Cascading Reproductive Isolation: Plant Phenology Drives Temporal Isolation Among Populations of a Host-Specific Herbivore

Total Page:16

File Type:pdf, Size:1020Kb

Cascading Reproductive Isolation: Plant Phenology Drives Temporal Isolation Among Populations of a Host-Specific Herbivore ORIGINAL ARTICLE doi:10.1111/evo.13683 Cascading reproductive isolation: Plant phenology drives temporal isolation among populations of a host-specific herbivore Glen R. Hood,1,2,3 Linyi Zhang,1 Elaine G. Hu,1 James R. Ott,4 and Scott P. Egan1 1Department of Biosciences, Anderson Biological Laboratories, Rice University, Houston, Texas 77005 2Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202 3E-mail: [email protected] 4Population and Conservation Biology Program, Department of Biology, Texas State University, San Marcos, Texas 78666 Received November 5, 2018 Accepted January 7, 2019 All organisms exist within a complex network of interacting species, thus evolutionary change may have reciprocal effects on multiple taxa. Here, we demonstrate “cascading reproductive isolation,” whereby ecological differences that reduce gene flow between populations at one trophic level affect reproductive isolation (RI) among interacting species at the next trophic level. Using a combination of field, laboratory and common-garden studies and long-term herbaria records, we estimate and evaluate the relative contribution of temporal RI to overall prezygotic RI between populations of Belonocnema treatae, a specialist gall- forming wasp adapted to sister species of live oak (Quercus virginiana and Q. geminata). We link strong temporal RI between host-associated insect populations to differences between host plant budbreak phenology. Budbreak initiates flowering and the production of new leaves, which are an ephemeral resource critical to insect reproduction. As flowering time is implicated in RI between plant species, budbreak acts as a “multitrophic multi-effect trait,” whereby differences in budbreak phenology contribute to RI in plants and insects. These sister oak species share a diverse community of host-specific gall-formers and insect natural enemies similarly dependent on ephemeral plant tissues. Thus, our results set the stage for testing for parallelism in a role of plant phenology in driving temporal cascading RI across multiple species and trophic levels. KEY WORDS: Belonocnema treatae, live oak, multitrophic multieffect trait, Quercus, reproductive isolation. Ecology plays an essential role in the speciation process when (Talley et al. 2001). However, a synthetic view of how ecologically barriers to gene flow evolve between populations as a result of driven RI arises requires understanding (1) if and how individual ecologically based divergent natural selection (Rundle and Nosil phenotypes are affected by divergent selection between popula- 2005). Thus, knowledge of how such barriers arise is necessary tions experiencing different environments, (2) if those effected for understanding how divergence among populations is initiated phenotypes reduce gene flow between diverging populations, and and maintained. In the last 35 years, the role that ecology plays (3) how multiple barriers accumulate to contribute to RI. during population divergence and the evolution of reproductive To date, a small but growing number of studies have esti- isolation (RI) has been the subject of intensified research (Nosil mated the combined effect of multiple barriers to RI (e.g., Ramsey 2012). Consequently, the study of ecologically based RI has in- et al. 2003; Martin and Willis 2007; Matsubayashi and Katakura creased our understanding of how barriers to gene flow evolve in a 2009; Dopman et al. 2010; Sanchez-Guillen et al. 2012; Lackey diversity of taxa including plants (Richards and Ortiz-Barrientos and Boughman 2017; Paudel et al. 2018; Sambatti et al. 2012). 2016), fishes (Rundle 2002), insects (Feder et al. 1994; Egan However, even for well-studied systems, biologists frequently and Funk 2009), birds (Huber et al. 2007), amphibians (Twomey lack a detailed understanding of the relative contributions of the et al. 2014), reptiles (Rosenblum et al. 2010), and mammals individual components of RI to total RI and/or the chronological C 2019 The Author(s). Evolution C 2019 The Society for the Study of Evolution. 