Lamb Cornellgrad 0058F 10338.Pdf (6.642Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Lamb Cornellgrad 0058F 10338.Pdf (6.642Mb) SELECTIVE TRANSFORMATIONS OF EPOXIDES USING BIMETALLIC CATALYSTS: CATALYST DEVELOPMENT, METHODOLOGY, AND MECHANISTIC STUDIES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Jessica Rachel Lamb August 2017 © 2017 Jessica Rachel Lamb SELECTIVE TRANSFORMATIONS OF EPOXIDES USING BIMETALLIC CATALYSTS: CATALYST DEVELOPMENT, METHODOLOGY, AND MECHANISTIC STUDIES Jessica Rachel Lamb, Ph.D. Cornell University 2017 Epoxides are versatile building blocks in organic chemistry due to their inherent reactivity and synthetic availability. One particularly interesting reaction is the carbonylation of epoxides to β-lactones. β-Lactones are themselves high-value intermediates for natural-product and aliphatic-polyester synthesis. Bimetallic [Lewis + − acid] [Co(CO)4] catalysts allow for the mild and economical synthesis of β-lactones from epoxides and the inexpensive feedstock carbon monoxide. The modular salen ligand is a common framework for the Lewis acid portion of these catalysts and recent extensive tuning of the ligand sterics has improved the regio- and enantioselectivity for the carbonylation of 2,3-disubstituted epoxides. Herein, we report further development and application of these bimetallic catalysts to a variety of reactions. First, electronic variations are studied for the enantioselective carbonylation of meso- and racemic cis-epoxides. Enantioselectivity was improved for every substrate, resulting in some of the highest levels of enantioenrichment for epoxide carbonylation. We then applied the knowledge gained from previous catalyst development to design a new ligand for the contrasteric carbonylation of isobutylene oxide to the important polyester monomer pivalolactone. This catalyst is the first to give pivalolactone as the major product of an epoxide carbonylation reaction, representing a major advance in the field. Next, we applied previously developed bimetallic catalysts to the isomerization of epoxides to ketones. A wide array of monosubstituted epoxides were rearranged to methyl ketones under mild conditions and low catalyst loadings. We further expanded this methodology to the regioselective isomerization of trans-epoxides. This method displayed high and complementary selectivities to the Wacker oxidation of internal olefins. The mechanism of this reaction was thoroughly studied and additional catalyst tuning allowed for the first kinetic resolution of benzyl-substituted trans-epoxides with synthetically useful selectivity factors. Finally, related [Lewis acid][Mn(CO)5] catalysts were developed and applied to the deoxygenation of epoxides to alkenes using carbon monoxide as the terminal reductant. This is a rare example of a catalytic system that proceeds with clean inversion of stereochemistry for cis- and trans-epoxides, highlighting the potential for stereospecific alkene inversion through a two-step epoxidation-deoxygenation. Collectively, these studies demonstrate the utility of these catalysts for a range of selective epoxide transformations. BIOGRAPHICAL SKETCH Jessica Lamb was born in Madison, WI and grew up in Fargo, ND. She attributes her love of science to teachers in middle and high school who inspired her and helped her test out of sophomore general chemistry, starting her love affair with the central science. Upon graduating from South High School in 2008, she attended the University of North Dakota as a chemistry major with minors in mathematics and Spanish. After one semester of inorganic chemistry research, she found her home in organic and organometallic chemistry in the lab of Prof. Irina Smoliakova, where she worked on the synthesis of cyclopalladated complexes on silica gel for her senior honors thesis. She also did two summers of research in the coatings and polymeric materials lab of Prof. Victoria Johnston-Gelling. This background in organic and polymer chemistry drew her to the research of Prof. Geoffrey Coates. After graduating summa cum laude with a B.S. in chemistry as a scholar in the Honors Program in 2012, she moved to Cornell University and joined the Coates group for her graduate career. As an NSF graduate research fellow, she worked on selective reactions of epoxides using [Lewis acid][nucleophilic anion] catalysts. Outside of lab, she joined the ballroom