Interaction Diagrams I Lecture # 4

Total Page:16

File Type:pdf, Size:1020Kb

Interaction Diagrams I Lecture # 4 Interaction Diagrams I Lecture # 4 Department of Computer Science and Technology University of Bedfordshire Written by David Goodwin, based on the book Applying UML and Patterns (3rd ed.) by C. Larman (2005). Modelling and Simulation, 2012 Interaction Outline Diagrams I Interaction Diagrams Interaction Diagrams Communication Diagrams information space stereotypes Communication Diagrams Example #1 Traceability information space Procedure stereotypes Example #2 Example #1 Traceability Procedure Example #2 Interaction Diagrams I Interaction Diagrams Communication Diagrams information space stereotypes Interaction Diagrams Example #1 Traceability Procedure Example #2 Interaction Interaction Diagrams Diagrams I Interaction Diagrams I Interaction diagrams illustrate how objects interact via Communication messages. Diagrams information space I Used for dynamic object modeling. stereotypes Example #1 I Two common types: Traceability I Communication Diagrams Procedure Example #2 I illustrate object interactions in a graph or network format; objects can be placed anywhere on the diagram. I Sequence Diagrams I illustrate object interactions in a \fence" format; each new object is added to the right of the diagram. Interaction Interaction Diagrams Diagrams I Interaction Diagrams Communication I The act of dynamic interaction modeling is incredibly Diagrams valuable. information space stereotypes I Spend time doing dynamic object modeling with Example #1 interaction diagrams, not just static object modeling Traceability Procedure with class digrams. Example #2 I need to think of I What messages to send? I Messages to whom? I Messages in what order? Interaction Notation - Lifeline Boxes Diagrams I Interaction I Lifeline boxes represent the participants in the Diagrams interaction Communication Diagrams I Participants are often instances of a class information space stereotypes I Below left; lifeline box representing an unnamed Example #1 instance of the class \Sale". Traceability Procedure I Below right; lifeline box representing a named instance Example #2 of the class \Sale". Interaction Diagrams I Interaction Diagrams Communication Diagrams information space Communication stereotypes Example #1 Traceability Diagrams Procedure Example #2 Interaction Communication Diagrams Diagrams I I Information space I what information a system holds, which describes the Interaction system's internal states Diagrams I what behaviour a system will adopt, which determines Communication the state transition Diagrams information space I what a system presents to the outside world stereotypes Example #1 I an object in an information space can play one of three Traceability different roles, that is, holding information, changing Procedure states, and interfacing Example #2 Interaction Stereotypes Diagrams I Interaction Diagrams I An `Analysis Class' represents an abstraction of one or Communication more classes and/or subsystems (Use Cases) in the Diagrams information space systems design. stereotypes I Typically you use two modelling techniques, Example #1 communication and sequence diagrams to model Traceability Procedure analysis classes. Example #2 I An analysis class can define attributes (if needed). I An analysis class will include associations. I An analysis class will consume operations. I There are three stereotype classes (boundary, control & entity). Interaction semantics Diagrams I Interaction Diagrams Communication Diagrams I Semantics information space I Entity object models information. It holds information stereotypes and some operations that naturally related to the Example #1 Traceability information. Procedure I Boundary/interface object models input and output Example #2 information and operations that process the information. I Control object models functionality/operations that process information from several different entity objects. Interaction pragmatics Diagrams I Interaction Diagrams Communication I Pragmatics Diagrams information space I Identifying interface objects - functions directly related stereotypes to actors. Example #1 I Identifying entity objects - information used in a Use Traceability Case and functions of processing information Procedure Example #2 I Identifying control object - functions that unite interface objects and entity objects I (Carry out the identifications for EVERY use case defined) Interaction boundary classes Diagrams I I This is a class used to model the interaction between the system and its actors. Interaction I The interaction often involves inputs and outputs. Diagrams Communication I They clarify and collect information regarding the Diagrams systems' boundary (user interface) information space stereotypes I Boundary classes represent abstractions of windows, or Example #1 Traceability other communication interfaces etc. (the computer Procedure system). Example #2 I Each boundary class should be related to at least one actor and vice versa. Interaction entity classes Diagrams I I An entity class is used to model persistent data (information) AND business logic. Interaction Diagrams I An entity class is usually not passive. Communication I An entity `object' can show changes in Diagrams information space data(information). stereotypes Example #1 I Entity classes often show a logical data structure ready Traceability for design. Procedure Example #2 I Entity classes also show what data(information) the system is dependent upon. Interaction control classes Diagrams I I Control classes represent coordination, sequencing, Interaction Diagrams transactions and control of other objects. Communication Diagrams I The dynamics