554 Evolution 73-3: 554–568 TEMPORAL ISOLATION IN GALL WASP POPULATIONS order in which components of RI evolve. Consequently, the host plants and/or the probability that immigrants successfully forms of RI most common during ecological speciation remain reproduce. Thus, for short-lived insect species, temporal RI may unclear (see “Twenty-Five Major, Yet Unresolved, Questions in represent an ecological adaptation of a population to its environ- Ecological Speciation,” Nosil 2012). ment that can also function as a critical barrier to gene flow and Here, we investigate an understudied driver of RI, which promote population divergence. we describe as “cascading RI,” whereby ecological differences in In their comprehensive review of the role of allochrony dur- traits that reduce gene flow between populations at one tropic level ing speciation, Taylor and Friesen (2017) conclude that (1) dif- “cascade” upward to similarly affect interacting organisms at the ferences in the timing of key life-cycle events can contribute to next trophic level. To test for cascading temporal RI in a special- RI, (2) the effect of allochrony can substantially reduce gene flow ized insect herbivore, we first document phenological differences when it disrupts the overlap of breeding times between popula- in the trait budbreak, a hypothesized driver of RI between sister tions, and (3) allochrony may often be the initial or key driver plant taxa occupying different microhabitats. Second, we test the of speciation. The last point is important owing to the sequen- role of ecology (differences in the timing of leaf availability) in tial nature of RI—those barriers that act earliest in the life cycle generating temporal RI between host-plant-associated insect pop- contribute more to total RI when multiple barriers are present ulations dependent on this ephemeral resource. Third, we combine (Hood et al. 2012; Ramsey et al. 2003). Thus, the accumulation estimates of temporal RI with two established prezygotic barri- of barriers to gene flow can act as sieves, with the earliest acting ers to estimate total RI among host-associated insect populations. barriers allowing fewer individuals to pass genes to the next gen- Cascading RI differs from “cascading divergence” whereby both eration. Despite the orthodoxy of the perceived role of allochrony ecological and genetic divergence at one trophic level results in in insect speciation, Forbes et al. (2017) found that allochronic concordant divergence of species at the next trophic level that isolation initiated speciation via host plant shifting in only 13 adapt to the newly created niche. For example, the shift and sub- out of 85 (15%) herbivorous insect systems, while Taylor and sequent divergence of Rhagoletis pomonella from native plant Friesen (2017) documented only nine cases of allochrony driv- hawthorn to apple resulted in the formation of a new niche that ing ecological speciation (five of which were in insect systems) was colonized by multiple parasitoid species that have diverged and an additional 56 systems in which “further study is needed.” in tandem with R. pomenella (Hood et al. 2015). Moreover, while Thus, the assertion that “allochronic isolation is common . for cascading RI is a necessary component of cascading divergence, phytophagous insects” (Berlocher and Feder 2002) may be less RI at both trophic levels must be under (partial) genetic control. substantiated by available data than models and theory alone Cascading RI, as defined herein, need not necessarily be con- suggest. trolled genetically. Herein, we postulate that the ecological driver (divergence Herbivorous insects and their host plants are excellent sys- in the timing of the trait budbreak) hypothesized to generate tems to investigate temporal RI as many species are highly spe- RI between sister species of live oaks Quercus virginiana and cialized on one or a few closely related plant species and depen- Q. geminata (Cavender-Bares and Pahlich 2009), cascades dent on specific tissues as sites for courtship, mating, feeding, across trophic levels to generate temporal RI between host- oviposition, and development (Bernays 1998; Funk et al. 2002). plant-associated populations of the gall-former, Belonocnema Host plant specialization often has a temporal component as plant treatae. Here, we combine field and laboratory observations, tissues can be used for only short windows of time. Thus, the tim- common-garden experiments and long-term herbaria records to ing of insect life-cycle events becomes critical when reproductive link phenological differences in host plant flowering and leaf success is intrinsically tied to the acquisition of ephemeral re- flush to temporal RI among associated gall-former populations. sources. As a result, host-tissue-specific populations of insects Importantly, two additional phenotypes, adult longevity and adapting to different plant environments that vary in the produc- breeding time, interact to affect temporal RI. If populations tion of a critical plant tissue may experience a degree of “tempo- emerge at different times on alternative host plants, but earlier ral” or “allochronic” RI as a consequence of ecologically based emerging individuals survive long enough to partially/completely selection (Mopper 2005). Evidence for allochrony among host- overlap with the later emerging population during reproduction, plant-associated insect populations exists for a number of taxa, for RI will be reduced/eliminated.
