Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Two methodologies for assessing boron in quaternary salar and lacustrine settings Item Type text; Dissertation-Reproduction (electronic) Authors Orris, Greta Jean Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 19:39:43 Link to Item http://hdl.handle.net/10150/282560 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. HQgher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Ait)or MI 48106-1346 USA 313/761-4700 800/521-0600 i TWO METHODOLOGIES FOR ASSESSING BORON IN QUATERNARY SALAR AND LACUSTRINE SETTINGS by Greta Jean Orris A Dissertation Submitted to the Faculty of the DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN MINERAL ECONOMICS In the Graduate College THE UNIVERSITY OF ARIZONA 1997 DMI Number: 9817331 UMI Microform 9817331 Copyright 1998, by UMI Company. All rights reserved. This microfcrm edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 2 THE UNIVERSITY OF ARIZONA ® GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Gr^ta Jean Orris entitled Two methodologies for assessing boron in Quaternary salar and lacustrine settings and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of n^r^n^ of Philnsnphy Date j/m Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Dissertation Director Date 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interest of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: 4 ACKNOWLEDGMENTS There are many people who contributed to the accomplishment of this major goal. I wish to extend my gratitude to Dr. DeVerle P. Harris for his patience and support in seeing me through this study. As one of his students, I found a world beyond geology. I am also deeply indebted to Dr. Norman J Page for his unfailing support and the gift of time; his support was above and beyond the call of duty. A smiling thank you is offered to Dr. Michael Rieber for his extremely practical, no-nonsense advice and wonderful sense of humor. I am also grateful for Dr. Charles Glass for being there Thank you to the U.S. Geological Survey for supporting this project. I would also like to extend my appreciation to Jerry Aiken and Barry Watson of U.S. Borax; Jim Bliss, Keith Long, and Steve Ludington of the U.S. Geological Survey (USGS); Sigrid Asher-Bolinder, George Ericksen, Robert Learned, and Greg McKelvey, formerly with the USGS; Marcelo Claure Zapata, Eduardo Soria-Escalante and Rene Enriquez-Romero of Servicio Geologico de Bolivia; Oscar Ballivian and Mac Taylor. Without their help this project would not have been possible. 5 TABLE OF CONTENTS LIST OF HGURES 8 LIST OF TABLES 9 ABSTRACT 12 L INTRODUCTION 14 USGS AND ASSESSMENTS 14 HISTORICAL PERSPECTIVE OF MINERAL RESOURCE ASSESSMENT 16 CHOOSING AN APPROACH 23 II. LITERATURE REVIEW OF BORON GEOLOGY AND DEPOSITS 27 UNITED STATES 28 SOUTH AMERICA 31 Argentina and Chile 32 Bolivia 34 Peru and Ecuador 35 EUROPE AND THE MIDDLE EAST 36 Turkey 37 ASL\ 38 in. MINERAL ECONOMICS AND GENERAL GEOLOGY OF BORON 39 MINERAL ECONOMICS 39 Consumption 39 Production History 43 Current Production 47 Reserves 50 GENERAL GEOLOGY 51 6 TABLE OF CONTENTS - Continued Geochemistry 51 Distribution and Concentration of Boron 55 Boron in Water 57 Mineralogy 58 Types of Borate Deposits 65 Lacustrine Borates and Other Deposit Types Related to Volcanism 65 Marine Borate Deposits 71 Intrusion-Related Deposits 72 Other Deposits 73 Distribution of Deposits 73 IV. QUATERNARY LACUSTRINE-RELATED BORATE DEPOSITS 75 BASIC GEOLOGY 75 Lakes, Basins, and Salines 75 Formation of Borates 79 REGIONAL REQUIREMENTS 81 LOCAL FACTORS 85 QUATERNARY DEPOSITS 87 V. DATA AND ANALYSIS 89 DATA COLLECTION 89 EXPLORING BORATE CLASSIFICATION 92 Categorical Data for all Borate Deposits 94 Categorical Data for Quaternary Borate Deposits 100 QUANTIFIED ANALOGUES 102 Quantified Geology 102 Discriminant Analysis 107 Statistical Distribution of Contained Boron in Basins Known to be Mineralized 117 TABLE OF CONTENTS - Continued Regression Analysis 119 A Probability Model for Boron 124 VI. A PROCESS MODEL FOR BORON 134 REQUIREMENTS 134 MODEL FACTORS 139 Climate and Inflow 139 Volcanic Component 148 Factors Not Explicitly Considered 152 Determination of B Endowment 154 VIL DISCUSSION AND CONCLUSIONS 159 APPENDIX A: BORATE MINES AND MINERAL OCCURRENCES OF THE WORLD 164 APPENDIX B: CATEGORICAL CLASSIFICATION OF VARIABLES FOR BORATE DEPOSITS 191 Borate Minerals 192 Non-Borate Minerals 199 Lithology 206 APPENDIX C: ANALOGUE DATA SET 213 APPENDIX D: STEPWISE DISCRIMINANT ANALYSIS 220 APPENDIX E: PRECIPITATION/RUNOFF CALCULATIONS ... 