Project on Climate Resilient Agriculture- Maharashtra (Pocra) Project Implementation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Project on Climate Resilient Agriculture- Maharashtra (Pocra) Project Implementation Plan PROJECT ON CLIMATE RESILIENT AGRICULTURE- MAHARASHTRA (POCRA) PROJECT IMPLEMENTATION PLAN Department of Agriculture, Government of Maharashtra 1 | Page CTRAN DRAFT The World Bank 2 | Page Content Abbreviations Contents 1 Executive Summary ....................................................................................................................... 13 2 Background .................................................................................................................................... 20 2.1 Country Context ..................................................................................................................... 20 2.2 State and sectoral Context ...................................................................................................... 21 2.3 Vulnerability, long-term climate change and the rationale for the project ............................ 27 2.3.1 Biophysical Characteristics of the project area (land, soil, water, precipitation, temperature) ................................................................................................................................... 28 2.3.2 Socio-economic Characteristics of the project area (Demographic, Socio-economic, etc.) 35 2.3.3 Environmental Characteristics (Salinity, water quality, etc.) ......................................... 37 2.4 Key challenges ....................................................................................................................... 39 2.5 Partnership with the World Bank ........................................................................................... 40 3 Project Description ......................................................................................................................... 41 3.1 Project Development Objective ............................................................................................. 41 3.2 Project Guiding Principles ..................................................................................................... 42 3.3 Project Strategy ...................................................................................................................... 43 3.4 Project Area ........................................................................................................................... 46 3.5 Village selection criteria ........................................................................................................ 49 3.6 Guiding Principles for Planning, Activity prioritization, Sequencing, and Beneficiary Targeting ............................................................................................................................................ 54 3.7 Project Phasing ....................................................................................................................... 56 3 | Page 4 Project Components ....................................................................................................................... 57 4.1 Component A1: Participatory development of Mini watershed plans ................................... 59 4.1.1 Introduction .................................................................................................................... 59 4.1.2 Activities ........................................................................................................................ 60 4.1.3 Approach ........................................................................................................................ 61 4.2 Component A2: Climate smart agriculture and resilient farming systems ............................ 64 4.2.1 Introduction .................................................................................................................... 64 4.2.2 Situation analysis ........................................................................................................... 64 4.2.3 Objective ........................................................................................................................ 66 4.2.4 Activities ........................................................................................................................ 67 4.2.5 Approach ........................................................................................................................ 70 4.3 Component A3: Promoting efficient and sustainable use of water for agriculture ................ 84 4.3.1 Introduction .................................................................................................................... 84 4.3.2 Situation Analysis .......................................................................................................... 84 4.3.3 Objective ........................................................................................................................ 86 4.3.4 Activities ........................................................................................................................ 86 4.3.5 Approach ........................................................................................................................ 88 4.4 Component B: Climate Smart Post Harvest Management and Value Chain Promotion ....... 96 4.4.1 Introduction .................................................................................................................... 96 4.4.2 Situation analysis ........................................................................................................... 98 4.4.3 Objective ...................................................................................................................... 104 4.4.4 Activities ...................................................................................................................... 104 4.4.5 Approach ...................................................................................................................... 106 4.5 Component B1: Strengthening Farmer Producer Companies .............................................. 109 4.6 Component B2: Strengthening climate-resilient value-chains ............................................. 115 4 | Page 4.7 Component B3: Improving the performance of the supply chain for climate-resilient seeds 118 4.8 Component C: Institutional Development, Knowledge and Policies for a Climate-resilient Agriculture ....................................................................................................................................... 