Recommended publications
  • Big Bluestem
    . Native Plants Appendix Saint Paul Parks and Recreation big bluestem Scientific Name: Andropogon geradii Description: ▫Perennial grass growing to a height of 3 to 10 feet. ▫Stem: stem base turns a blue-purple color as it matures ▫Root structure: deep roots; sends out rhizomes Flowers and seed heads: Flowers are spike-lets born in pairs. Three spike-like projections (looks like a turkey foot) form the seed head. Habitat: native to Minnesota and much of the tall grass prairies of the Great Plains in North America Planting Recommendations: prefers full sun, moist to slightly dry conditions, and fertile-loam or clay loam soil Fun Fact Big bluestem is also used as forage for livestock. Native Plants Appendix Saint Paul Parks and Recreation black-eyed susan Scientific Name: Rudbeckia hirta Description: ▫Annual or biennial herbaceous plant, 1 to 3 feet tall ▫Leaves: spirally arranged, entire to deeply lobed; covered in bristly hairs ▫Root system: central taproot and no rhizomes; reproduces entirely by seed ▫Flowers: the flower has dark brown disc florets and yellow or orange ray florets in a daisy-like shape. Habitat: native to United States Planting Recommendations: plant in full sun; prefers slightly moist to moderately dry soil conditions Best Display: has flowers present from June to August Common Problems: aphids and whiteflies; powdery mildew fungi Fun Facts It is also called a cone shaped head because when the flower head opens the ray florets have a tendency to point out and down. This plant is often used in prairie restoration and recovers moderately well from fires. Native Plants Appendix Saint Paul Parks and Recreation black raspberry Scientific Name: Rubus occidentalis Description: ▫Perennial deciduous shrub ▫Leaves: pinnate with five leaflets making up one leaf and three leaflets on stems with flowering branchlets.
    [Show full text]
  • Effect of Arbuscular Mycorrhizal Colonization on Ecological Functional Traits of Ephemerals in the Gurbantonggut Desert
    SYMBIOSIS (2008) 46, 121-127 ©2008 Balaban, Philadelphia/Rehovot ISSN 0334-5114 Effect of arbuscular mycorrhizal colonization on ecological functional traits of ephemerals in the Gurbantonggut desert Y. Sun, X.L. Li, and G. Feng* College of Natural Resources and Environmental Sciences, China Agricultural University, Beijing I 00094, China, Tel. +86-10-62733885, Fax. +86-10-62731016, Email. [email protected] (Received August 14, 2007; Accepted February 7, 2008) Abstract The spring ephemerals are distinct and important flora in the Gurbantonggut desert, in central Asia and northwestern China. In order to understand the role of arbuscular mycorrhizal (AM) fungi on growth of ephemerals, a pot experiment was conducted in greenhouse conditions. Two desert ephemerals, Erodium oxyrrhynchum and Plantago minuta, were tested for their response to inoculation with two AM fungi, BEG 167 (Glomus mosseae) and BEG 141 (Glomus intraradices). The results showed that mycorrhizal colonization led to marked improvement in both the reproductive (timing of flowering and number of seeds) and vegetative (dry matter) phase of the two ephemeral plants. Dry weight per plant inoculated with AM fungi was 57 to 67 percent higher than the control in E. oxyrrhynchum and 8 to 11 times higher than the control in P. minuta. Anthesis was advanced by 14 to 17d in P minuta and 5 to 7d in E. oxyrrhynchum, respectively, when both plants were inoculated with AM fungi. Colonization of mycorrhizal fungi significantly increased the total number of seeds or fruits per plant. Water use efficiency and photosynthetic rates were significantly higher in inoculated E. oxyrrhynchum plants than those of non-inoculated plants.