234 REFERENCES 245 LIST OF FIGURES Figure 1. Outcrop area and environs of the borate-rich Sijes Formation 70 Figure 2. Sketch map of worl distribution of Cenozoic lacustrine and playa borate deposits relative to plate boundaries and arid areas 74 Figure 3. Geologic map of Coyote Lake drainage basin, California 93 Figure 4. Plot of the logs of the drainage areas vs. logs of the salar areas 106 Figure 5. Plot of drainage area vs. number of springs 107 Figure 6. Plots of logged areas of Quaternary and Tertiary volcanic rocks vs. logged drainage areas 108 Figure 7. Plots of logged Quaternary and Tertiary volcanic areas vs. number of springs 109 Figure 8. Distribution of contained boron in Quaternary basins 118 Figure 9. Probability distribution for boron in Koehn Lake basin 130 Figure 10. Probability distribution for boron in Salar de Coipasa basin 131 Figure 11. Probability distribution for boron in Laguna Ramaditas basin 132 Figure 12. Models of the atmospheric circulation at about 18,000 BP, 13,000 BP, and today 141 Figure 13. Hydraulic conductivity, K, distributions for a variety of lithologies 150 9 LIST OF FIGURES- Continued Figure 14. Distribution of B in volcanic rocks 153 Figure 15. Distribution of B in springs and rivers 155 LIST OF TABLES Table 1. Principal borate products 40 Table 2. World borate production by country 48 Table 3. World reserves in metric tons of B2O3 51 Table 4. Some properties of boron 52 Table 5. Average B content of different geologic environments ... 56 Table 6. Relative contributions of rock type to water chemistry.... 59 Table 7. Major and significant boron minerals 60 Table 8. Deposit types 66 Table 9. Variable names used in data analysis 90 Table 10. The percentage of the variance of each borate mineral that is explained by the four common factors 96 Table 11. Factor analysis of transformed borate minerals and features 97 Table 12. The percentage of the variance of each non-borate mineral that is explained by the single common factor 98 Table 13. The percentage of the variance of each lithology or related variable that is explained by the three common factors 99 Table 14. Factor analysis of transformed boron deposit lithologic variables 101 Table 15. Generalized geologic units used for analysis of analogue basins 103 Table 16. T-test statistics on the differences between lithologic unit means for B-mineralized basins (1) and nonmineralized basins (2) 104 LIST OF TABLES - Continued Table 17. Discriminant function coefficients (non-standardized). 112 Table 18. Discriminant function analysis summary statistics 113 Table 19. Discriminant classification functions 114 Table 20. Classification of four "unknown" basins by the previously calculated discriminant function 116 Table 21.
Recommended publications
  • Salt Lakes and Pans
    SCIENCE FOCUS: Salt Lakes and Pans Ancient Seas, Modern Images SeaWiFS image of the western United States. The features of interest that that will be discussed in this Science Focus! article are labeled on the large image on the next page. (Other features and landmarks are also labeled.) It should be no surprise to be informed that the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was designed to observe the oceans. Other articles in the Science Focus! series have discussed various oceanographic applications of SeaWiFS data. However, this article discusses geological features that indicate the presence of seas that existed in Earth's paleohistory which can be discerned in SeaWiFS imagery. SeaWiFS image of the western United States. Great Salt Lake and Lake Bonneville The Great Salt Lake is the remnant of ancient Lake Bonneville, which gave the Bonneville Salt Flats their name. Geologists estimate that Lake Bonneville existed between 23,000 and 12,000 years ago, during the last glacial period. Lake Bonneville's existence ended abruptly when the waters of the lake began to drain rapidly through Red Rock Pass in southern Idaho into the Snake River system (see "Lake Bonneville's Flood" link below). As the Earth's climate warmed and became drier, the remaining water in Lake Bonneville evaporated, leaving the highly saline waters of the Great Salt Lake. The reason for the high concentration of dissolved minerals in the Great Salt Lake is due to the fact that it is a "terminal basin" lake; water than enters the lake from streams and rivers can only leave by evaporation.