dance team, engaged in science outreach, and tried to keep up with her unreasonable number of hobbies, including crafting, music, reading, and photography. Upon completing her Ph.D. in 2017, she will begin her professional career as a postdoctoral researcher in the lab of Jeremiah Johnson at M.I.T. iii ACKNOWLEDGMENTS First and foremost, I have to thank my advisor, Prof. Geoff Coates, for supporting me during the last five years. He is an endless fountain of new ideas and he has inspired me to become a better scientist and mentor. I learned so much about how to ask the right questions, how to troubleshoot difficult reactions (run it neat and heat it up!), and how to optimize white space in a figure. I wouldn’t be the chemist I am today if it wasn’t for all of your guidance and advice. The Coates group is a special place to do research and it wouldn’t be possible without you. Next, I have to thank Prof. William Dichtel and Prof. Chad Lewis for serving on my A exam committee and Prof. Brett Fors and Prof. Song Lin for stepping up and serving on my B exam committee. I have been fortunate to have not two, but four amazing chemists available for discussions and answering my unending questions. I am grateful for the opportunity to know and have learned from you all. Thank you to all of the previous members of the Coates group who have contributed to the great group culture of excellent science and comradery, especially to the carbonylation subgroup; I feel like I know you all even if we haven’t met. Furthermore, thank you to all of the members of 572 during my tenure. Special shout out to Michael Mulzer for laying the ground work for all of my projects; teaching me how to make catalysts, run columns, and set up carbonylations; bequeathing me countless ligands, catalysts, and epoxides; helping me write my first Coates group paper; answering all of my questions; and generally being an awesome inspiration. If I have had any success in graduate school, it is from standing on your giant shoulders. Chad Ellis taught me how to cannula transfer and crystallize things. Brandon Tiegs taught me about the glovebox and so much more during our two years as the sole (permanent) inhabitants of 572. I have also had the pleasure to work with Zachary Nelson, Veronika iv Kottisch, Xiaopeng Yu, Michelle Lee, and Aran Hubbell. You have all made coming to work more enjoyable and you have made me a better mentor, colleague, and friend. I am fortunate to have gone through this amazing adventure with the other fifth years in the Coates group: Kyle O’Connor, Qi Zheng, and Dave Vaccarello. You have all provided emotional support, especially during this last crazy year! We are almost done! Thank you to all of the other members of the Coates group with whom I have overlapped during my five years! Everyone has always been open for great discussions or a trip to the Dairy bar. I will forever look back at my time in this group with fond memories because of all the wonderful people I met here. Special thanks to Anne LaPointe and Kelly Case for keeping the Coates group running! We wouldn’t be able to do anything without the two of you. Other people in the chemistry department I have to thank are Sam MacMillan for helping me get my first crystal structure, Anthony Condo for helping me with GCMS and DART, and especially Ivan Keresztes for all of the NMR help and discussions on the “beast” that is the mechanism paper, which is unfortunately (or fortunately?) not included herein. Of course, I must also thank the National Science Foundation for a graduate research fellowship and the Department of Energy for supporting my research. Outside of lab, I need to thank the members of the Cornell DanceSport Team and Expanding Your Horizons, particularly Maria Carrizales and Lilli Morris; it was a great honor to serve as your Finance Chair. The ballroom team and EYH will always have a special place in my heart as the non-lab things that kept me sane. Finally, I need to thank all of my friends and family who have stood by me and supported me throughout graduate school and my whole life. There are too many to list, but I would be nothing without you. You have all dealt with my crazy, Dan more than most, and I will be forever grateful for the shoulders to lean on, encouraging words, and funny distractions that have helped me through this journey. v TABLE OF CONTENTS BIOGRAPHICAL SKETCH