123 4.8.1 Introduction .................................................................................................................. 123 4.8.2 Objective ...................................................................................................................... 123 4.8.3 Activities ...................................................................................................................... 124 4.8.4 Approach ...................................................................................................................... 133 4.8.5 Climate innovation centre ............................................................................................ 138 4.8.6 ICT Strategy ................................................................................................................. 140 4.9 Project Implementation Management .................................................................................. 145 4.9.1 Project Governance ...................................................................................................... 146 4.9.1.1 Project Steering Committee ......................................................................................... 146 4.9.1.2 Project Advisory Committee ........................................................................................ 146 4.9.1.3 Project Management Unit ............................................................................................ 148 4.9.1.4 Division Level .............................................................................................................. 149 4.9.1.5 District Level Structure ................................................................................................ 150 4.9.1.6 Subdivision level structure ........................................................................................... 151 4.9.1.7 Village level structure .................................................................................................. 152 4.9.2 Role of project units at various levels .......................................................................... 153 4.9.2.1 PMU ............................................................................................................................. 153 4.9.2.2 Office of the DSAO ..................................................................................................... 154 4.9.2.3 Office of PD, ATMA ................................................................................................... 155 4.9.2.4 Office of SDAO ........................................................................................................... 155 4.9.2.5 Office of the Cluster Assistant ..................................................................................... 156 4.9.2.6 Agriculture Assistant.................................................................................................... 156 5 | Page 4.9.3 Staffing structure .......................................................................................................... 156 4.9.4 Village Level Institutions, their Roles
Recommended publications
  • Vision 2030 Maharashtra
    Overview of the State ………………………………………………………….. 01 Demographic Profile ……………………………………………………………….. 03 State Economy ………………………………………………………………………. 04 Key Challenges ……………………………………………………………………... 08 Way forward ……………………………………………………………………. 13 Core five pillars (themes) of Vision 2030 …………………………………………… 15 Vision Statement & Components …………………………………………... 17 Agriculture & Allied activities Current Scenario …………………………………………………………………… 21 Vision Elements and Targets ………………………………………………………. 26 Action Points ………………………………………………………………………. 30 Industry & Services Current Scenario ……………………………………………………………………. 47 Vision Elements and Targets ……………………………………………………….. 50 Action Points ……………………………………………………………………... 52 Infrastructure Current Scenario ………………………………………………………………….. 62 Vision Elements and Targets ……………………………………………………... 65 Action Points ………………………………………………………………………. 68 Social Sectors Current Scenario ..…………………………………………………………………. 74 Vision Elements and Targets ……………………………………………………… 84 Action Points ……………………………………………………………………… 92 Governance Current Scenario …………………………………………………………………… 113 Vision Elements and Targets ……………………………………………………… 117 Action Points ……………………………………………………………………… 123 Environment Current Scenario …………………………………………………………………… 128 Vision Elements and Targets ……………………………………………………… 129 Action Points ……………………………………………………………………… 130 Implementation Strategy……………………………………………………….. 131 OVERVIEW OF THE STATE Maharashtra occupies the western and central part of the country and has a long coastline stretching nearly 720 km along the Arabian Sea. The
    [Show full text]
  • Evaluating Vapor Intrusion Pathways
    Evaluating Vapor Intrusion Pathways Guidance for ATSDR’s Division of Community Health Investigations October 31, 2016 Contents Acronym List ........................................................................................................................................................................... 1 Introduction ........................................................................................................................................................................... 2 What are the potential health risks from the vapor intrusion pathway? ............................................................................... 2 When should a vapor intrusion pathway be evaluated? ........................................................................................................ 3 Why is it so difficult to assess the public health hazard posed by the vapor intrusion pathway? .......................................... 3 What is the best approach for a public health evaluation of the vapor intrusion pathway? ................................................. 5 Public health evaluation.......................................................................................................................................................... 5 Vapor intrusion evaluation process outline ............................................................................................................................ 8 References… …......................................................................................................................................................................