of the system are modelled by control information space classes. stereotypes Example #1 I Typically they coordinate the movement (parameters) Traceability Procedure between boundary and entity classes. Example #2 Interaction Identifying Analysis Classes Diagrams I Interaction Diagrams Communication I Examine the models of a Use Case and identify (for a Diagrams communication diagram): information space stereotypes I entity classes by examining the data(information) Example #1 storage requirements of the Use Case. Traceability Procedure I one central boundary class for each actor. (primary Example #2 window). I one control class responsible for handling the control of the Use Case (and introduce further control classes as necessary, for example UI handling). Interaction `Architecture' of a Communication Diagrams I Diagram Interaction Diagrams Communication Diagrams information space stereotypes Example #1 Traceability Procedure Example #2 Interaction Return Item Use Case in recycling Diagrams I machine - example Interaction Diagrams Communication Diagrams Identification of boundary, control and entity information space I stereotypes stereotypes are often tangled together Example #1 Traceability I We normally start from the refinement of the Use Case Procedure diagram. Example #2 I Then we identify objects. I At the \same time", we organise and identify relationship. Interaction Identify boundary/interface objects Diagrams I I Identify boundary/interface objects from linguistic Interaction Diagrams description: looking for key words Communication Diagrams \When a customer returns a deposit item, it is measured by information space the system. The measurements are used to determine what stereotypes Example #1 kind of can, bottle or crate has been returned. If acceptable, Traceability the total number of items of this type returned by the Procedure Example #2 customer increments. If not, the light for \Not Valid" is highlighted on customer panel. When the customer presses the receipt button, the printer prints the date. The total number of items he returned and the lump sum is calculated. The following is printed out: customer number, number returned, deposit value, total of this type and lump sum" Interaction Boundary objects Diagrams I Interaction Diagrams Communication Diagrams information space stereotypes Example #1 Traceability Procedure Example #2 Interaction Identify entity objects Diagrams I Interaction Diagrams Communication I Identify entity objects from linguistic description Diagrams information space I long term information (for all customer): stereotypes I deposit values of bottle, can and crate Example #1 Traceability I short term information (for each individual customer): Procedure I the total number of items of each type returned by the Example #2 customer, I the total number of items he returned and the lump sum that should be paid to him, I date Interaction Entity objects Diagrams I Interaction Diagrams Communication Diagrams information space stereotypes Example #1 Traceability Procedure Example #2 Interaction Identify control objects Diagrams I Interaction Diagrams Communication Diagrams I Identify control objects from linguistic description information space I There are entity and boundary objects in this use case. stereotypes Example #1 I Items coming from customer panel need to be Traceability measured and decision on whether passing the Procedure information and passing what information needs to be Example #2 made according the measurement. I Decision on whether print out information also needs to be made. Interaction Return Item Use Case in recycling Diagrams I machine - example Interaction Diagrams \When a customer returns a deposit item, it is measured by Communication Diagrams the system. The measurements are used to determine what information space kind of can, bottle or crate has been returned. If acceptable, stereotypes Example #1 the total number of
Recommended publications
  • Customizing UML with Stereotypes
    Customizing UML with Stereotypes Mirosáaw StaroĔ ii iii Blekinge Institute of Technology Dissertation Series No 2003:06 ISSN 1650-2140 ISBN 91-7295-028-5 Customizing UML with Stereotypes Mirosáaw StaroĔ Department of Software Engineering and Computer Science Blekinge Institute of Technology Sweden iv BLEKINGE INSTITUTE OF TECHNOLOGY Blekinge Institute of Technology, situated on the southeast coast of Sweden, started in 1989 and in 1999 gained the right to run Ph.D programmes in technology. Research programmes have been started in the following areas: • Applied signal processing • Computer science • Computer systems technology • Design and digital media • Human work science with a special focus on IT • IT and gender research • Mechanical engineering • Software engineering • Spatial planning • Telecommunication systems Research studies are carried out in all faculties and about a third of the annual budget is dedicated to research. Blekinge Institute of Technology S-371 79 Karlskrona, Sweden http://www.bth.se v Jacket illustration: © 2003 GillWorth gallery, www.gillworthreptiles.co.uk Publisher: Blekinge Institute of Technology Printed by Kaserntryckeriet, Karlskrona, Sweden 2003 ISBN 91-7295-028-5 vi Abstract The Unified Modeling Language (UML) is a visual modeling language for documenting and specifying software. It is gaining popularity as a language for a variety of purposes. It was designed as a result of a unifying activity in the last decade. Since this general purpose language cannot suit all possible needs, it has built-in mechanisms for providing extensibility for specific purposes. One such mechanism is the notion of stereotype, which is a means of branding the existing model element with a new semantics.
