 5 10 1 3 (none) “ARM half” 1 5 10 1 3 (none) “bfloat16” 1 8 7 1 2 IEEE 32-bit “IEEE single” 1 7 24 1 7 IEEE 64-bit “IEEE double” 1 11 52 1 15 IEEE 80-bit “IEEE extended” 1 15 64 0 19 IEEE 128-bit “IEEE quad” 1 15 112 1 34 (none) “double double” 1 11 104 2 31 (none) “quad double” 1 11 208 4 62 (none) “multiple” 1 varies varies varies varies 3 / 33 Numerical reproducibility in scientific computing A December 2012 workshop on reproducibility in scientific computing, held at Brown University, USA, noted that Science is built upon the foundations of theory and experiment validated and improved through open, transparent communication. ... Numerical round-off error and numerical differences are greatly magnified as computational simulations are scaled up to run on highly parallel systems. -
Chapter 7 Expressions and Assignment Statements
Chapter 7 Expressions and Assignment Statements Chapter 7 Topics Introduction Arithmetic Expressions Overloaded Operators Type Conversions Relational and Boolean Expressions Short-Circuit Evaluation Assignment Statements Mixed-Mode Assignment Chapter 7 Expressions and Assignment Statements Introduction Expressions are the fundamental means of specifying computations in a programming language. To understand expression evaluation, need to be familiar with the orders of operator and operand evaluation. Essence of imperative languages is dominant role of assignment statements. Arithmetic Expressions Their evaluation was one of the motivations for the development of the first programming languages. Most of the characteristics of arithmetic expressions in programming languages were inherited from conventions that had evolved in math. Arithmetic expressions consist of operators, operands, parentheses, and function calls. The operators can be unary, or binary. C-based languages include a ternary operator, which has three operands (conditional expression). The purpose of an arithmetic expression is to specify an arithmetic computation. An implementation of such a computation must cause two actions: o Fetching the operands from memory o Executing the arithmetic operations on those operands. Design issues for arithmetic expressions: 1. What are the operator precedence rules? 2. What are the operator associativity rules? 3. What is the order of operand evaluation? 4. Are there restrictions on operand evaluation side effects? 5. Does the language allow user-defined operator overloading? 6. What mode mixing is allowed in expressions? Operator Evaluation Order 1. Precedence The operator precedence rules for expression evaluation define the order in which “adjacent” operators of different precedence levels are evaluated (“adjacent” means they are separated by at most one operand). -
A Concurrent PASCAL Compiler for Minicomputers
512 Appendix A DIFFERENCES BETWEEN UCSD'S PASCAL AND STANDARD PASCAL The PASCAL language used in this book contains most of the features described by K. Jensen and N. Wirth in PASCAL User Manual and Report, Springer Verlag, 1975. We refer to the PASCAL defined by Jensen and Wirth as "Standard" PASCAL, because of its widespread acceptance even though no international standard for the language has yet been established. The PASCAL used in this book has been implemented at University of California San Diego (UCSD) in a complete software system for use on a variety of small stand-alone microcomputers. This will be referred to as "UCSD PASCAL", which differs from the standard by a small number of omissions, a very small number of alterations, and several extensions. This appendix provides a very brief summary Of these differences. Only the PASCAL constructs used within this book will be mentioned herein. Documents are available from the author's group at UCSD describing UCSD PASCAL in detail. 1. CASE Statements Jensen & Wirth state that if there is no label equal to the value of the case statement selector, then the result of the case statement is undefined. UCSD PASCAL treats this situation by leaving the case statement normally with no action being taken. 2. Comments In UCSD PASCAL, a comment appears between the delimiting symbols "(*" and "*)". If the opening delimiter is followed immediately by a dollar sign, as in "(*$", then the remainder of the comment is treated as a directive to the compiler. The only compiler directive mentioned in this book is (*$G+*), which tells the compiler to allow the use of GOTO statements. -
Operators and Expressions