    [Show full text]
  • The Endemic Gastropod Fauna of Lake Titicaca: Correlation Between
    The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history Oliver Kroll1, Robert Hershler2, Christian Albrecht1, Edmundo M. Terrazas3, Roberto Apaza4, Carmen Fuentealba5, Christian Wolff1 & Thomas Wilke1 1Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Germany 2National Museum of Natural History, Smithsonian Institution, Washington, D.C. 3Facultad de Ciencias Biologicas, Universidad Nacional del Altiplano, Puno, Peru 4Instituto de Ecologıa,´ Universidad Mayor de San Andres, La Paz, Bolivia 5Departamento de Zoologia, Universidad de Concepcion, Chile Keywords Abstract Altiplano, Heleobia, molecular clock, phylogeography, species flock. Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had Correspondence a complex history that included at least five major hydrological phases during the Thomas Wilke, Department of Animal Ecology Pleistocene. It is generally assumed that these physical events helped shape the evo- and Systematics, Justus Liebig University lutionary history of the lake’s biota. Herein, we study an endemic species assemblage Giessen, Heinrich Buff Ring 26–32 (IFZ), 35392 in Lake Titicaca, composed of members of the microgastropod genus Heleobia,to Giessen, Germany. Tel: +49-641-99-35720; determine whether the lake has functioned as a reservoir of relic species or the site Fax: +49-641-99-35709; of local diversification, to evaluate congruence of the regional paleohydrology and E-mail: [email protected] the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses in- Received: 17 February 2012; Revised: 19 April dicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital 2012; Accepted: 23 April 2012 taxa) forms a species flock.
    [Show full text]
  • Línea Base De Conocimientos Sobre Los Recursos Hidrológicos E Hidrobiológicos En El Sistema TDPS Con Enfoque En La Cuenca Del Lago Titicaca ©Roberthofstede
    Línea base de conocimientos sobre los recursos hidrológicos e hidrobiológicos en el sistema TDPS con enfoque en la cuenca del Lago Titicaca ©RobertHofstede Oficina Regional para América del Sur La designación de entidades geográficas y la presentación del material en esta publicación no implican la expresión de ninguna opinión por parte de la UICN respecto a la condición jurídica de ningún país, territorio o área, o de sus autoridades, o referente a la delimitación de sus fronteras y límites. Los puntos de vista que se expresan en esta publicación no reflejan necesariamente los de la UICN. Publicado por: UICN, Quito, Ecuador IRD Institut de Recherche pour Le Développement. Derechos reservados: © 2014 Unión Internacional para la Conservación de la Naturaleza y de los Recursos Naturales. Se autoriza la reproducción de esta publicación con fines educativos y otros fines no comerciales sin permiso escrito previo de parte de quien detenta los derechos de autor con tal de que se mencione la fuente. Se prohíbe reproducir esta publicación para venderla o para otros fines comerciales sin permiso escrito previo de quien detenta los derechos de autor. Con el auspicio de: Con la colaboración de: UMSA – Universidad UMSS – Universidad Mayor de San André Mayor de San Simón, La Paz, Bolivia Cochabamba, Bolivia Citación: M. Pouilly; X. Lazzaro; D. Point; M. Aguirre (2014). Línea base de conocimientos sobre los recursos hidrológicos en el sistema TDPS con enfoque en la cuenca del Lago Titicaca. IRD - UICN, Quito, Ecuador. 320 pp. Revisión: Philippe Vauchel (IRD), Bernard Francou (IRD), Jorge Molina (UMSA), François Marie Gibon (IRD). Editores: UICN–Mario Aguirre; IRD–Marc Pouilly, Xavier Lazzaro & DavidPoint Portada: Robert Hosfstede Impresión: Talleres Gráficos PÉREZ , [email protected] Depósito Legal: nº 4‐1-196-14PO, La Paz, Bolivia ISBN: nº978‐99974-41-84-3 Disponible en: www.uicn.org/sur Recursos hidrológicos e hidrobiológicos del sistema TDPS Prólogo Trabajando por el Lago Más… El lago Titicaca es único en el mundo.