iii ACKNOWLEDGMENTS iv LIST OF FIGURES x LIST OF SCHEMES xiii LIST OF TABLES xv CHAPTER 1: Overview of Properties and Reactions of Epoxides 1 1.1 Introduction and Synthetic Routes to Epoxides 2 1.2 Carbonylation of Epoxides to β-Lactones 4 1.2.1 Background 4 1.2.2 Carbonylation of Epoxides Using [Lewis acid]+[Co(CO) ]− 4 5 Catalysts 1.2.3 Recent Catalyst Advances for Regio- and Enantioselective 8 Carbonylation of Epoxides 1.3 Isomerization of Epoxides to Carbonyl Compounds 12 1.4 Deoxygenation of Epoxides to Alkenes 16 REFERENCES 19 CHAPTER 2: Catalyst Development for the Enantio- and Regioselective 29 Carbonylation of Disubstituted Epoxides 2.1 Introduction 30 2.2 Catalyst Electronic Variation for the Enantioselective Carbonylation 33 of Cis-Epoxides to Trans-β-Lactones 2.2.1 Background
Recommended publications
  • Catalytic Asymmetric Di Hydroxylation
    Chem. Rev. 1994, 94, 2483-2547 2483 Catalytic Asymmetric Dihydroxylation Hartmuth C. Kolb,t Michael S. VanNieuwenhze,* and K. Barry Sharpless* Department of Chemistry, The Scripps Research Institute, 10666 North Torfey Pines Road, La Jolla, California 92037 Received Ju/y 28, 1994 (Revised Manuscript Received September 14, 1994) Contents 3.1.4. Differentiation of the Hydroxyl Groups by 2524 Selective, Intramolecular Trapping 1. Introduction and General Principles 2483 3.1.5. Miscellaneous Transformations 2525 2. Enantioselective Preparation of Chiral 1,2-Diols 2489 3.2. Preparation of Chiral Building Blocks 2527 from Olefins 3.2.1. Electrophilic Building Blocks 2527 2.1. Preparation of Ligands, Choice of Ligand, 2489 Scope, and Limitations 3.2.2. Chiral Diol and Polyol Building Blocks 2529 2.1.1. Preparation of the Ligands 2490 3.2.3. Chiral Monohydroxy Compounds Derived 2529 from Diols 2.1 -2. Ligand Choice and Enantioselectivity Data 2490 3.2.4. 5- and 6-Membered Heterocycles 2530 2.1.3. Limitations 2491 3.3. Preparation of Chiral Auxiliaries for Other 2530 2.2. Reaction Conditions 2493 Asymmetric Transformations 2.2.1. Asymmetric Dihydroxylation of the 2493 3.3.1. Preparation of 2530 “Standard Substrates” (1 R,2S)-trans-2-phenylcyclohexanol 2.2.2. Asymmetric Dihydroxylation of 2496 3.3.2. Optically Pure Hydrobenzoin (Stilbenediol) 2531 Tetrasubstituted Olefins, Including Enol and Derivatives Ethers 4. Recent Applications: A Case Study 2536 2.2.3. Asymmetric Dihydroxylation of 2496 Electron-Deficient Olefins 5. Conclusion 2538 2.2.4. Chemoselectivity in the AD of Olefins 2497 6. References and Footnotes 2542 Containing Sulfur 2.3.
    [Show full text]
  • Organic Seminar Abstracts
    Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemin1971752univ / a ORGANIC SEMINAR ABSTRACTS 1971-1972 Semester II School of Chemical Sciences Department of Chemistry- University of Illinois Urbana, Illinois 3 SEMINAR TOPICS II Semester 1971-72 Reactions of Alkyl Ethers Involving n- Complexes on a Reaction Pathway 125 Jerome T. Adams New Syntheses of Helicenes 127 Alan Morrice Recent Advances in Drug Detection and Analysis I36 Ronald J. Convers The Structure of Carbonium Ions with Multiple Neighboring Groups 138 William J. Work Recent Reactions of the DMSO-DCC Reagent ll+O James A. Franz Nucleophilic Acylation 1^2 Janet Ollinger The Chemistry of Camptothecin lU^ Dale Pigott Stereoselective Syntheses and Absolute Configuration of Cecropia Juvenile Horomone 1U6 John C. Greenfield Uleine and Related Aspidosperma Alkaloids 155 Glen Tolman Strategies in Oligonucleotide Synthesis 162 Graham Walker Stable Carbocations: C-13 Nuclear Magnetic Resonance Studies 16U Moses W. McMillan Organic Chlorosulfinates 166 Steven W. Moje Recent Advances in the Chemistry of Penicillins and Cephalosporins 168 Ronald Stroshane Cerium (iv) Oxidations 175 William C. Christopfel A New Total Synthesis of Vitamin D 18 William Graham Ketone Transpositions 190 Ann L. Crumrine - 125 - REACTIONS OF ALKYL ETHERS INVOLVING n-COMPLEXES ON A REACTION PATHWAY Reported by Jerome T. Adams February 2k 1972 The n-complex (l) has been described as an intermediate on the reaction pathway for electrophilic aromatic substitution and acid catalyzed rearrange- ment of alkyl aryl ethers along with sigma (2) and pi (3) type intermediates. 1 ' 2 +xR Physical evidence for the existence of n-complexes of alkyl aryl ethers was found in the observation of methyl phenyl ononium ions by nmr 3 and ir observation of n-complexes of anisole with phenol.