    [Show full text]
  • Soil Contamination and Human Health: a Major Challenge For
    Soil contamination and human health : A major challenge for global soil security Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel To cite this version: Florence Carre, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, et al.. Soil con- tamination and human health : A major challenge for global soil security. Global Soil Security Sympo- sium, May 2015, College Station, United States. pp.275-295, 10.1007/978-3-319-43394-3_25. ineris- 01864711 HAL Id: ineris-01864711 https://hal-ineris.archives-ouvertes.fr/ineris-01864711 Submitted on 30 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Human Health as another major challenge of Global Soil Security Florence Carré, Julien Caudeville, Roseline Bonnard, Valérie Bert, Pierre Boucard, Martine Ramel Abstract This chapter aimed to demonstrate, by several illustrated examples, that Human Health should be considered as another major challenge of global soil security by emphasizing the fact that (a) soil contamination is a worldwide issue, estimations can be done based on local contamination but the extent and content of diffuse contamination is largely unknown; (b) although soil is able to store, filter and reduce contamination, it can also transform and make accessible soil contaminants and their metabolites, contributing then to human health impacts.
    [Show full text]
  • Sustainable Use of Soils and Water: the Role of Environmental Land Use Conflicts
    sustainability Editorial Sustainable Use of Soils and Water: The Role of Environmental Land Use Conflicts Fernando A. L. Pacheco CQVR – Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados Ap. 1013, Vila Real 5001-801, Portugal; [email protected] Received: 3 February 2020; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: Sustainability is a utopia of societies, that could be achieved by a harmonious balance between socio-economic development and environmental protection, including the sustainable exploitation of natural resources. The present Special Issue addresses a multiplicity of realities that confirm a deviation from this utopia in the real world, as well as the concerns of researchers. These scholars point to measures that could help lead the damaged environment to a better status. The studies were focused on sustainable use of soils and water, as well as on land use or occupation changes that can negatively affect the quality of those resources. Some other studies attempt to assess (un)sustainability in specific regions through holistic approaches, like the land carrying capacity, the green gross domestic product or the eco-security models. Overall, the special issue provides a panoramic view of competing interests for land and the consequences for the environment derived therefrom. Keywords: water resources; soil; land use change; conflicts; environmental degradation; sustainability Competition for land is a worldwide problem affecting developed as well as developing countries, because the economic growth of activity sectors often requires the expansion of occupied land, sometimes to places that overlap different sectors. Besides the social tension and conflicts eventually caused by the competing interests for land, the environmental problems they can trigger and sustain cannot be overlooked.
    [Show full text]
  • How Do Atmospheres Change Over Time? the Greenhouse Effect
    Activity #5 How Do Atmospheres Change Over Time? The Greenhouse Effect [Adult] Adapted from: Global Warming & The Greenhouse Effect, Great Explorations in Math and Science (GEMS) Lawrence Hall of Science, 1997, by the Regents of the University of California ISBN: 0-912511-75-3. Unless otherwise noted, all images are courtesy of SETI Institute. 1. Introduction In this activity, Cadettes will observe how the greenhouse effect can change an atmosphere on Mars or on Earth. They will “Think like a scientist. Be a scientist!” 2. Science Objectives You will: • construct models to test ideas about processes that cannot be directly studied on Earth or Mars; • appreciate that the atmosphere is a large and complex system, so experiments concerning it are difficult to perform; and • use skills you have learned about atmospheric composition and apply that knowledge to new situations. 3. Materials For each group of 4–6 Cadettes. • [2] 2 liter (0.5 gal) clear soda bottles with labels removed and tops cut off. These are the Atmosphere Model Chambers. Advance preparation required (see page 2). • [1] pair of scissors for constructing a set of Atmosphere Model Chambers • [1] black permanent marker for constructing a set of Atmosphere Model Chambers • [2] identical thermometers, one for each chamber; view on Amazon.com: http://tinyurl.com/lkrvzvq • sufficient cardboard to prepare backing for each thermometer • 5–10 cm (about 4 in) of clear tape to attach thermometers to cardboard and to inside of each chamber • [1] piece of plastic wrap approximately 15 cm x 15 cm (6 x 6 in) • [1] rubber band large enough to fit the circumference of chamber and secure plastic wrap • chart of electromagnetic spectrum of light (EMS); print in advance • 250-watt infrared heat lamp (bulb) in a fixture with hood.
