Cascading Reproductive Isolation: Plant Phenology Drives Temporal Isolation Among Populations of a Host-Specific Herbivore
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Big Bluestem
. Native Plants Appendix Saint Paul Parks and Recreation big bluestem Scientific Name: Andropogon geradii Description: ▫Perennial grass growing to a height of 3 to 10 feet. ▫Stem: stem base turns a blue-purple color as it matures ▫Root structure: deep roots; sends out rhizomes Flowers and seed heads: Flowers are spike-lets born in pairs. Three spike-like projections (looks like a turkey foot) form the seed head. Habitat: native to Minnesota and much of the tall grass prairies of the Great Plains in North America Planting Recommendations: prefers full sun, moist to slightly dry conditions, and fertile-loam or clay loam soil Fun Fact Big bluestem is also used as forage for livestock. Native Plants Appendix Saint Paul Parks and Recreation black-eyed susan Scientific Name: Rudbeckia hirta Description: ▫Annual or biennial herbaceous plant, 1 to 3 feet tall ▫Leaves: spirally arranged, entire to deeply lobed; covered in bristly hairs ▫Root system: central taproot and no rhizomes; reproduces entirely by seed ▫Flowers: the flower has dark brown disc florets and yellow or orange ray florets in a daisy-like shape. Habitat: native to United States Planting Recommendations: plant in full sun; prefers slightly moist to moderately dry soil conditions Best Display: has flowers present from June to August Common Problems: aphids and whiteflies; powdery mildew fungi Fun Facts It is also called a cone shaped head because when the flower head opens the ray florets have a tendency to point out and down. This plant is often used in prairie restoration and recovers moderately well from fires. Native Plants Appendix Saint Paul Parks and Recreation black raspberry Scientific Name: Rubus occidentalis Description: ▫Perennial deciduous shrub ▫Leaves: pinnate with five leaflets making up one leaf and three leaflets on stems with flowering branchlets. -
Effect of Arbuscular Mycorrhizal Colonization on Ecological Functional Traits of Ephemerals in the Gurbantonggut Desert
SYMBIOSIS (2008) 46, 121-127 ©2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Effect of arbuscular mycorrhizal colonization on ecological functional traits of ephemerals in the Gurbantonggut desert Y. Sun, X.L. Li, and G. Feng* College of Natural Resources and Environmental Sciences, China Agricultural University, Beijing I 00094, China, Tel. +86-10-62733885, Fax. +86-10-62731016, Email. [email protected] (Received August 14, 2007; Accepted February 7, 2008) Abstract The spring ephemerals are distinct and important flora in the Gurbantonggut desert, in central Asia and northwestern China. In order to understand the role of arbuscular mycorrhizal (AM) fungi on growth of ephemerals, a pot experiment was conducted in greenhouse conditions. Two desert ephemerals, Erodium oxyrrhynchum and Plantago minuta, were tested for their response to inoculation with two AM fungi, BEG 167 (Glomus mosseae) and BEG 141 (Glomus intraradices). The results showed that mycorrhizal colonization led to marked improvement in both the reproductive (timing of flowering and number of seeds) and vegetative (dry matter) phase of the two ephemeral plants. Dry weight per plant inoculated with AM fungi was 57 to 67 percent higher than the control in E. oxyrrhynchum and 8 to 11 times higher than the control in P. minuta. Anthesis was advanced by 14 to 17d in P minuta and 5 to 7d in E. oxyrrhynchum, respectively, when both plants were inoculated with AM fungi. Colonization of mycorrhizal fungi significantly increased the total number of seeds or fruits per plant. Water use efficiency and photosynthetic rates were significantly higher in inoculated E. oxyrrhynchum plants than those of non-inoculated plants. -
Parasitoids, Hyperparasitoids, and Inquilines Associated with the Sexual and Asexual Generations of the Gall Former, Belonocnema Treatae (Hymenoptera: Cynipidae)