    [Show full text]
  • Parasitoids, Hyperparasitoids, and Inquilines Associated with the Sexual and Asexual Generations of the Gall Former, Belonocnema Treatae (Hymenoptera: Cynipidae)
    Annals of the Entomological Society of America, 109(1), 2016, 49–63 doi: 10.1093/aesa/sav112 Advance Access Publication Date: 9 November 2015 Conservation Biology and Biodiversity Research article Parasitoids, Hyperparasitoids, and Inquilines Associated With the Sexual and Asexual Generations of the Gall Former, Belonocnema treatae (Hymenoptera: Cynipidae) Andrew A. Forbes,1,2 M. Carmen Hall,3,4 JoAnne Lund,3,5 Glen R. Hood,3,6 Rebecca Izen,7 Scott P. Egan,7 and James R. Ott3 Downloaded from 1Department of Biology, University of Iowa, Iowa City, IA 52242 ([email protected]), 2Corresponding author, e-mail: [email protected], 3Population and Conservation Biology Program, Department of Biology, Texas State University, San Marcos, TX 78666 ([email protected]; [email protected]; [email protected]; [email protected]), 4Current address: Science Department, Georgia Perimeter College, Decatur, GA 30034, 5Current address: 4223 Bear Track Lane, Harshaw, WI 54529, 6Current address: Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences, Notre Dame, IN 46556, and 7Department of BioSciences, Anderson Biological Laboratories, Rice University, Houston, TX 77005 ([email protected], http://aesa.oxfordjournals.org/ [email protected]) Received 24 July 2015; Accepted 25 October 2015 Abstract Insect-induced plant galls are thought to provide gall-forming insects protection from predation and parasitism, yet many gall formers experience high levels of mortality inflicted by a species-rich community of insect natural enemies. Many gall-forming cynipid wasp species also display heterogony, wherein sexual (gamic) and asexual at Univ. of Massachusetts/Amherst Library on March 14, 2016 (agamic) generations may form galls on different plant tissues or plant species.
    [Show full text]
  • Late Canopy Closure Delays Senescence and Promotes Growth of the Spring Ephemeral Wild Leek ( Allium Tricoccum)
    Botany Late canopy closure delays senescence and promotes growth of the spring ephemeral wild leek ( Allium tricoccum). Journal: Botany Manuscript ID cjb-2016-0317.R1 Manuscript Type: Article Date Submitted by the Author: 04-Feb-2017 Complete List of Authors: Dion, Pierre-Paul; Universite Laval, Phytologie Bussières, DraftJulie; Universite Laval, Biologie Lapointe, Line; Université Laval, Biologie Keyword: <i>Allium tricoccum</i>, Tree canopy, Light, Phenology, Spring ephemeral https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 33 Botany Late canopy closure delays senescence and promotes growth of the spring ephemeral wild leek (Allium tricoccum ). Pierre-Paul DION 1, Julie BUSSIÈRES & Line LAPOINTE Centre for Forest Research and Department of Biology, Laval University, Québec, Québec, Canada, G1V 0A6. Pierre-Paul Dion: [email protected] Julie Bussières: [email protected] Line Lapointe: [email protected] Corresponding author: Pierre-Paul Dion,Draft Department of Plant Science, Laval University, Québec, Québec, Canada, G1V 0A6. Email: [email protected] 1 New affiliation: Department of Plant Science, Laval University, Québec, Québec, Canada, G1V 0A6. Email: [email protected] 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 33 Abstract Spring ephemerals take advantage of the high light conditions in spring to accumulate carbon reserves through photosynthesis before tree leaves unfold. Recent work reports delayed leaf senescence under constant light availability in some spring ephemerals, such as wild leek ( Allium tricoccum ). This paper aims at establishing if tree canopy composition and phenology can influence the growth of spring ephemerals through changes in their phenology.