    [Show full text]
  • Invasive Plants in Your Backyard!
    Invasive Plants In Your Backyard! A Guide to Their Identification and Control new expanded edition Do you know what plants are growing in your yard? Chances are very good that along with your favorite flowers and shrubs, there are non‐native invasives on your property. Non‐native invasives are aggressive exotic plants introduced intentionally for their ornamental value, or accidentally by hitchhiking with people or products. They thrive in our growing conditions, and with no natural enemies have nothing to check their rapid spread. The environmental costs of invasives are great – they crowd out native vegetation and reduce biological diversity, can change how entire ecosystems function, and pose a threat Invasive Morrow’s honeysuckle (S. Leicht, to endangered species. University of Connecticut, bugwood.org) Several organizations in Connecticut are hard at work preventing the spread of invasives, including the Invasive Plant Council, the Invasive Plant Working Group, and the Invasive Plant Atlas of New England. They maintain an official list of invasive and potentially invasive plants, promote invasives eradication, and have helped establish legislation restricting the sale of invasives. Should I be concerned about invasives on my property? Invasive plants can be a major nuisance right in your own backyard. They can kill your favorite trees, show up in your gardens, and overrun your lawn. And, because it can be costly to remove them, they can even lower the value of your property. What’s more, invasive plants can escape to nearby parks, open spaces and natural areas. What should I do if there are invasives on my property? If you find invasive plants on your property they should be removed before the infestation worsens.
    [Show full text]
  • West Lake Woven Wood Shade Section
    West Lake Woven Wood Shade Section Effective April 15, 2014 Save a life: "Install Safety Tension Devices!" Woven Wood Measuring Instructions Measuring Inside Mount (IB) Shades: Measure the exact width (A) and length (B) of the window opening as shown. The factory will deduct ½” overall from the window width for clearance. On all inside mount shades, a small light gap will be visible. Measuring Outside Mount (OB) Shades: Measure the exact width (A) and length (B) of the window opening you wish to cover. The shade should cover the window opening by at least 2” on both the width and length. To cover a window sill, provide a measurement (C) beyond the sill. Outside Mount Inside Mount Measuring Arch Top Valances for Woven Wood Shades: For inside mount shades, measure the exact width and tallest length inside the window opening. For outside mount shades, measure the desired width and tallest length. Make sure to measure the length of outside mount shades at its tallest point. Arch Top woven wood shades must be perfect arches where the length equals ½ the width. For arch top valances, measure dimensions A, X, & Y. For pricing, use the width and tallest length measurement. Make sure to add the arch top shade surcharge. Measuring Angled Shades: It is critical to measure all four sides of the window opening. For inside mount shades, measure the inside of the window opening and for outside mount shades, add the desired overlap. Measure the slope angle with a protractor and provide the angle in degrees. Indicate all measurements on a template to be sent to the factory.
    [Show full text]
  • 8040 Introduction to Natural Resources and Ecology Systems
    Introduction to Natural Resources and Ecology Systems 8040/36 weeks Table of Contents Acknowledgments ......................................................................................................................................... 1 Course Description ........................................................................................................................................ 2 Task Essentials Table .................................................................................................................................... 2 Curriculum Framework ................................................................................................................................. 6 Exploring Leadership Skills through FFA ................................................................................................... 6 Exploring Leadership Opportunities through FFA ....................................................................................... 7 Understanding Natural Resource Management ............................................................................................ 9 Protecting the Environment ........................................................................................................................ 15 Managing Forest Resources ........................................................................................................................ 25 Managing Wildlife Resources ....................................................................................................................