    [Show full text]
  • Functionalization of Arenes and Heteroarenes by Metalation with Tmp-Bases Or Metal Insertion
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München FUNCTIONALIZATION OF ARENES AND HETEROARENES BY METALATION WITH TMP-BASES OR METAL INSERTION AND SYNTHESIS OF TETRASUBSTITUTED ALKENYL SULFIDES VIA A CU(I)- MEDIATED CARBOMETALATION von Cora Dunst aus Starnberg 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Herrn Prof. Dr. Paul Knochel betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, den 29.07.2011 ............................................. Cora Dunst Dissertation eingereicht am 3.08.2011 1. Gutachter: Prof. Dr. Paul Knochel 2. Gutachter: Prof. Dr. Manfred Heuschmann Mündliche Prüfung am 13.09.2011 TO MY PARENTS & GRANDPARENTS This work was carried out from May 2008 to June 2011 under the guidance of Prof. Dr. Paul Knochel at the Department Chemie und Pharmazie of the Ludwig-Maximilians-Universität, Munich. First, I would like to thank Prof. Dr. Paul Knochel for giving me the opportunity to do my Ph.D. in his group, for his generous support and guidance in the course of my scientific research. I am also grateful to Prof. Dr. Manfred Heuschmann for agreeing to be the second reviewer of this thesis, as well as Prof. Dr. Konstantin Karaghiosoff, Prof. Dr. Herbert Mayr, Prof. Dr. Heinz Langhals and Prof. Dr. Thomas Bein for their interest shown in the manuscript by accepting to be referees. I really would like to thank Dr. Laurin Melzig, Thomas Kunz, Nadja Barl and Sebastian Bernhardt for the careful correction of this manuscript.
    [Show full text]
  • Bridging Mcmurry and Wittig in One-Pot
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755 Bridging McMurry and Wittig in One-Pot Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes JURI MAI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0536-3 UPPSALA urn:nbn:se:uu:diva-368873 2019 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 15 February 2019 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Dr. Christian Müller (Freie Universität Berlin, Institute of Chemistry and Biochemistry). Abstract Mai, J. 2019. Bridging McMurry and Wittig in One-Pot. Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755. 112 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0536-3. The formation of C=C bonds is of great importance for fundamental and industrial synthetic organic chemistry. There are many different methodologies for the construction of C=C bonds in the literature, but currently only the McMurry reaction allows the reductive coupling of two carbonyl compounds to form alkenes. This thesis contributes to the field of carbonyl olefinations and presents the development of a new synthetic protocol for a one-pot reductive coupling of two aldehydes to alkenes based on organophosphorus chemistry. The coupling reagent, a phosphanylphosphonate, reacts with an aldehyde to yield a phosphaalkene intermediate which upon activation with a base undergoes an olefination with a second aldehyde. A general overview of synthetic methods for carbonyl olefinations and the chemistry of phosphaalkenes is given in the background chapter.