    [Show full text]
  • Archbold May 2017 News
    In This Issue: ARCHBOLD MAY 1. Oak Gall Wasp Evolution 2. Greater Everglades 2017 NEWS Gathering for curious minds 3. Scrub-Jays Never Have Weekends Off 4. Scrub Plein Air 5. Scrub to Web Oak Gall Wasp Evolution Donate Now Archbold Biological Station Website Pea shaped leaf galls induced by the gall wasp, Belonocnema treatae, on Scrub Live Oak (Quercus geminata). In February, Dr. Scott Egan, Dr. Glen Hood and Linyi Zhang of Rice University left their Houston home for a trek to Archbold towing 160 six-foot-tall oak trees. For a gall wasp, these oak trees are future homes. Female gall wasps lay Subscribe to our their eggs inside oak leaves (and other plants and plant Monthly News parts including buds, branches, roots, stems, and flowers) inducing nutrient-rich plant tissue to form around the egg. This induced ‘gall’ provides a ‘safe’ haven and food source "Archbold Biological Station is for the developing wasps. The team is deploying oak trees one of America’s iconic in south Florida for colonization by local gall wasps while centers of continuous experimentally transplanting gall wasps onto caged oak research and education in trees at Archbold. Seventy percent of known gall wasps rely field biology. It is a prototype on an oak as a host. Now, two months into their stay at of what we need all across Archbold, Hood said, ‘Our goal is to understand America." phenotypic and genotypic evolution of gall wasps living on different oak species, and illuminate the roles — Edward O. Wilson of natural selection and reproductive isolation during host plant adaptation and the evolution of new insect species’.
    [Show full text]
  • Evidence for Host Associated Differentiation Among
    PARALLEL AND NONPARALLEL PATTERNS OF GENETIC CO- DIFFERENTIATION: EVIDENCE FOR HOST ASSOCIATED DIFFERENTIATION AMONG TROPHIC LEVELS OF THE OAK GALL WASP SYSTEM HONORS THESIS Presented to the Honors College of Texas State University in Partial Fulfillment of the Requirements for Graduation in the Honors College by Simon Lee Beymer San Marcos, Texas May 2019 PARALLEL AND NONPARALLEL PATTERNS OF GENETIC CO- DIFFERENTIATION: EVIDENCE FOR HOST ASSOCIATED DIFFERENTIATION AMONG TROPHIC LEVELS OF THE OAK GALL WASP SYSTEM by Simon Lee Beymer Thesis Supervisor: ________________________________ James R. Ott, Ph.D. Department of Biology Second Reader: __________________________________ Chris Nice, Ph.D. Department of Biology Approved: ____________________________________ Heather C. Galloway, Ph.D. Dean, Honors College TABLE OF CONTENTS Page LIST OF FIGURES ....................................................................................................... iv APPENDICES ................................................................................................................ v ABSTRACT ................................................................................................................... vi CHAPTER I. INTRODUCTION .............................................................................................. 1 a. Study System ....................................................................................... 4 II. MATERIALS AND METHODS ........................................................................ 8 a. Genomic Library
    [Show full text]
  • Source–Sink Imbalance Increases with Growth Temperature in the Spring Geophyte Erythronium Americanum
    Journal of Experimental Botany, Vol. 62, No. 10, pp. 3467–3479, 2011 doi:10.1093/jxb/err020 Advance Access publication 18 February, 2011 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Source–sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum Anthony Gandin1,3,*, Sylvain Gutjahr2, Pierre Dizengremel3 and Line Lapointe1 1 De´ partement de biologie et Centre d’e´ tude de la foreˆ t, Universite´ Laval, Que´ bec (QC), Canada G1V 0A6 2 CIRAD, UPR A˜ IVA, F-34398 Montpellier cedex 5, France 3 Faculte´ des Sciences et Techniques, UMR 1137 E´ cologie et e´ cophysiologie forestie` res, Nancy-Universite´ , BP 239, F-54506 Vandoeuvre, France * Present address and to whom correspondence should be sent: School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. E-mail: [email protected] Received 30 October 2010; Revised 11 January 2011; Accepted 17 January 2011 Abstract Spring geophytes produce larger storage organs and present delayed leaf senescence under lower growth temperature. Bulb and leaf carbon metabolism were investigated in Erythronium americanum to identify some of the mechanisms that permit this improved growth at low temperature. Plants were grown under three day/night temperature regimes: 18/14 °C, 12/8 °C, and 8/6 °C. Starch accumulated more slowly in the bulb at lower temperatures probably due to the combination of lower net photosynthetic rate and activation of a ‘futile cycle’ of sucrose synthesis and degradation. Furthermore, bulb cell maturation was delayed at lower temperatures, potentially due to the delayed activation of sucrose synthase leading to a greater sink capacity.