    [Show full text]
  • Learning from the Current Practices in India
    LEADERSHIP FOR DISASTER RESILIENCE Learning from the current practices in India December 2018 Tata Institute of Social Sciences Indian Institute for Human Settlements December 2018 Authors Jacquleen Joseph (Principal Investigator), Garima Jain (Principal Investigator), Suchita Awasthi (Documentation Officer), Theimneizho Gangte (Senior Research Officer), Sriram A (Research Officer), Gargi Sen (Senior Research Officer), Teja Malladi (Senior Research Officer), Vineetha Nalla (Research Officer). Contributing Authors Zubin Mulla (Leadership Consultant), Mohammed Irshad (Co-Principal Investigator), Debasmita Majumder (Senior Research Officer), Soumitra Peshave (Research Officer), Girinathreddy Munagala (Research Officer), Swati Pillai (Research Officer), G. Dhanapal (Senior Research Officer), Asma N (Senior Research Officer), Nishtha Vadehra (Research Officer) Media Team Yashodhara Udupa, Zohrab Reys Gamat, Sandeep Viswanath, Amit Mahanti (IIHS Media Lab) Reviewers Amir Bazaz (IIHS Lead - Practice) Editing Support Rekha Raghunathan, Archita Suryanarayanan (IIHS Word Lab) Report and Graphic Design MS Vikrant, Nawaz Khan (IIHS Design Lab) Contents Preface 5 Executive Summary 9 1. Background for the research 11 1.1 Role of Actors 11 1.2 Need for Collaborative Effort 12 1.3 Operational definitions of key concepts 13 Leadership 13 Disasters 15 Disaster Resilience 17 2. Objective of the study 19 3. Methodology and Theoretical Framework 20 3.1 Methodology 20 3.2 Process and Tools of Data Collection and Analysis 21 3.3 Theoretical framework 26 4. Findings from the Secondary Case Study Database 30 4.1 Summary overview of Disaster Resilience Initiatives documented 30 4.2 Regional Analysis of Disaster Resilience Initiatives in India 34 5. Findings from the Primary Case Studies 50 5.1 Descriptive Summary of Primary Case Studies 50 5.2 Primary Case Studies - A Brief Description 56 6.
    [Show full text]
  • Natural Resources Inventory
    Natural Resources Inventory Columbia Metropolitan Planning Area Review Draft (10-1-10) NATURAL RESOURCES INVENTORY Review Draft (10-1-10) City of Columbia, Missouri October 1, 2010 - Blank - Preface for Review Document The NRI area covers the Metropolitan Planning Area defined by the Columbia Area Transportation Study Organization (CATSO), which is the local metropolitan planning organization. The information contained in the Natural Resources Inventory document has been compiled from a host of public sources. The primary data focus of the NRI has been on land cover and tree canopy, which are the product of the classification work completed by the University of Missouri Geographic Resource Center using 2007 imagery acquired for this project by the City of Columbia. The NRI uses the area’s watersheds as the geographic basis for the data inventory. Landscape features cataloged include slopes, streams, soils, and vegetation. The impacts of regulations that manage the landscape and natural resources have been cataloged; including the characteristics of the built environment and the relationship to undeveloped property. Planning Level of Detail NRI data is designed to support planning and policy level analysis. Not all the geographic data created for the Natural Resources Inventory can be used for accurate parcel level mapping. The goal is to produce seamless datasets with a spatial quality to support parcel level mapping to apply NRI data to identify the individual property impacts. There are limitations to the data that need to be made clear to avoid misinterpretations. Stormwater Buffers: The buffer data used in the NRI are estimates based upon the stream centerlines, not the high water mark specified in City and County stormwater regulations.