    [Show full text]
  • OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
    OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group.
    [Show full text]
  • A Model-Driven Engineering Approach to Support the Verification of Compliance to Safety Standards
    A Model-Driven Engineering Approach to Support the Verification of Compliance to Safety Standards Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel Briand Simula Research Laboratory, Lysaker, Norway University of Oslo, Norway Email: {rpanesar,mehrdad,briand}@simula.no Abstract—Certification of safety-critical systems according to system development. This means that they will have to well-recognised standards is the norm in many industries where reconstruct the missing evidence after the fact. Doing so the failure of such systems can harm people or the environment. is often very expensive, and the outcomes might be far Certification bodies examine such systems, based on evidence that the system suppliers provide, to ensure that the relevant from satisfactory. On the certifier side, poorly structured and safety risks have been sufficiently mitigated. The evidence is incomplete evidence often leads to significant delays and aimed at satisfying the requirements of the standards used loss of productivity, and further may not allow the certifier for certification, and naturally a key prerequisite for effective to develop enough trust in the system that needs to be collection of evidence is that the supplier be aware of these certified. It is therefore very important to devise a systematic requirements and the evidence they require. This often proves to be a very challenging task because of the sheer size of the methodology, which is amenable to effective automated standards and the fact that the textual standards are amenable support, to specify, manage, and analyze the safety evidence to subjective interpretation. In this paper, we propose an ap- used to demonstrate compliance to standards.
    [Show full text]
  • UML Notation Guide 3
    UML Notation Guide 3 This guide describes the notation for the visual representation of the Unified Modeling Language (UML). This notation document contains brief summaries of the semantics of UML constructs, but the UML Semantics chapter must be consulted for full details. Contents This chapter contains the following topics. Topic Page “Part 1 - Background” “Introduction” 3-5 Part 2 - Diagram Elements “Graphs and Their Contents” 3-6 “Drawing Paths” 3-7 “Invisible Hyperlinks and the Role of Tools” 3-7 “Background Information” 3-8 “String” 3-8 “Name” 3-9 “Label” 3-10 “Keywords” 3-11 “Expression” 3-11 “Type-Instance Correspondence” 3-14 Part 3 - Model Management March 2003 OMG-Unified Modeling Language, v1.5 3-1 3 UML Notation Guide Topic Page “Package” 3-16 “Subsystem” 3-19 “Model” 3-24 Part 4 - General Extension Mechanisms “Constraint and Comment” 3-26 “Element Properties” 3-29 “Stereotypes” 3-31 Part 5 - Static Structure Diagrams “Class Diagram” 3-34 “Object Diagram” 3-35 “Classifier” 3-35 “Class” 3-35 “Name Compartment” 3-38 “List Compartment” 3-38 “Attribute” 3-41 “Operation” 3-44 “Nested Class Declarations” 3-48 “Type and Implementation Class” 3-49 “Interfaces” 3-50 “Parameterized Class (Template)” 3-52 “Bound Element” 3-54 “Utility” 3-56 “Metaclass” 3-57 “Enumeration” 3-57 “Stereotype Declaration” 3-57 “Powertype” 3-61 “Class Pathnames” 3-61 “Accessing or Importing a Package” 3-62 “Object” 3-64 “Composite Object” 3-67 “Association” 3-68 “Binary Association” 3-68 3-2 OMG-Unified Modeling Language, v1.5 March 2003 3 UML Notation Guide
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • UML 2001: a Standardization Odyssey
    UML 2001: A Standardization Odyssey As the UML reaches the ripe age of four, both its proponents and its critics are scanning the recent changes in the UML 1.3 revision. CRIS KOBRYN In a relatively short period of time the Unified Modeling Language has emerged as the software industry’s dominant modeling language. UML is not only a de facto modeling language standard; it is fast becoming a de jure standard. Nearly two years ago the Object Management Group (OMG) adopted UML as its standard modeling language. As an approved Publicly Available Specification (PAS) submitter to the International Organization for Standardization (ISO), the OMG is proposing the UML specification for international timescales of standards usually conflict with the standardization. It is anticipated that the “fast competitive need to use the latest technology as track” PAS process will complete sometime next early as possible. From a technical perspective, the year, at which time UML will be formally recog- need to achieve consensus encourages “design by nized as an international standard for information committee” processes. In this sort of environment, technology. sound technical tradeoffs are often overridden by The major benefits of international standardiza- inferior political compromises. Too frequently the tion for a specification include wide recognition and resulting specifications become bloated with patches acceptance, which typically enlarge the market for in a manner similar to the way laws become fattened products based on it. However, these benefits often with riders in “pork belly” legislation. demand a high price. Standardization processes are This article explores how the UML is faring in typically formal and protracted, seeking to accom- the international standardization process.