Annals of the Entomological Society of America, 109(1), 2016, 49–63 doi: 10.1093/aesa/sav112 Advance Access Publication Date: 9 November 2015 Conservation Biology and Biodiversity Research article Parasitoids, Hyperparasitoids, and Inquilines Associated With the Sexual and Asexual Generations of the Gall Former, Belonocnema treatae (Hymenoptera: Cynipidae) Andrew A. Forbes,1,2 M. Carmen Hall,3,4 JoAnne Lund,3,5 Glen R. Hood,3,6 Rebecca Izen,7 Scott P. Egan,7 and James R. Ott3 Downloaded from 1Department of Biology, University of Iowa, Iowa City, IA 52242 ([email protected]), 2Corresponding author, e-mail: [email protected], 3Population and Conservation Biology Program, Department of Biology, Texas State University, San Marcos, TX 78666 ([email protected]; [email protected]; [email protected]; [email protected]), 4Current address: Science Department, Georgia Perimeter College, Decatur, GA 30034, 5Current address: 4223 Bear Track Lane, Harshaw, WI 54529, 6Current address: Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences, Notre Dame, IN 46556, and 7Department of BioSciences, Anderson Biological Laboratories, Rice University, Houston, TX 77005 ([email protected], http://aesa.oxfordjournals.org/ [email protected]) Received 24 July 2015; Accepted 25 October 2015 Abstract Insect-induced plant galls are thought to provide gall-forming insects protection from predation and parasitism, yet many gall formers experience high levels of mortality inflicted by a species-rich community of insect natural enemies. Many gall-forming cynipid wasp species also display heterogony, wherein sexual (gamic) and asexual at Univ. of Massachusetts/Amherst Library on March 14, 2016 (agamic) generations may form galls on different plant tissues or plant species. -
Late Canopy Closure Delays Senescence and Promotes Growth of the Spring Ephemeral Wild Leek ( Allium Tricoccum)
Botany Late canopy closure delays senescence and promotes growth of the spring ephemeral wild leek ( Allium tricoccum). Journal: Botany Manuscript ID cjb-2016-0317.R1 Manuscript Type: Article Date Submitted by the Author: 04-Feb-2017 Complete List of Authors: Dion, Pierre-Paul; Universite Laval, Phytologie Bussières, DraftJulie; Universite Laval, Biologie Lapointe, Line; Université Laval, Biologie Keyword: <i>Allium tricoccum</i>, Tree canopy, Light, Phenology, Spring ephemeral https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 33 Botany Late canopy closure delays senescence and promotes growth of the spring ephemeral wild leek (Allium tricoccum ). Pierre-Paul DION 1, Julie BUSSIÈRES & Line LAPOINTE Centre for Forest Research and Department of Biology, Laval University, Québec, Québec, Canada, G1V 0A6. Pierre-Paul Dion: [email protected] Julie Bussières: [email protected] Line Lapointe: [email protected] Corresponding author: Pierre-Paul Dion,Draft Department of Plant Science, Laval University, Québec, Québec, Canada, G1V 0A6. Email: [email protected] 1 New affiliation: Department of Plant Science, Laval University, Québec, Québec, Canada, G1V 0A6. Email: [email protected] 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 33 Abstract Spring ephemerals take advantage of the high light conditions in spring to accumulate carbon reserves through photosynthesis before tree leaves unfold. Recent work reports delayed leaf senescence under constant light availability in some spring ephemerals, such as wild leek ( Allium tricoccum ). This paper aims at establishing if tree canopy composition and phenology can influence the growth of spring ephemerals through changes in their phenology. -
Archbold May 2017 News