    [Show full text]
  • Plant Invaders of Mid-Atlantic Natural Areas Revised & Updated – with More Species and Expanded Control Guidance
    Plant Invaders of Mid-Atlantic Natural Areas Revised & Updated – with More Species and Expanded Control Guidance National Park Service U.S. Fish and Wildlife Service 1 I N C H E S 2 Plant Invaders of Mid-Atlantic Natural Areas, 4th ed. Authors Jil Swearingen National Park Service National Capital Region Center for Urban Ecology 4598 MacArthur Blvd., N.W. Washington, DC 20007 Britt Slattery, Kathryn Reshetiloff and Susan Zwicker U.S. Fish and Wildlife Service Chesapeake Bay Field Office 177 Admiral Cochrane Dr. Annapolis, MD 21401 Citation Swearingen, J., B. Slattery, K. Reshetiloff, and S. Zwicker. 2010. Plant Invaders of Mid-Atlantic Natural Areas, 4th ed. National Park Service and U.S. Fish and Wildlife Service. Washington, DC. 168pp. 1st edition, 2002 2nd edition, 2004 3rd edition, 2006 4th edition, 2010 1 Acknowledgements Graphic Design and Layout Olivia Kwong, Plant Conservation Alliance & Center for Plant Conservation, Washington, DC Laurie Hewitt, U.S. Fish & Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD Acknowledgements Funding provided by the National Fish and Wildlife Foundation with matching contributions by: Chesapeake Bay Foundation Chesapeake Bay Trust City of Bowie, Maryland Maryland Department of Natural Resources Mid-Atlantic Invasive Plant Council National Capital Area Garden Clubs Plant Conservation Alliance The Nature Conservancy, Maryland–DC Chapter Worcester County, Maryland, Department of Comprehensive Planning Additional Fact Sheet Contributors Laurie Anne Albrecht (jetbead) Peter Bergstrom (European
    [Show full text]
  • Dynamics of Arbuscular Mycorrhizal Fungi Associated with Desert Ephemeral Plants in Gurbantunggut Desert
    Journal of Arid Land Volume 4 Issue 1 Article 6 3-5-2012 Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert Tao ZHANG 1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; ChangYan TIAN 2 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Yu SUN 3 Institute of Crop Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China; Follow this and additional works at: https://egijournals.researchcommons.org/journal-of-arid-land Part of the Ecology and Evolutionary Biology Commons Recommended Citation ZHANG, Tao; TIAN, ChangYan; and SUN, Yu (2012) "Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert," Journal of Arid Land: Vol. 4 : Iss. 1 , Article 6. DOI: 10.3724/SP.J.1227.2012.00042 Available at: https://egijournals.researchcommons.org/journal-of-arid-land/vol4/iss1/6 This Research Article is brought to you for free and open access by Journals of EGI. It has been accepted for inclusion in Journal of Arid Land by an authorized editor of Journals of EGI. For more information, please contact [email protected]. Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert Cover Page Footnote This work was funded by the National Natural Science Foundation of China (30770341) and the International Fund for Agricultural Development (the WATERCOPE project, I-R-1284). This
    [Show full text]
  • Edición Electrónica Glosario De Términos Agrícolas
    abaca abacá, cáñamo de Manila absinth ajenjo abacterial abacteriano absolute absoluto abandoned land terreno en barbecho O deviation desviación absoluta abandonado humidity humedad absoluta abaxial leaf surface cara superior o haz temperature temperatura absoluta de hoja, superficie abaxial absorbing root raíz absorbente abele áiamo blanco o plateado absorption absorción aberrant individual individuo aberrante capacity capacidad de absorción nitrogen absorción de nitrógeno aberración - aberration nutrient asimilación o absorción de nutrientes chromath aberración cromática - - potassium absorción de potasio chromosomal- aberración cromosómica - root absorción de la raíz nuclear aberración nuclear - - spectrometry, atomic espectrometría de rate índice de aberración - absorción atómica ability capacidad, habilidad