    [Show full text]
  • Plantuml Language Reference Guide
    Drawing UML with PlantUML Language Reference Guide (Version 5737) PlantUML is an Open Source project that allows to quickly write: • Sequence diagram, • Usecase diagram, • Class diagram, • Activity diagram, • Component diagram, • State diagram, • Object diagram. Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples Every UML description must start by @startuml and must finish by @enduml. The sequence ”->” is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use ”-->”. It is also possible to use ”<-” and ”<--”. That does not change the drawing, but may improve readability. Example: @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: another authentication Response @enduml To use asynchronous message, you can use ”->>” or ”<<-”. @startuml Alice -> Bob: synchronous call Alice ->> Bob: asynchronous call @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 1 of 96 1.2 Declaring participant 1 SEQUENCE DIAGRAM 1.2 Declaring participant It is possible to change participant order using the participant keyword. It is also possible to use the actor keyword to use a stickman instead of a box for the participant. You can rename a participant using the as keyword. You can also change the background color of actor or participant, using html code or color name. Everything that starts with simple quote ' is a comment. @startuml actor Bob #red ' The only difference between actor and participant is the drawing participant Alice participant "I have a really\nlong name" as L #99FF99 Alice->Bob: Authentication Request Bob->Alice: Authentication Response Bob->L: Log transaction @enduml PlantUML : Language Reference Guide, December 11, 2010 (Version 5737) 2 of 96 1.3 Use non-letters in participants 1 SEQUENCE DIAGRAM 1.3 Use non-letters in participants You can use quotes to define participants.
    [Show full text]
  • On UML's Composite Structure Diagram
    On UML's Composite Structure Diagram Ian Oliver, Vesa Luukkala Nokia Research Center Helsinki, Finland fian.oliver,[email protected] Abstract. The composite structure diagram and related notions have been introduced into UML2.0 to supplement already existing artifacts such as classes. However the usage of these constructs by engineers and/or modellers is not always in the spirit of inventors of these con- structs. A number of additional interpretations develop which are not always consistent with the intended usage of the structure nor with the language itself. Understanding these additional usages assists in under- standing areas of ambiguity, extension, inconsistency and the future de- velopment of the language. 1 Introduction The composite structure diagram's and related structures' uses and semantics are well described in [1{3] while the notions of composition are adequately de- scribed in [4, 5]. Its function is to extend the modelling capabilities of the UML beyond that of classes and their relationships and is primarily aimed to assist the modelling of the internal structures of classes with a more well defined notion of decomposition. Similar notions exist in methods such as ROOM [6] (capsules) and languages such as SDL [7] and SysML [8] for example. As tools become more UML compliant and support more UML constructs, en- gineers and/or modellers start to use these additional constructs. The effect of this is that the semantics of these constructs is often learnt through an implicit process based around the name of the construct and what the tool appears to allow; the semantics are often based on the engineer's expectations and per- ceived meaning [9] rather than on the actual, intended semantics.
    [Show full text]
  • Quantitative Safety Analysis of UML Models
    University of Konstanz Department of Computer and Information Science Master Thesis for the degree Master of Science (M.Sc.) in Information Engineering Quantitative Safety Analysis of UML Models by Florian Leitner-Fischer (Matr.-Nr. 01 / 612538) 1st Referee: Prof. Dr. Stefan Leue 2nd Referee: Prof. Dr. Marc H. Scholl Konstanz, August 2, 2010 2 3 Abstract When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Another obstacle is, that the methods often require a profound knowledge of formal methods, which can rarely be found in industrial practice. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. We propose a UML profile that allows for the specification of all inputs needed for the analysis at the level of a UML model. The QuantUM tool which we have developed, automatically translates an UML model into an analysis model. Furthermore, the results gained from the analysis are lifted to the level of the UML specification or other high-level formalism to further facilitate the process. Thus the analysis model and the formal methods used during the analysis are hidden from the user.