In This Issue: ARCHBOLD MAY 1. Oak Gall Wasp Evolution 2. Greater Everglades 2017 NEWS Gathering for curious minds 3. Scrub-Jays Never Have Weekends Off 4. Scrub Plein Air 5. Scrub to Web Oak Gall Wasp Evolution Donate Now Archbold Biological Station Website Pea shaped leaf galls induced by the gall wasp, Belonocnema treatae, on Scrub Live Oak (Quercus geminata). In February, Dr. Scott Egan, Dr. Glen Hood and Linyi Zhang of Rice University left their Houston home for a trek to Archbold towing 160 six-foot-tall oak trees. For a gall wasp, these oak trees are future homes. Female gall wasps lay Subscribe to our their eggs inside oak leaves (and other plants and plant Monthly News parts including buds, branches, roots, stems, and flowers) inducing nutrient-rich plant tissue to form around the egg. This induced ‘gall’ provides a ‘safe’ haven and food source "Archbold Biological Station is for the developing wasps. The team is deploying oak trees one of America’s iconic in south Florida for colonization by local gall wasps while centers of continuous experimentally transplanting gall wasps onto caged oak research and education in trees at Archbold. Seventy percent of known gall wasps rely field biology. It is a prototype on an oak as a host. Now, two months into their stay at of what we need all across Archbold, Hood said, ‘Our goal is to understand America." phenotypic and genotypic evolution of gall wasps living on different oak species, and illuminate the roles — Edward O. Wilson of natural selection and reproductive isolation during host plant adaptation and the evolution of new insect species’. -
Evidence for Host Associated Differentiation Among
PARALLEL AND NONPARALLEL PATTERNS OF GENETIC CO- DIFFERENTIATION: EVIDENCE FOR HOST ASSOCIATED DIFFERENTIATION AMONG TROPHIC LEVELS OF THE OAK GALL WASP SYSTEM HONORS THESIS Presented to the Honors College of Texas State University in Partial Fulfillment of the Requirements for Graduation in the Honors College by Simon Lee Beymer San Marcos, Texas May 2019 PARALLEL AND NONPARALLEL PATTERNS OF GENETIC CO- DIFFERENTIATION: EVIDENCE FOR HOST ASSOCIATED DIFFERENTIATION AMONG TROPHIC LEVELS OF THE OAK GALL WASP SYSTEM by Simon Lee Beymer Thesis Supervisor: ________________________________ James R. Ott, Ph.D. Department of Biology Second Reader: __________________________________ Chris Nice, Ph.D. Department of Biology Approved: ____________________________________ Heather C. Galloway, Ph.D. Dean, Honors College TABLE OF CONTENTS Page LIST OF FIGURES ....................................................................................................... iv APPENDICES ................................................................................................................ v ABSTRACT ................................................................................................................... vi CHAPTER I. INTRODUCTION .............................................................................................. 1 a. Study System ....................................................................................... 4 II. MATERIALS AND METHODS ........................................................................ 8 a. Genomic Library -
Source–Sink Imbalance Increases with Growth Temperature in the Spring Geophyte Erythronium Americanum
Journal of Experimental Botany, Vol. 62, No. 10, pp. 3467–3479, 2011 doi:10.1093/jxb/err020 Advance Access publication 18 February, 2011 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Source–sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum Anthony Gandin1,3,*, Sylvain Gutjahr2, Pierre Dizengremel3 and Line Lapointe1 1 De´ partement de biologie et Centre d’e´ tude de la foreˆ t, Universite´ Laval, Que´ bec (QC), Canada G1V 0A6 2 CIRAD, UPR A˜ IVA, F-34398 Montpellier cedex 5, France 3 Faculte´ des Sciences et Techniques, UMR 1137 E´ cologie et e´ cophysiologie forestie` res, Nancy-Universite´ , BP 239, F-54506 Vandoeuvre, France * Present address and to whom correspondence should be sent: School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. E-mail: [email protected] Received 30 October 2010; Revised 11 January 2011; Accepted 17 January 2011 Abstract Spring geophytes produce larger storage organs and present delayed leaf senescence under lower growth temperature. Bulb and leaf carbon metabolism were investigated in Erythronium americanum to identify some of the mechanisms that permit this improved growth at low temperature. Plants were grown under three day/night temperature regimes: 18/14 °C, 12/8 °C, and 8/6 °C. Starch accumulated more slowly in the bulb at lower temperatures probably due to the combination of lower net photosynthetic rate and activation of a ‘futile cycle’ of sucrose synthesis and degradation. Furthermore, bulb cell maturation was delayed at lower temperatures, potentially due to the delayed activation of sucrose synthase leading to a greater sink capacity. -
