Obtaining a Bipartite Graph by Contracting Few Edges? Pinar Heggernes1, Pim van 't Hof1, Daniel Lokshtanov2, and Christophe Paul3 1 Department of Informatics, University of Bergen, Norway. fpinar.heggernes,
[email protected] 2 Department of Computer Science and Engineering University of California San Diego, USA.
[email protected] 3 CNRS, LIRMM, Universit´eMontpellier 2, France.
[email protected] Abstract. We initiate the study of the Bipartite Contraction problem from the perspective of parameterized complexity. In this problem, we are given an n-vertex graph G and an integer k, and the task is to determine whether we can obtain a bi- partite graph from G by a sequence of at most k edge contractions. We show that Bipartite Contraction is fixed-parameter tractable when parameterized by k. De- spite a strong resemblance between Bipartite Contraction and the classical Odd Cycle Transversal (OCT) problem, the methods developed to tackle OCT do not seem to be directly applicable to Bipartite Contraction. To obtain our result, we combine several techniques and concepts that are central in parameterized complexity: iterative compression, irrelevant vertices, and important separators. To the best of our knowledge, this is the first time the irrelevant vertex technique and the concept of important separators are applied in unison. Furthermore, our algorithm may serve as a comprehensible example of the usage of the irrelevant vertex technique. 1 Introduction Odd Cycle Transversal (OCT) is a central problem in parameterized complexity. The establishment of its fixed-parameter tractability by Reed, Smith, and Vetta [26] in 2004, set- tling a long-standing open question [8], supplied the field with the powerful new technique of iterative compression [24].