    [Show full text]
  • UML Diagrams
    mywbut.com UML Diagrams Overview UML was designed to be the distillation of best practices in software development. To accomplish this ambitious goal, UML provides an extensive set of diagramming tools. Because UML is such a big subject and the diagramming tools are so diverse I thought it would be helpful to give you an overview of the diagrams themselves. This chapter presents some samples of each diagram with a brief introduction describing the purpose and benefits of each diagram. As a kind of roadmap I'll use the UML groupings that divide the diagrams into packages based on their roles in the Model Management, Structural, and Behavioral aspects of system design. Model Management diagrams include Packages, which are used to represent Subsystems, Models, and more. Structural diagrams include the Class diagram, Object diagram, Composite Structure diagram, Component diagram, Deployment diagram, and the Combined Component and Deployment diagram. Behavioral diagrams include the Use Case diagram, Activity diagram, Interaction diagrams, State Machine diagram, and Protocol State Machine diagram. UML Diagrams and Work Products Each diagram reveals a unique yet overlapping view of a system. That sounds a bit strange. How can a diagram be unique yet overlap other diagrams? The uniqueness comes from the different perspective taken by each diagram. The overlap comes from the fact that all of the diagrams are looking at the same problem. The big question that usually crops up about now is, "Why do I have to use all these diagrams? Joe and Susan have always just drawn Class diagrams." This question is valid. For small, simple projects you may not need to create all these diagrams.
    [Show full text]
  • Using UML for Modeling Complex Real-Time Systems
    Using UML for Modeling Complex Real-Time Systems Bran Selic, ObjecTime Limited Jim Rumbaugh, Rational Software Corporation March 11, 1998 Abstract The embedded real-time software systems encountered in applications such as telecommunications, aerospace, and defense typically tend to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but even more importantly, readily accommodates changes forced by a steady stream of new requirements. In this paper, we describe a set of constructs that facilitate the design of software architectures in this domain. The constructs, derived from field-proven concepts originally defined in the ROOM modeling language, are specified using the Unified Modeling Language (UML) standard. In particular, we show how these architectural constructs can be derived from more general UML modeling concepts by using the powerful extensibility mechanisms of UML. 1 04/08/98 1. Introduction We apply the Unified Modeling Language (UML [2], [3]) to describe a set of constructs suitable for modeling an important category of real-time software systems. They are derived from the set of concepts initially defined in the ROOM modeling language [1]. 1.1 The Application Domain The one common feature of all real-time software systems is timeliness; that is, the requirement to respond correctly to inputs within acceptable time intervals. However, this ostensibly simple property characterizes a vast spectrum of very different types of systems ranging from purely time-driven to purely event-driven systems, from soft real-time systems to hard real-time systems, and so on.
    [Show full text]
  • Case No COMP/M.4747 Œ IBM / TELELOGIC REGULATION (EC)
    EN This text is made available for information purposes only. A summary of this decision is published in all Community languages in the Official Journal of the European Union. Case No COMP/M.4747 – IBM / TELELOGIC Only the English text is authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 8(1) Date: 05/03/2008 Brussels, 05/03/2008 C(2008) 823 final PUBLIC VERSION COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) (Only the English text is authentic) (Text with EEA relevance) THE COMMISSION OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Community, Having regard to the Agreement on the European Economic Area, and in particular Article 57 thereof, Having regard to Council Regulation (EC) No 139/2004 of 20 January 2004 on the control of concentrations between undertakings1, and in particular Article 8(1) thereof, Having regard to the Commission's decision of 3 October 2007 to initiate proceedings in this case, After consulting the Advisory Committee on Concentrations2, Having regard to the final report of the Hearing Officer in this case3, Whereas: 1 OJ L 24, 29.1.2004, p. 1 2 OJ C ...,...200. , p.... 3 OJ C ...,...200. , p.... 2 I. INTRODUCTION 1. On 29 August 2007, the Commission received a notification of a proposed concentration pursuant to Article 4 and following a referral pursuant to Article 4(5) of Council Regulation (EC) No 139/2004 ("the Merger Regulation") by which the undertaking International Business Machines Corporation ("IBM", USA) acquires within the meaning of Article 3(1)(b) of the Council Regulation control of the whole of the undertaking Telelogic AB ("Telelogic", Sweden) by way of a public bid which was announced on 11 June 2007.
    [Show full text]