    [Show full text]
  • PDF (Chapter 1)
    Chapter 1–Evolving Strategies Toward the Synthesis of Curcusone C 1 CHAPTER 1 Evolving Strategies Toward the Synthesis of Curcusone Ci 1.1 INTRODUCTION AND ALTERNATE SYNTHETIC STRATEGIES 1.1.1 INTRODUCTION Indigenous to Central America, the flowering plant Jatropha curcas has traditionally been used in the manufacturing of soaps and lamp oil but has also drawn attention due to its potential applications in the biodiesel industry.1 J. curcas has also received notice by organic chemists owing to its structurally diverse array of diterpenoid secondary metabolites, which includes the curcusone (i) This research was a collaborative effort between A. C. Wright and C. W. Lee, see: reference 6, reference 19, and reference 20. Chapter 1–Evolving Strategies Toward the Synthesis of Curcusone C 2 family of natural products. This family comprises various synthetically challenging and biologically active rhamnofolane diterpenoid natural products. In 1986, Naengchomnong and coworkers first isolated curcusones A–D (1–4, Figure 1.1.1) and elucidated the structures of 2 and 3 via X-ray diffraction.2 Over the ensuing three decades, several more members of this family were structurally identified and were further discovered to possess anticancer activity.3 Among them, curcusone C (3) demonstrates the most potent and varied anticancer properties, including anti- proliferative activity against human hepatoma (IC50 in 2.17 uM), ovarian carcinoma (IC50 in 0.160 2 uM), and promyeolycytic leukemia (IC50 in 1.36 uM). Figure 1.1.1. Reported Structures of Curcusones A–J O O H O H H H H H R2 H Me Me R1 HO MeO O O O R1, R2 = Me, H : Curcusone A (1) Curcusone E Curcusone F R1, R2 = H, Me : Curcusone B (2) R1, R2 = Me, OH : Curcusone C (3) R1, R2 = OH, Me : Curcusone D (4) O O O H H H H H H H R2 O OH R1 O OH MeO O O O Curcusone G Curcusone H R1, R2 = Me, H : Curcusone I (5) R1, R2 = H, Me : Curcusone J (6) Despite these enticing biological features, 3 and all of its structural relatives have yet to surrender to any total synthesis campaigns.
    [Show full text]
  • Title Synthetic Studies on the Chemistry of Gem-Dimetalation with Inter-Element Compounds( Dissertation 全文 )
    Synthetic Studies on the Chemistry of gem-Dimetalation with Title Inter-element Compounds( Dissertation_全文 ) Author(s) Kurahashi, Takuya Citation Kyoto University (京都大学) Issue Date 2003-03-24 URL http://dx.doi.org/10.14989/doctor.k10168 Right Type Thesis or Dissertation Textversion author Kyoto University Synthetic Studies on the Chemistry ofgem-Dimetalation with Inter-element Compounds Takuya Kurahashi 2003 Synthetic Studies on the Chemistry ofgem-Dimetalation with Inter-element Compounds Takuya Kurahashi 2003 Contents Chapter 1 Introduction and General Summary 1 Chapter 2 Silylborylation and Diborylation of Alkylidene-type Carbenoids. Synthesis of 1-Boryl-1-silyl-1-alkenes and 1,1-Diboryl-1-alkenes 21 Chapter 3 Stereospecific Silylborylation of a-Chloroallyllithiums. Synthesis and Reactions of Allylic gem-Silylborylated Reagents 53 Chapter 4 Synthesis and Reactions of 1-Silyl-1-borylallenes 81 Chapter 5 Efficient Synthesis of 2,3-Diboryl-1,3-butadiene and Synthetic Applications 95 List ofPublications - 115 Acknowledgments - 117 Abbreviations Ac acetyl J coupling constant in Hz Anal. element analysis LDA lithium diisopropylamide aq. aqueous m multiplet (spectral) Bn benzyl M mol per liter Bpin 4,4,5,5-tetramethyl-I,3,2-dioxabolan-2-yl Me methyl brs broad singlet (spectral) MEM 2-methoxyethoxymethyI Bu butyl min minute(s) calcd calculated mL mililiter cat. catalytic mp melting point Cy cyclohexyl Ms mesyl d doublet (spectral) NMR nuclear magnetic resonance dba dibenzylideneacetone Pent pentyl DME 1,2,-dimethoxyethane Ph phenyl DMF N,N-dimethylformamide
    [Show full text]
  • Nickel-Catalyzed Hydrosilylation of Alkenes and Transition-Metal-Free
    Nickel-catalyzed Hydrosilylation of Alkenes and Transition- Metal-Free Intermolecular α-C-H Amination of Ethers THÈSE NO 7129 (2016) PRÉSENTÉE LE 28 JUILLET 2016 À LA FACULTÉ DES SCIENCES DE BASE LABORATOIRE DE SYNTHÈSE ET DE CATALYSE INORGANIQUE PROGRAMME DOCTORAL EN CHIMIE ET GÉNIE CHIMIQUE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Ivan BUSLOV acceptée sur proposition du jury: Prof. K. Severin, président du jury Prof. X. Hu, directeur de thèse Prof. E. P. Kündig, rapporteur Prof. M. Driess, rapporteur Prof. H.-A. Klok, rapporteur Suisse 2016 Acknowledgements First, I would like to thank my scientific advisor, Prof. Xile Hu, for giving me the opportunity to carry out my doctoral studies in his group. I am deeply grateful for his support, encouragement and guidance during my time as a Ph.D. student at EPFL. His optimistic energy and confidence in my research always inspired me and helped me to move forward. I would like to thank my thesis jury: Prof. Kay Severin, Prof. Ernst Peter Kündig, Prof. Matthias Driess and Prof. Harm-Anton Klok for accepting to examine this manuscript. Many thanks to the people working at EPFL: Annelise Carrupt, Gladys Pache and Benjamin Kronenberg - the team of BCH chemical store - for their excellent work; Dr. Pascal Miéville for his help with NMR machines and methods; Dr. Rosario Scopelliti and Dr. Euro Solari for performing the X-ray and elemental analyses; Dr. Laure Menin, Daniel Baumann and Francisco Sepulveda for the mass spectrometry analyses; Christina Zamanos-Epremian and Anne Lene Odegaard for their kind support and for the administrative work.