UNIT – 3 OPERATORS AND EXPRESSIONS Lesson Structure 3.0 Objectives 3.1 Introduction 3.2 Arithmetic Operators 3.3 Relational Operators 3.4 Logical Operators 3.5 Assignment Operators 3.6 Increment and Decrement Operators 3.7 Conditional Operator 3.8 Bitwise Operators 3.9 Special Operators 3.10 Arithmetic Expressions 3.11 Evaluation of Expressions 3.12 Precedence of Arithmetic Operators 3.13 Type Conversions in Expressions 3.14 Operator Precedence and Associability 3.15 Mathematical Functions 3.16 Summary 3.17 Questions 3.18 Suggested Readings 3.0 Objectives After going through this unit you will be able to: Define and use different types of operators in Java programming Understand how to evaluate expressions? Understand the operator precedence and type conversion And write mathematical functions. 3.1 Introduction Java supports a rich set of operators. We have already used several of them, such as =, +, –, and *. An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations. Operators are used in programs to manipulate data and variables. They usually form a part of mathematical or logical expressions. Java operators can be classified into a number of related categories as below: 1. Arithmetic operators 2. Relational operators 1 3. Logical operators 4. Assignment operators 5. Increment and decrement operators 6. Conditional operators 7. Bitwise operators 8. Special operators 3.2 Arithmetic Operators Arithmetic operators are used to construct mathematical expressions as in algebra. Java provides all the basic arithmetic operators. They are listed in Tabled 3.1. The operators +, –, *, and / all works the same way as they do in other languages. -
A Library for Interval Arithmetic Was Developed
1 Verified Real Number Calculations: A Library for Interval Arithmetic Marc Daumas, David Lester, and César Muñoz Abstract— Real number calculations on elementary functions about a page long and requires the use of several trigonometric are remarkably difficult to handle in mechanical proofs. In this properties. paper, we show how these calculations can be performed within In many cases the formal checking of numerical calculations a theorem prover or proof assistant in a convenient and highly automated as well as interactive way. First, we formally establish is so cumbersome that the effort seems futile; it is then upper and lower bounds for elementary functions. Then, based tempting to perform the calculations out of the system, and on these bounds, we develop a rational interval arithmetic where introduce the results as axioms.1 However, chances are that real number calculations take place in an algebraic setting. In the external calculations will be performed using floating-point order to reduce the dependency effect of interval arithmetic, arithmetic. Without formal checking of the results, we will we integrate two techniques: interval splitting and taylor series expansions. This pragmatic approach has been developed, and never be sure of the correctness of the calculations. formally verified, in a theorem prover. The formal development In this paper we present a set of interactive tools to automat- also includes a set of customizable strategies to automate proofs ically prove numerical properties, such as Formula (1), within involving explicit calculations over real numbers. Our ultimate a proof assistant. The point of departure is a collection of lower goal is to provide guaranteed proofs of numerical properties with minimal human theorem-prover interaction. -
Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code
Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia Abstract. Many compilers target common back-ends, thereby avoid- ing the need to implement the same analyses for many different source languages. This has led to interest in static analysis of LLVM code. In LLVM (and similar languages) most signedness information associated with variables has been compiled away. Current analyses of LLVM code tend to assume that either all values are signed or all are unsigned (except where the code specifies the signedness). We show how program analysis can simultaneously consider each bit-string to be both signed and un- signed, thus improving precision, and we implement the idea for the spe- cific case of integer bounds analysis. Experimental evaluation shows that this provides higher precision at little extra cost. Our approach turns out to be beneficial even when all signedness information is available, such as when analysing C or Java code. 1 Introduction The “Low Level Virtual Machine” LLVM is rapidly gaining popularity as a target for compilers for a range of programming languages. As a result, the literature on static analysis of LLVM code is growing (for example, see [2, 7, 9, 11, 12]). LLVM IR (Intermediate Representation) carefully specifies the bit- width of all integer values, but in most cases does not specify whether values are signed or unsigned. This is because, for most operations, two’s complement arithmetic (treating the inputs as signed numbers) produces the same bit-vectors as unsigned arithmetic. -
Complete Interval Arithmetic and Its Implementation on the Computer