Plant Invaders of Mid-Atlantic Natural Areas Revised & Updated – with More Species and Expanded Control Guidance
Plant Invaders of Mid-Atlantic Natural Areas Revised & Updated – with More Species and Expanded Control Guidance National Park Service U.S. Fish and Wildlife Service 1 I N C H E S 2 Plant Invaders of Mid-Atlantic Natural Areas, 4th ed. Authors Jil Swearingen National Park Service National Capital Region Center for Urban Ecology 4598 MacArthur Blvd., N.W. Washington, DC 20007 Britt Slattery, Kathryn Reshetiloff and Susan Zwicker U.S. Fish and Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Dr. Annapolis, MD 21401 Citation Swearingen, J., B. Slattery, K. Reshetiloff, and S. Zwicker. 2010. Plant Invaders of Mid-Atlantic Natural Areas, 4th ed. National Park Service and U.S. Fish and Wildlife Service. Washington, DC. 168pp. 1st edition, 2002 2nd edition, 2004 3rd edition, 2006 4th edition, 2010 1 Acknowledgements Graphic Design and Layout Olivia Kwong, Plant Conservation Alliance & Center for Plant Conservation, Washington, DC Laurie Hewitt, U.S. Fish & Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD Acknowledgements Funding provided by the National Fish and Wildlife Foundation with matching contributions by: Chesapeake Bay Foundation Chesapeake Bay Trust City of Bowie, Maryland Maryland Department of Natural Resources Mid-Atlantic Invasive Plant Council National Capital Area Garden Clubs Plant Conservation Alliance The Nature Conservancy, Maryland–DC Chapter Worcester County, Maryland, Department of Comprehensive Planning Additional Fact Sheet Contributors Laurie Anne Albrecht (jetbead) Peter Bergstrom (European -
Dynamics of Arbuscular Mycorrhizal Fungi Associated with Desert Ephemeral Plants in Gurbantunggut Desert
Journal of Arid Land Volume 4 Issue 1 Article 6 3-5-2012 Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert Tao ZHANG 1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; ChangYan TIAN 2 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Yu SUN 3 Institute of Crop Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China; Follow this and additional works at: https://egijournals.researchcommons.org/journal-of-arid-land Part of the Ecology and Evolutionary Biology Commons Recommended Citation ZHANG, Tao; TIAN, ChangYan; and SUN, Yu (2012) "Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert," Journal of Arid Land: Vol. 4 : Iss. 1 , Article 6. DOI: 10.3724/SP.J.1227.2012.00042 Available at: https://egijournals.researchcommons.org/journal-of-arid-land/vol4/iss1/6 This Research Article is brought to you for free and open access by Journals of EGI. It has been accepted for inclusion in Journal of Arid Land by an authorized editor of Journals of EGI. For more information, please contact [email protected]. Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert Cover Page Footnote This work was funded by the National Natural Science Foundation of China (30770341) and the International Fund for Agricultural Development (the WATERCOPE project, I-R-1284). This -
Edición Electrónica Glosario De Términos Agrícolas
abaca abacá, cáñamo de Manila absinth ajenjo abacterial abacteriano absolute absoluto abandoned land terreno en barbecho O deviation desviación absoluta abandonado humidity humedad absoluta abaxial leaf surface cara superior o haz temperature temperatura absoluta de hoja, superficie abaxial absorbing root raíz absorbente abele áiamo blanco o plateado absorption absorción aberrant individual individuo aberrante capacity capacidad de absorción nitrogen absorción de nitrógeno aberración - aberration nutrient asimilación o absorción de nutrientes chromath aberración cromática - - potassium absorción de potasio chromosomal- aberración