    [Show full text]
  • Organometallic Chemistry
    ORGANOMETALLIC CHEMISTRY 1 Organometallic Chemistry (Prelude) What is Organometallic Chemistry? Organometallic chemistry refers to reactions that use the classes of compounds (R-M) that contain a covalent bond between carbon and a metal. They are prepared either by direct reaction of the metal with an organic compound (metallation) or by replacement of a metal in an organometallic compound with another metal (transmetallation). 12:44 PM 2 Organometallic Chemistry Why Go Organometallic Chemistry What is so special about the Organometallic approach to organic synthesis? Classical organic syntheses that proceed by the SN2 pathway require a strong nucleophile attacking an electrophilic site to be effective. Such reactions are of limited scope. For instance, the formation of biaryl systems via the classical substitution reaction is difficult to achieve. 12:44 PM 3 Organometallic Chemistry Applications Organometallic chemistry offers a way out of this dilemma. Through special organometallic reactions, a variety of carbon-carbon bonds can be formed and even biaryl systems can be readily synthesized. This possibility has expanded the scope of their use in organic synthesis since bonds that were hitherto difficult to form through the classical syntheses can almost now be routinely formed. Organometallic chemistry can make possible the synthesis of 12:44 PM pharmacologically relevant natural products containing biaryl units. 4 Organomagnesium or Grignard Reagents R-Mg-X The use of organometallic reagents in organic synthesis began around 1899 when Victor Grignard discovered that alkyl halides reacted with magnesium metal in diethylether to give homogenous solutions. The Grignard reagents proved to be very reactive carbanion nucelophiles and strong bases capable of abstracting highly acidic protons attached to heteroatoms such as O, N and S, and have remained very useful synthetic reagents ever since.
    [Show full text]
  • WO 2014/183211 Al 20 November 2014 (20.11.2014) WIPOIPCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/183211 Al 20 November 2014 (20.11.2014) WIPOIPCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 307/32 (2006.01) C07D 493/22 (2006.01) kind of national protection available)·. AE, AG, AL, AM, C07D 307/28 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/CA2014/050438 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 9 May 2014 (09.05.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/823,579 15 May 2013 (15.05.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available)·. ARIPO (BW, GH, (71) Applicant: ALPHORA RESEARCH INC. [CA/CA]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 2395 Speakman Drive, Suite 2001, Mississauga, Ontario UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, L5K 1B3 (CA).