Complete Interval Arithmetic and its Implementation on the Computer Ulrich W. Kulisch Institut f¨ur Angewandte und Numerische Mathematik Universit¨at Karlsruhe Abstract: Let IIR be the set of closed and bounded intervals of real numbers. Arithmetic in IIR can be defined via the power set IPIR (the set of all subsets) of real numbers. If divisors containing zero are excluded, arithmetic in IIR is an algebraically closed subset of the arithmetic in IPIR, i.e., an operation in IIR performed in IPIR gives a result that is in IIR. Arithmetic in IPIR also allows division by an interval that contains zero. Such division results in closed intervals of real numbers which, however, are no longer bounded. The union of the set IIR with these new intervals is denoted by (IIR). The paper shows that arithmetic operations can be extended to all elements of the set (IIR). On the computer, arithmetic in (IIR) is approximated by arithmetic in the subset (IF ) of closed intervals over the floating-point numbers F ⊂ IR. The usual exceptions of floating-point arithmetic like underflow, overflow, division by zero, or invalid operation do not occur in (IF ). Keywords: computer arithmetic, floating-point arithmetic, interval arithmetic, arith- metic standards. 1 Introduction or a Vision of Future Computing Computers are getting ever faster. The time can already be foreseen when the P C will be a teraflops computer. With this tremendous computing power scientific computing will experience a significant shift from floating-point arithmetic toward increased use of interval arithmetic. With very little extra hardware, interval arith- metic can be made as fast as simple floating-point arithmetic [3]. -
Types of Operators Description Arithmetic Operators These Are
UNIT II OPERATORS Types of Operators Description These are used to perform mathematical calculations like addition, subtraction, Arithmetic_operators multiplication, division and modulus These are used to assign the values for Assignment_operators the variables in C programs. These operators are used to compare the Relational operators value of two variables. These operators are used to perform logical operations on the given two Logical operators variables. These operators are used to perform bit Bit wise operators operations on given two variables. Conditional operators return one value Conditional (ternary) if condition is true and returns another operators value is condition is false. These operators are used to either Increment/decrement increase or decrease the value of the operators variable by one. Special operators &, *, sizeof( ) and ternary operator ARITHMETIC OPERATORS IN C: C Arithmetic operators are used to perform mathematical calculations like addition, subtraction, multiplication, division and modulus in C programs. Arithmetic Operators/Operation Example + (Addition) A+B – (Subtraction) A-B * (multiplication) A*B / (Division) A/B % (Modulus) A%B EXAMPLE PROGRAM FOR C ARITHMETIC OPERATORS: // Working of arithmetic operators #include <stdio.h> int main() { int a = 9,b = 4, c; c = a+b; printf("a+b = %d \n",c); c = a-b; printf("a-b = %d \n",c); c = a*b; printf("a*b = %d \n",c); c = a/b; printf("a/b = %d \n",c); c = a%b; printf("Remainder when a divided by b = %d \n",c); return 0; } Output a+b = 13 a-b = 5 a*b = 36 a/b = 2 Remainder when a divided by b=1 Assignment Operators The Assignment Operator evaluates an expression on the right of the expression and substitutes it to the value or variable on the left of the expression. -
Brief Overview of Python Programming Language
Brief Overview Chapter of Python 3 In this chapter » Introduction to Python » Python Keywords “Don't you hate code that's not properly » Identifiers indented? Making it [indenting] part of » Variables the syntax guarantees that all code is » Data Types properly indented.” » Operators » Expressions — G. van Rossum » Input and Output » Debugging » Functions » if..else Statements » 3.1 INTRODUCTION TO PYTHON for Loop » Nested Loops An ordered set of instructions or commands to be executed by a computer is called a program. The language used to specify those set of instructions to the computer is called a programming language for example Python, C, C++, Java, etc. This chapter gives a brief overview of Python programming language. Python is a very popular and easy to learn programming language, created by Guido van Rossum in 1991. It is used in a variety of fields, including software development, web development, scientific computing, big data 2021-22 Chap 3.indd 31 19-Jul-19 3:16:31 PM 32 INFORMATICS PRACTICES – CLASS XI and Artificial Intelligence. The programs given in this book are written using Python 3.7.0. However, one can install any version of Python 3 to follow the programs given. Download Python 3.1.1 Working with Python The latest version of To write and run (execute) a Python program, we need Python is available on the to have a Python interpreter installed on our computer official website: or we can use any online Python interpreter. The https://www.python. interpreter is also called Python shell. A sample screen org/ of Python interpreter is shown in Figure 3.1. -
Syntax of Mini-Pascal (Spring 2016)