    [Show full text]
  • Trace Metals from Historical Mining Sites and Past
    www.nature.com/scientificreports OPEN Trace metals from historical mining sites and past metallurgical activity remain bioavailable to wildlife Received: 20 April 2017 Accepted: 11 December 2017 today Published: xx xx xxxx Estelle Camizuli 1,2, Renaud Scheifer3, Stéphane Garnier4, Fabrice Monna1, Rémi Losno5, Claude Gourault1, Gilles Hamm1, Caroline Lachiche1, Guillaume Delivet1, Carmela Chateau6 & Paul Alibert4 Throughout history, ancient human societies exploited mineral resources all over the world, even in areas that are now protected and considered to be relatively pristine. Here, we show that past mining still has an impact on wildlife in some French protected areas. We measured cadmium, copper, lead, and zinc concentrations in topsoils and wood mouse kidneys from sites located in the Cévennes and the Morvan. The maximum levels of metals in these topsoils are one or two orders of magnitude greater than their commonly reported mean values in European topsoils. The transfer to biota was efective, as the lead concentration (and to a lesser extent, cadmium) in wood mouse kidneys increased with soil concentration, unlike copper and zinc, providing direct evidence that lead emitted in the environment several centuries ago is still bioavailable to free-ranging mammals. The negative correlation between kidney lead concentration and animal body condition suggests that historical mining activity may continue to play a role in the complex relationships between trace metal pollution and body indices. Ancient mining sites could therefore be used to assess the long-term fate of trace metals in soils and the subsequent risks to human health and the environment. Te frst evidence of extractive metallurgy dates from the 6th millennium BC in the Near East1,2.
    [Show full text]
  • William House Woven Wood Shade Collection
    SUGGESTED RETAIL PRICING SEPTEMBER, 2015* WILLIAM HOUSE WOVEN WOOD SHADE COLLECTION *THIS VERSION IS AN ADDENDUM, WHICH CONTAINS SOME PATTERN DISCONTINUATIONS (JAN. 2017) TEXTON.COM 800-442-1540 FAX: 972-276-5104 SEPTEMBER, 2015 MEASURING INSTRUCTIONS MEASURE EACH WINDOW INDIVIDUALLY AS SIZES MAY VARY. RECORD WIDTH FIRST, THEN HEIGHT (LENGTH) TO THE NEAREST 1/8”. MEASURE WIDTH FROM LEFT TO RIGHT, HEIGHT FROM TOP TO BOTTOM USING A METAL TAPE MEASURE. PLEASE DO NOT USE A CLOTH TAPE! INSIDE MOUNT INSIDE MOUNT BLINDS ARE INSTALLED INSIDE THE WINDOW FRAME. 1. MEASURE THE EXACT INSIDE WIDTH OF WINDOW FRAME FROM ONE INSIDE EDGE TO THE OTHER. TAKE THREE MEASURE- MENTS, ONE NEAR THE TOP, ONE IN THE CENTER AND ONE NEAR THE BOTTOM. RECORD THE NARROWEST MEASUREMENT. 2. MEASURE THE EXACT HEIGHT IN THREE PLACES, LEFT, CENTER AND RIGHT FROM TOP EDGE OF OPENING TO TOP OF SILL. RE- CORD THE LONGEST MEASUREMENT FOR WOVEN WOOD SHADES. 3. DO NOT TAKE DEDUCTIONS ON INSIDE MOUNT MEASUREMENTS. THE FACTORY WILL TAKE AN 1/2“ ALLOWANCES FOR 4. OPERATING CLEARANCE. 5. MEASURE THE WINDOW DIAGONALLY IN TWO PLACES. IF THE TWO DIAGONAL MEASUREMENTS ARE NOT THE SAME, WE SUGGEST AN OUTSIDE MOUNT APPLICATION FOR THE BEST SHADE PERFORMANCE AND APPEARANCE. OUTSIDE MOUNT OUTSIDE MOUNT BLINDS ARE INSTALLED OUTSIDE THE WINDOW FRAME, COVERING AN AREA LARGER THAN THE WINDOW ITSELF. 1. MEASURE THE EXACT WIDTH OF AREA TO BE COVERED. BE CERTAIN THE MEASUREMENT OVERLAPS THE WINDOW OPENING BY 2. AT LEAST 1 1/2” ON EACH SIDE TO ENSURE PRIVACY AND LIGHT CONTROL.
    [Show full text]