cromosómica - root absorción de la raíz nuclear aberración nuclear - - spectrometry, atomic espectrometría de rate índice de aberración - absorción atómica ability capacidad, habilidad spectrophotometer espectrofotómetro de combining - habilidad combinatoria absorción germination - facilidad de germinación spectroscopy espectroscopía de absorción tiilering capacidad de macoilamiento - Abyssinian love grass tef abiotic abiótico acacia acacia elicitor elicitor abiótico false falsa acacia, robinia environment entorno abiótico - acalyculate acalicino, acaiiculado abnormal fruit fruto malformado acalypha acaiifa abortion, early aborción temprana acanthaceous acantáceo abortive abortivo embryo embrión abortivo acanthine acantino transduction transducción abortiva acanthocarpous acantocarpo above sobre, encima acanthocladous acantóclado ground level sobre el nivel del suelo acanthopodous acantópodo ground nitrogen nitrógeno -
Dutchess Dirt
Dutchess Dirt A gardening newsletter from: Issue #118, May, 2017 SPRING! (DON’T BLINK) By Joyce Tomaselli, CCEDC Community Horticulture Resource Educator Spring didn’t just spring this year - it leapt high into the air, did a few flips, twists, turns and finally landed with a bang. Blubs grew quickly into masses of color. Herbaceous perennials emerged from the soil overnight bursting into bloom a few days later. Trees and shrubs leafed out all seemingly at once, especially for those of us with allergies to pollen. Bees and flies filled the air along with a few butterflies. One evening last week along a wooded one-lane road, an amazing assortment of wildflowers was in bloom. Here are a few I photographed. All are native, most are ephemeral. Dutchman’s breeches, Dicentra cucullaria, are an ephemeral plant which prefers rich, moist, humusy soils in part shade. The flowers are usually white but sometimes pink, and are shaped like upside-down pantaloons. This stand is on a rocky steep hill right on the side of road, facing east. There’s a large sycamore tree which provides shade. The plants grow from miniature tubers. Their seed is spread by ants. Bloodroot, Sanguinaria Canadensis, is growing in deeper shade with more moisture. Each flower stalk emerges with a leaf wrapped around it, which then unfurls as the flower opens. The flowers close at night and are very short-lived; the leaves are interesting in their own right. Every part of the plant exudes a bright red-orange sap which was used by Native American Indians for dye. -
Dugesiana, Año 21, No. 2, Julio-Diciembre 2014, Es Una
Dugesiana, Año 21, No. 2, Julio-Diciembre 2014, es una publicación Semestral, editada por la Universidad de Guadalajara, a través del Centro de Estudios en Zoología, por el Centro Universitario de Ciencias Biológicas y Agropecuarias. Camino Ramón Padilla Sánchez # 2100, Nextipac, Zapopan, Jalisco, Tel. 37771150 ext. 33218, http://dugesiana.cucba.udg.mx, [email protected]. Editor responsable: José Luis Navarrete Heredia. Reserva de Derechos al Uso Exclusivo 04-2009-062310115100-203, ISSN: 2007-9133, otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número: Coordinación de Tecnologías para el Aprendizaje, Unidad Multimedia Instruccional, M.B.A. Oscar Carbajal Mariscal. Fecha de la última modificación Diciembre 2014, con un tiraje de un ejemplar. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación sin previa autorización de la Universidad de Guadalajara. Dugesiana 21(2): 155-160 ISSN 1405-4094 (edición impresa) Fecha de publicación: 30 de diciembre 2014 ISSN 2007-9133 (edición online) ©Universidad de Guadalajara Re-establishment of Erythres Kinsey, 1937 as a valid genus of gallwasps from Mexico (Hymenoptera: Cynipidae: Cynipini) Reestablecimiento del género Erythres Kinsey, 1937 como género válido de avispas agalladoras de México (Hymenoptera: Cynipidae: Cynipini) J. Pujade-Villar1 & G. Melika2 1 Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona, Spain. E-mail: [email protected]; 2 Plant Health and Molecular Biology Laboratory, National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Budaörsi str.