spectrophotometer espectrofotómetro de combining - habilidad combinatoria absorción germination - facilidad de germinación spectroscopy espectroscopía de absorción tiilering capacidad de macoilamiento - Abyssinian love grass tef abiotic abiótico acacia acacia elicitor elicitor abiótico false falsa acacia, robinia environment entorno abiótico - acalyculate acalicino, acaiiculado abnormal fruit fruto malformado acalypha acaiifa abortion, early aborción temprana acanthaceous acantáceo abortive abortivo embryo embrión abortivo acanthine acantino transduction transducción abortiva acanthocarpous acantocarpo above sobre, encima acanthocladous acantóclado ground level sobre el nivel del suelo acanthopodous acantópodo ground nitrogen nitrógeno
    [Show full text]
  • Dutchess Dirt
    Dutchess Dirt A gardening newsletter from: Issue #118, May, 2017 SPRING! (DON’T BLINK) By Joyce Tomaselli, CCEDC Community Horticulture Resource Educator Spring didn’t just spring this year - it leapt high into the air, did a few flips, twists, turns and finally landed with a bang. Blubs grew quickly into masses of color. Herbaceous perennials emerged from the soil overnight bursting into bloom a few days later. Trees and shrubs leafed out all seemingly at once, especially for those of us with allergies to pollen. Bees and flies filled the air along with a few butterflies. One evening last week along a wooded one-lane road, an amazing assortment of wildflowers was in bloom. Here are a few I photographed. All are native, most are ephemeral. Dutchman’s breeches, Dicentra cucullaria, are an ephemeral plant which prefers rich, moist, humusy soils in part shade. The flowers are usually white but sometimes pink, and are shaped like upside-down pantaloons. This stand is on a rocky steep hill right on the side of road, facing east. There’s a large sycamore tree which provides shade. The plants grow from miniature tubers. Their seed is spread by ants. Bloodroot, Sanguinaria Canadensis, is growing in deeper shade with more moisture. Each flower stalk emerges with a leaf wrapped around it, which then unfurls as the flower opens. The flowers close at night and are very short-lived; the leaves are interesting in their own right. Every part of the plant exudes a bright red-orange sap which was used by Native American Indians for dye.
    [Show full text]
  • Dugesiana, Año 21, No. 2, Julio-Diciembre 2014, Es Una
    Dugesiana, Año 21, No. 2, Julio-Diciembre 2014, es una publicación Semestral, editada por la Universidad de Guadalajara, a través del Centro de Estudios en Zoología, por el Centro Universitario de Ciencias Biológicas y Agropecuarias. Camino Ramón Padilla Sánchez # 2100, Nextipac, Zapopan, Jalisco, Tel. 37771150 ext. 33218, http://dugesiana.cucba.udg.mx, [email protected]. Editor responsable: José Luis Navarrete Heredia. Reserva de Derechos al Uso Exclusivo 04-2009-062310115100-203, ISSN: 2007-9133, otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número: Coordinación de Tecnologías para el Aprendizaje, Unidad Multimedia Instruccional, M.B.A. Oscar Carbajal Mariscal. Fecha de la última modificación Diciembre 2014, con un tiraje de un ejemplar. Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación sin previa autorización de la Universidad de Guadalajara. Dugesiana 21(2): 155-160 ISSN 1405-4094 (edición impresa) Fecha de publicación: 30 de diciembre 2014 ISSN 2007-9133 (edición online) ©Universidad de Guadalajara Re-establishment of Erythres Kinsey, 1937 as a valid genus of gallwasps from Mexico (Hymenoptera: Cynipidae: Cynipini) Reestablecimiento del género Erythres Kinsey, 1937 como género válido de avispas agalladoras de México (Hymenoptera: Cynipidae: Cynipini) J. Pujade-Villar1 & G. Melika2 1 Universitat de Barcelona, Facultat de Biologia, Departament de Biologia Animal, Avda. Diagonal 645, 08028-Barcelona, Spain. E-mail: [email protected]; 2 Plant Health and Molecular Biology Laboratory, National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Budaörsi str.
    [Show full text]