    [Show full text]
  • Phylogenomics of the Hyalella Amphipod Species-Flock of The
    www.nature.com/scientificreports OPEN Phylogenomics of the Hyalella amphipod species‑fock of the Andean Altiplano Francesco Zapelloni1,3, Joan Pons2,3, José A. Jurado‑Rivera1, Damià Jaume2 & Carlos Juan1,2* Species diversifcation in ancient lakes has enabled essential insights into evolutionary theory as they embody an evolutionary microcosm compared to continental terrestrial habitats. We have studied the high‑altitude amphipods of the Andes Altiplano using mitogenomic, nuclear ribosomal and single‑ copy nuclear gene sequences obtained from 36 Hyalella genomic libraries, focusing on species of the Lake Titicaca and other water bodies of the Altiplano northern plateau. Results show that early Miocene South American lineages have recently (late Pliocene or early Pleistocene) diversifed in the Andes with a striking morphological convergence among lineages. This pattern is consistent with the ecological opportunities (access to unoccupied resources, initial relaxed selection on ecologically‑ signifcant traits and low competition) ofered by the lacustrine habitats established after the Andean uplift. Lakes with an uninterrupted history of more than 100,000 years (ancient lakes) may be considered as natural laboratories for evolutionary research as they constitute hotspots of aquatic animal speciation and phenotypic diversity1. Changes in lake size and episodes of desiccation are considered to be critical factors in the speciation and extinction of lake faunas, with the creation of new habitats afer lake expansions as the primary driver of intra-lake diversifcation2–4. For instance, cichlid radiations in the East African Lakes seem to have been trig- gered by lake expansions afer periods of intense desiccation, with the surviving species flling up empty niches afer lake reflling2.
    [Show full text]
  • WIDER Working Paper 2021/18-Are We Measuring Natural Resource
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Lebdioui, Amir Working Paper Are we measuring natural resource wealth correctly? A reconceptualization of natural resource value in the era of climate change WIDER Working Paper, No. 2021/18 Provided in Cooperation with: United Nations University (UNU), World Institute for Development Economics Research (WIDER) Suggested Citation: Lebdioui, Amir (2021) : Are we measuring natural resource wealth correctly? A reconceptualization of natural resource value in the era of climate change, WIDER Working Paper, No. 2021/18, ISBN 978-92-9256-952-5, The United Nations University World Institute for Development Economics Research (UNU-WIDER), Helsinki, http://dx.doi.org/10.35188/UNU-WIDER/2021/952-5 This Version is available at: http://hdl.handle.net/10419/229419 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Lithium Extraction in Argentina: a Case Study on the Social and Environmental Impacts
    Lithium extraction in Argentina: a case study on the social and environmental impacts Pía Marchegiani, Jasmin Höglund Hellgren and Leandro Gómez. Executive summary The global demand for lithium has grown significantly over recent years and is expected to grow further due to its use in batteries for different products. Lithium is used in smaller electronic devices such as mobile phones and laptops but also for larger batteries found in electric vehicles and mobility vehicles. This growing demand has generated a series of policy responses in different countries in the southern cone triangle (Argentina, Bolivia and Chile), which together hold around 80 per cent of the world’s lithium salt brine reserves in their salt flats in the Puna area. Although Argentina has been extracting lithium since 1997, for a long time there was only one lithium-producing project in the country. In recent years, Argentina has experienced increased interest in lithium mining activities. In 2016, it was the most dynamic lithium producing country in the world, increasing production from 11 per cent to 16 per cent of the global market (Telam, 2017). There are now around 46 different projects of lithium extraction at different stages. However, little consideration has been given to the local impacts of lithium extraction considering human rights and the social and environmental sustainability of the projects. With this in mind, the current study seeks to contribute to an increased understanding of the potential and actual impacts of lithium extraction on local communities, providing insights from local perspectives to be considered in the wider discussion of sustainability, green technology and climate change.