Syntax of Mini-Pascal (Spring 2016) Mini-Pascal is a simplified (and slightly modified) subset of Pascal. Generally, the meaning of the features of Mini-Pascal programs are similar to their semantics in other common imperative languages, such as C. 1. Mini-Pascal allows nested functions and procedures, i.e. subroutines which are defined within another. A nested function is invisible outside of its immediately enclosing function (procedure / block), but can access preceding visible local objects (data, functions, etc.) of its enclosing functions (procedures / blocks). Within the same scope (procedure / function / block), identifiers must be unique but it is OK to redefine a name in an inner scope. 2. A var parameter is passed by reference , i.e. its address is passed, and inside the subroutine the parameter name acts as a synonym for the variable given as an argument. A called procedure or function can freely read and write a variable that the caller passed in the argument list. 3. Mini-Pascal includes a C-style assert statement (if an assertion fails the system prints out a diagnostic message and halts execution). 4. The Mini-Pascal operation a.size only applies to values of type array of T (where T is a type). There are only one-dimensional arrays. Array types are compatible only if they have the same element type. Arrays' indices begin with zero. The compatibility of array indices and array sizes is usually checked at run time. 5. By default, variables in Pascal are not initialized (with zero or otherwise); so they may initially contain rubbish values. -
MPFI: a Library for Arbitrary Precision Interval Arithmetic
MPFI: a library for arbitrary precision interval arithmetic Nathalie Revol Ar´enaire (CNRS/ENSL/INRIA), LIP, ENS-Lyon and Lab. ANO, Univ. Lille [email protected] Fabrice Rouillier Spaces, CNRS, LIP6, Univ. Paris 6, LORIA-INRIA [email protected] SCAN 2002, Paris, France, 24-27 September Reliable computing: Interval Arithmetic (Moore 1966, Kulisch 1983, Neumaier 1990, Rump 1994, Alefeld and Mayer 2000. ) Numbers are replaced by intervals. Ex: π replaced by [3.14159, 3.14160] Computations: can be done with interval operands. Advantages: • Every result is guaranteed (including rounding errors). • Data known up to measurement errors are representable. • Global information can be reached (“computing in the large”). Drawbacks: overestimation of the results. SCAN 2002, Paris, France - 1 N. Revol & F. Rouillier Hansen’s algorithm for global optimization Hansen 1992 L = list of boxes to process := {X0} F : function to minimize while L= 6 ∅ loop suppress X from L reject X ? yes if F (X) > f¯ yes if GradF (X) 63 0 yes if HF (X) has its diag. non > 0 reduce X Newton applied with the gradient solve Y ⊂ X such that F (Y ) ≤ f¯ bisect Y into Y1 and Y2 if Y is not a result insert Y1 and Y2 in L SCAN 2002, Paris, France - 2 N. Revol & F. Rouillier Solving linear systems preconditioned Gauss-Seidel algorithm Hansen & Sengupta 1981 Linear system: Ax = b with A and b given. Problem: compute an enclosure of Hull (Σ∃∃(A, b)) = Hull ({x : ∃A ∈ A, ∃b ∈ b, Ax = b}). Hansen & Sengupta’s algorithm compute C an approximation of mid(A)−1 apply Gauss-Seidel to CAx = Cb until convergence. -
What Is Python ?
Class-XI Computer Science Python Fundamentals Notes What is python ? Python is object oriented high level computer language developed by Guido Van Rossum in 1990s . It was named after a British TV show namely ‘Monty Python’s Flying circus’. Python is a programming language, as are C, Fortran, BASIC, PHP, etc. Some specific features of Python are as follows: • an interpreted (as opposed to compiled) language. Contrary to e.g. C or Fortran, one does not compile Python code before executing it. In addition, Python can be used interactively: many Python interpreters are available, from which commands and scripts can be executed. • a free software released under an open-source license: Python can be used and distributed free of charge, even for building commercial software. • multi-platform: Python is available for all major operating systems, Windows, Linux/Unix, MacOS X, most likely your mobile phone OS, etc. • a very readable language with clear non-verbose syntax • a language for which a large variety of high-quality packages are available for various applications, from web frameworks to scientific computing. • a language very easy to interface with other languages, in particular C and C++. • Some other features of the language are illustrated just below. For example, Python is an object-oriented language, with dynamic typing (the same variable can contain objects of different types during the course of a program). Python character set: • Letters : A-Z , a-z • Digits : 0-9 • Special symbols : space,+,-,*,/,** etc. • Whitespace : blank space, tabs(->),carriage return, newline, formfeed • Other characters :python can process all ASCII and unicode characters as part of data PYTHON TERMINOLOGY : Tokens: A smallest individual unit in a program is known as tokens.