    [Show full text]
  • Synthesis and Characterization of Ruthenium (II) Complexes and Their Applications to Atom Transfer Radical Addition Reactions
    University of Nevada, Reno Synthesis and Characterization of Ruthenium (II) Complexes and their Applications to Atom Transfer Radical Addition Reactions A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry By Radhika P. Nair Dr. Brian J. Frost/Dissertation Advisor December, 2009 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by R A D H I K A P. N A IR entitled Synthesis And Characterization Of Ruthenium (II) Complexes And Their Applications To Atom T ransfer Radical Addition Reactions be accepted in partial fulfillment of the requirements for the degree of D O C T O R O F PH I L OSOPH Y Dr. Brian J. Frost, Advisor Dr. Vincent J. Catalano, Committee Member Dr. Sean M. Casey, Committee Member Dr. Robert C. Mancini, Committee Member Dr. Dhanesh Chandra, Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School December, 2009 i Abstract A series of mixed-phosphine ruthenium complexes of the type CpRu(PR3)(PPh3)Cl, here Cp 0 Cp*, Dp, Ind, Cp, Tp; PR3 = PTA or PMe3 have been synthesized by liand e>chane reactions ith CpRu(PPh3)2Cl, and characterized by multinuclear NMR spectroscopy and X-ray crystallography. We have explored the efficiency of these complexes as catalysts for the atom transfer radical addition (ATRA) of various chloro-substrates (CCl4, CHCl3, p-TsCl, CCl3CO2Et, and CH2ClCO2Et) to styrene in the presence of AIBN as a radical source. For comparison purposes, we also investi<ated the activity of CpRu(PPh3)2Cl and CpRu(PTA)2Cl complexes towards ATRA.
    [Show full text]
  • Organometallic Chemistry Chemistry
    OrganometallicOrganometallic Chemistry Chemistry Worawan Bhanthumnavin Department of Chemistry Chulalongkorn University Bangkok 10330, Thailand Given as part of the 6th semester organic chemistry course at the University of Regensburg (May 2008) Under the ASEM-DUO Thailand 2007 exchange program General, organolithium, organomagnesium Organometallic Chemistry • Organic Chemistry: – Covalent C-X bonds – Rigid coordination geometries – Fixed oxidation state • ? Organometallic Chemistry ? • Inorganic Chemistry / Coordination Chemistry – Mainly ionic M-X bonds – versatile and often fluxional coordination geometries – multiple oxidation states Organometallic Chemistry • Organic Chemistry: – Covalent C-X bonds – Rigid coordination geometries – Fixed oxidation state • ? Organometallic Chemistry ? • Inorganic Chemistry / Coordination Chemistry – Mainly ionic M-X bonds – versatile and often fluxional coordination geometries – multiple oxidation states OrganometallicOrganometallic Compounds Compounds • Compounds that contain a Metal-Carbon bond • e.g. Tetraethyllead – as additive in Gasoline • General formula R-M (R = alkyl, M = metal) • The C-M bond is a polarized covalent bond OrganometallicOrganometallic Compounds Compounds • Great source for anionic carbon species (carbanions) C with a nagative charge?? • Useful but restricted to one carbon homologations • Is that all we have for C-C bond formation? C-C bond formation Alkyl metals – polarized R-M • Especially true for organometallic compounds containing the more electropositive metals, i.e.
    [Show full text]
  • Convenient Synthesis of Chelating Π-Acidic NHC Complexes
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2019 Peer-reviewed version available at Inorganics 2019, 7, 65; doi:10.3390/inorganics7050065 1 Article 2 Transmetalation from Magnesium NHCs – 3 Convenient Synthesis of Chelating -Acidic NHC 4 Complexes 5 Julian Messelberger1, Annette Grünwald1, Philipp Stegner1, Laura Senft2, Frank W. Heinemann1, 6 and Dominik Munz1,* 7 1 Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg; 8 Egerlandstr. 1; 91058 Erlangen 9 2 Lehrstuhl für Bioanorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstr. 10 1; 91058 Erlangen 11 * Correspondence: [email protected]; Tel.: +49-9131-85-27464 12 Received: date; Accepted: date; Published: date 13 14 Abstract: The synthesis of chelating NHC complexes with considerable -acceptor properties can 15 be a challenging task. This is due to the dimerization of free carbene ligands, the moisture sensitivity 16 of reaction intermediates or reagents, and challenges associated with the workup procedure. Herein, 17 we report a general route using transmetalation from magnesium NHCs. Notably, this route gives 18 transition metal complexes in quantitative conversion without the formation of byproducts. 19 Accordingly, it allows for the facile access to transition metal complexes where the conventional 20 routes via the free or lithium coordinate carbene, the silver complexes, or in situ metalation in 21 dimethyl sulfoxide (DMSO) fail. We therefore propose transmetalation from magnesium NHCs as 22 a convenient and general route to NHC complexes. 23 Keywords: NHC; transmetalation; magnesium; palladium; carbene 24 25 1. Introduction 26 N-heterocyclic carbene (NHC) ligands have become the powerhouse of modern transition metal 27 chemistry [1].
    [Show full text]