    [Show full text]
  • El Salar De Uyuni
    El salar de Uyuni Fausto A. Balderrama F. Carrera de Ingeniería Metalúrgica y Ciencia de Materiales Universidad Técnica de Oruro [email protected] Resumen El Salar de Uyuni es la costra de sal más grande del mundo. Tiene una extensión aproximada de 10,000 km2. Esta costra de sal está formada básicamente por halita porosa llena de una salmuera intersticial rica en litio, potasio, boro y magnesio. Perforaciones realizadas en el Salar de Uyuni, indican que está formada por capas intercaladas de costras de sal porosas y de sedimentos lacustres. La perforación más profunda realizada hasta la fecha en el Salar de Uyuni es de 220.6 m. Aún no se conoce la profundidad total del Salar. En base a 40 perforaciones realizadas en la primera costra de sal, que tiene un espesor promedio de 4.7 m, se estimó una reserva de 8.9 millones de toneladas de litio y 194 millones de toneladas de potasio disueltos en la salmuera intersticial. A la fecha no se han realizado suficientes perforaciones en el resto de las costras salinas como para cuantificar las reservas totales en litio y potasio; sin embargo, se presume que son inmensas. Palabras clave: Salar de Uyuni, reservas, litio, potasio. The Uyuni salt lake Abstract The Uyuni salt lake is the biggest salt crust around the world. Its length is approximately 10,000 km2. This salt crust is formed of porous halite, filled of a interstitial brine rich in lithium, potassium, magnesium and boron. Perforations made in the Uyuni salt lake show that it’s formed by interstitial layers of porous halite filled of a brine rich in lithium, potassium, boron and magnesium.
    [Show full text]
  • Vegetation and Climate Change on the Bolivian Altiplano Between 108,000 and 18,000 Years Ago
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1-1-2005 Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago Alex Chepstow-Lusty Florida Institute of Technology, [email protected] Mark B. Bush Florida Institute of Technology Michael R. Frogley Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL Paul A. Baker Duke University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Chepstow-Lusty, Alex; Bush, Mark B.; Frogley, Michael R.; Baker, Paul A.; Fritz, Sherilyn C.; and Aronson, James, "Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago" (2005). Papers in the Earth and Atmospheric Sciences. 30. https://digitalcommons.unl.edu/geosciencefacpub/30 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Alex Chepstow-Lusty, Mark B. Bush, Michael R. Frogley, Paul A. Baker, Sherilyn C. Fritz, and James Aronson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/30 Published in Quaternary Research 63:1 (January 2005), pp.
    [Show full text]
  • Paleoclimate Reconstruction Along the Pole-Equator-Pole Transect of the Americas (PEP 1)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2000 Paleoclimate Reconstruction Along The Pole-Equator-Pole Transect of the Americas (PEP 1) Vera Markgraf Institute of Arctic and Alpine Research, University of Colorado. Boulder CO 80309-0450, USA T.R Baumgartner Scripps Oceanographic Institute, La Jolla CA 92093, USA J. P. Bradbury US Geological Survey, Denver Federal Center, MS 980, Denver CO 80225, USA H. F. Diaz National Oceanographic and Atmospheric Administration, Climate Diagnostic Center, 325 Broadway, Boulder CO 90303, USA R. B. Dunbar Department of Geological and Environmental Sciences, Stanford University, Stanford CA 94305-2115, USA See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Markgraf, Vera; Baumgartner, T.R; Bradbury, J. P.; Diaz, H. F.; Dunbar, R. B.; Luckman, B. H.; Seltzer, G. O.; Swetnam, T. W.; and Villalba, R., "Paleoclimate Reconstruction Along The Pole-Equator-Pole Transect of the Americas (PEP 1)" (2000). USGS Staff -- Published Research. 249. https://digitalcommons.unl.edu/usgsstaffpub/249 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Vera Markgraf, T.R Baumgartner, J. P. Bradbury, H. F. Diaz, R. B. Dunbar, B. H. Luckman, G. O. Seltzer, T. W. Swetnam, and R. Villalba This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usgsstaffpub/249 Quaternary Science Reviews 19 (2000) 125}140 Paleoclimate reconstruction along the Pole}Equator}Pole transect of the Americas (PEP 1) Vera Markgraf!,*, T.R Baumgartner", J.
    [Show full text]
  • 12 Days Atacama & Bolivia
    12 Days Atacama & Bolivia: Across the Andes Travel date 27 Mar to 10 Apr 2020 TOUR INFORMATION ATACAMA & BOLIVIA INTRODUCTION The Andes stretches along the South American continent from north to south, forming different faces of spectacular landscapes. Start the journey from the northwestern part of Argentina, soak up the Spanish colonial history. Admire the famous Hills of Seven Colours and the quaint traditional villages. Continue to the world’s driest desert in Chile, housing the Atacama salt flat, volcanoes, lagoons, hot springs, geysers and rolling sand dunes. The otherworldly Uyuni Salt Lake in Bolivia, the largest on Earth comprising miles and miles of dazzling white nothingness, has been selected as one of the wonders of the world. Active volcanoes, hot springs and a palette of color-splashed lakes populated by hardy flamingos punctuate these landscapes of blindingly bright salt plains. End your trip at La Paz, also commonly referred to as “Tibet of the Andes”, a unique “bowled setting” on the Andean Plateau at 4,000m above sea level. SPECIALS • Smooth arrangement of transfers from Argentina to Chile to Bolivia; • Visit the highest vineyard in the world in Uraqui; • Stargazing with professional astronomer, Mr Alain Maury, for a private astronomic excursion; • Exclusive excursion in Atacama with private guide for Scott Dunn guests; • Nicely arranged picnic lunch on salt flats; • Guarantee Deluxe Room at Lunsa Salada Salt Hotel in Uyuni; • Visit the Larco Museum in Peru, the 18th Century Viceroy’s mansion; • All meals included beverages;
    [Show full text]
  • Lithium and Bolivia: the Rp Omise and the Problems Bruce Bagley, Ph.D
    Florida International University FIU Digital Commons Western Hemisphere Security Analysis Center 6-1-2010 Lithium and Bolivia: The rP omise and the Problems Bruce Bagley, Ph.D. Professor International Studies, University of Miami Olga Nazario, Ph.D. Senior Research Scientist, Applied Research Center, Florida International University Follow this and additional works at: http://digitalcommons.fiu.edu/whemsac Recommended Citation Bagley, Ph.D., Bruce and Nazario, Ph.D., Olga, "Lithium and Bolivia: The rP omise and the Problems" (2010). Western Hemisphere Security Analysis Center. Paper 53. http://digitalcommons.fiu.edu/whemsac/53 This work is brought to you for free and open access by FIU Digital Commons. It has been accepted for inclusion in Western Hemisphere Security Analysis Center by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Lithium and Bolivia: The Promise and the Problems Bruce Bagley, Ph.D. Professor International Studies University of Miami Olga Nazario, Ph.D. Senior Research Scientist Applied Research Center Florida International University June 2010 Lithium and Bolivia: The Promise and the Problems Bruce Bagley, Ph.D. Professor International Studies University of Miami Olga Nazario, Ph.D. Senior Research Scientist Applied Research Center Florida International University June 2010 The views expressed in this research paper are those of the author and do not necessarily reflect the official policy or position of the US Government, Department of Defense, US Southern Command or Florida International University. EXECUTIVE SUMMARY1 Lithium‟s potential as a key ingredient in the new generation of electric car batteries has raised international interest. It is the lightest metal on the planet and used in most electronic equipments and advance batteries.
    [Show full text]
  • Lake Titicaca
    III. PALEOHYDROLOGY IIL1. A 20,000 years paleohydrological record from Lake Titicaca DENIS WIRRMANN, JEAN-PIERRE YBERT and PHILIPPE MOURGUIART The Bolivian Altiplano is an endorheic basin which extends from 16° to 20° S. Lat. and from 65° to 69°W. Long., with altitudes ranging from 3700 to 4600 metres, covering 200,000 km2 between the Western and Eastern Cordilleras which are 6500 m high (Fig. 1). From north to south, three major lacustrine areas occupy this high plateau: 2 - Lake Titicaca at 3809 metres above sea level, covering 8562 km ; 2 - Lake Poopo at 3686 m.a.s.l. covering 2530 km ; - Coipasa-Uyuni, a group of dry salt lakes, covering 11 ,000 km2 at 3653 m.a.s.l. Over the last 1.8 million years these basins have registered episodes of greatly enlarged lake areas. According to Lavenu et al. (1984) and to Servant and Fontes (1978, 1984), the Pleistocene record of Titicaca lake level fluctu­ ations can be summarised as follows: - during the Early Pleistocene the paleolake Mataro rose with a water level established at 140 metres above the present level. This stage is related to the end of the Calvario glaciation (Servant, 1977) and the corresponding deposits are recognisable mainly at the NW edge of the basin; - the paleolake Cabana occurred during the middle Pleistocene with a water level established at 90 metres above the present Lake Titicaca level: the associated sediments are present on the eastern and western shores of the basin; - then with the retreat of the Sorata glaciation (Servant, 1977) the Ballivian stage occurred with
    [Show full text]